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Abstract We study the Schur elements associated to the simple modules of the
Ariki–Koike algebra. We first give a cancellation-free formula for them so that their
factors can be easily read and programmed. We then study direct applications of this
result. We also complete the determination of the canonical basic sets for cyclotomic
Hecke algebras of type G(l,p,n) in characteristic 0.

Keywords Hecke algebras · Complex reflection groups · Schur elements · Blocks ·
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1 Introduction

Schur elements play a powerful role in the representation theory of symmetric alge-
bras. In the case of the Ariki–Koike algebra, that is, the Hecke algebra of the complex
reflection group G(l,1, n), they are Laurent polynomials whose factors determine
when Specht modules are projective irreducible and whether the algebra is semisim-
ple.

Formulas for the Schur elements of the Ariki–Koike algebra have been obtained
independently, first by Geck, Iancu and Malle [13], and later by Mathas [18]. The
first aim of this paper is to give a cancellation-free formula for these polynomials
(Theorem 3.2), so that their factors can be easily read and programmed. We then
present a number of direct applications. These include a new formula for Lusztig’s
a-function, as well as a simple classification of the projective irreducible modules for
Ariki–Koike algebras (that is, the blocks of defect 0).
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The second part of the paper is devoted to another aspect of the representation the-
ory of these algebras in connection with these Schur elements: the theory of canonical
basic sets. The main aim here is to obtain a classification of the simple modules for
specializations of cyclotomic Hecke algebras in characteristic 0. In [6], we studied
mainly the case of finite Weyl groups. In this paper, we focus on cyclotomic Hecke
algebras of type G(l,p,n). Using Lusztig’s a-function, defined from the Schur el-
ements, the theory of canonical basic sets provides a natural and efficient way to
parametrize the simple modules of these algebras.

The existence and explicit determination of the canonical basic sets is already
known in the case of Hecke algebras of finite Weyl groups (see [11] and [6]). The
case of cyclotomic Hecke algebras of type G(l,p,n) has been partially studied in [11,
14], and recently in [7] using the theory of Cherednik algebras. Answering a question
raised in [7], the goal of the last part of this paper is to complete the determination of
the canonical basic sets in this case.

2 Preliminaries

In this section, we introduce the necessary definitions and notation.

2.1 A partition λ = (λ1, λ2, λ3, . . .) is a decreasing sequence of non-negative inte-
gers. We define the length of λ to be the smallest integer �(λ) such that λi = 0 for
all i > �(λ). We write |λ| := ∑

i≥1 λi and we say that λ is a partition of m, for some
m ∈ Z>0, if m = |λ|. We set n(λ) := ∑

i≥1(i − 1)λi .
We define the set of nodes [λ] of λ to be the set

[λ] := {
(i, j) | i ≥ 1, 1 ≤ j ≤ λi

}
.

A node x = (i, j) is called removable if [λ] \ {(i, j)} is still the set of nodes of a
partition. Note that if (i, j) is removable, then j = λi .

The conjugate partition of λ is the partition λ′ defined by

λ′
k := #{i | i ≥ 1 such that λi ≥ k}.

Obviously, λ′
1 = �(λ). The set of nodes of λ′ satisfies

(i, j) ∈ [λ′] ⇔ (j, i) ∈ [λ].
Note that if (i, λi) is a removable node of λ, then λ′

λi
= i. Moreover, we have

n(λ) =
∑

i≥1

(i − 1)λi = 1

2

∑

i≥1

(λ′
i − 1)λ′

i =
∑

i≥1

(
λ′

i

2

)

.

If x = (i, j) ∈ [λ] and μ is another partition, we define the generalized hook length
of x with respect to (λ, μ) to be the integer:

h
λ,μ
i,j := λi − i + μ′

j − j + 1.
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For μ = λ, the above formula becomes the classical hook length formula (giving the
length of the hook of λ that x belongs to). Moreover, we define the content of x to
be the difference j − i. The following lemma, whose proof is an easy combinatorial
exercise (with the use of Young diagrams), relates the contents of the nodes of (the
“right rim” of) λ with the contents of the nodes of (the “lower rim” of) λ′.

Lemma 2.2 Let λ = (λ1, λ2, . . .) be a partition and let k be an integer such that
1 ≤ k ≤ λ1. Let q and y be two indeterminates. Then we have

1

(qλ1y − 1)
·
( ∏

1≤i≤λ′
k

qλi−i+1y − 1

qλi−iy − 1

)

= 1

(q−λ′
k+k−1y − 1)

·
( ∏

k≤j≤λ1

q
−λ′

j +j−1
y − 1

q
−λ′

j +j
y − 1

)

.

2.3 Let l and n be positive integers. An l-partition (or multipartition) of n is an
ordered l-tuple λ = (λ0, λ1, . . . , λl−1) of partitions such that

∑
0≤s≤l−1 |λs | = n. We

denote by Πl
n the set of l-partitions of n. The empty multipartition, denoted by ∅, is

an l-tuple of empty partitions. If λ = (λ0, λ1, . . . , λl−1) ∈ Πl
n, we denote by λ′ the

l-partition (λ0′
, λ1′

, . . . , λl−1′
).

2.4 Let R be a commutative domain with 1. Fix elements q, Q0, . . . , Ql−1 of R,
and assume that q is invertible in R. Set q := (Q0, . . . , Ql−1 ; q). The Ariki–Koike
algebra Hq

n is the unital associative R-algebra with generators T0, T1, . . . , Tn−1 and
relations:

(T0 − Q0)(T0 − Q1) · · · (T0 − Ql−1) = 0,

(Ti − q)(Ti + 1) = 0 for 1 ≤ i ≤ n − 1,

T0T1T0T1 = T1T0T1T0,

TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ n − 2,

TiTj = TjTi for 0 ≤ i < j ≤ n − 1 with j − i > 1.

The last three relations are the braid relations satisfied by T0, T1, . . . , Tn−1.
The Ariki–Koike algebra Hq

n is a deformation of the group algebra of the complex
reflection group G(l,1, n) = (Z/lZ) �Sn. Ariki and Koike [3] have proved that Hq

n is
a free R-module of rank lnn! = |G(l,1, n)| (see [2, Proposition 13.11]). In addition,
when R is a field, they have constructed a simple Hq

n-module V λ, with character χλ,
for each l-partition λ of n (see [2, Theorem 13.6]). These modules form a complete
set of non-isomorphic simple modules in the case where Hq

n is split semisimple (see
[2, Corollary 13.9]).

2.5 There is a useful semisimplicity criterion for Ariki–Koike algebras which has
been given by Ariki in [1]. This criterion will be recovered from our results later
(see Theorem 4.2), so let us simply assume from now on that Hq

n is split semisim-
ple. This happens, for example, when q, Q0, . . . , Ql−1 are indeterminates and
R = Q(q,Q0, . . . , Ql−1).
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Now, there exists a linear form τ : Hq
n → R which was introduced by Bremke

and Malle in [4], and was proved to be symmetrizing by Malle and Mathas in [16]
whenever all Qi ’s are invertible in R. An explicit description of this form can be
found in any of these two articles. Following Geck’s results on symmetrizing forms
(see [12, Theorem 7.2.6]), we obtain the following definition for the Schur elements
associated to the irreducible representations of Hq

n .

Definition 2.6 Suppose that R is a field and that Hq
n is split semisimple. The Schur

elements of Hq
n are the elements sλ(q) of R such that

τ =
∑

λ∈Πl
n

1

sλ(q)
χλ.

2.7 The Schur elements of the Ariki–Koike algebra Hq
n have been independently

calculated by Geck, Iancu and Malle [13], and by Mathas [18]. From now on, for all
m ∈ Z>0, let [m]q := (qm − 1)/(q − 1) = qm−1 + qm−2 + · · · + q + 1. The formula
given by Mathas does not demand extra notation and is the following:

Theorem 2.8 Let λ = (λ0, λ1, . . . , λl−1) be an l-partition of n. Then

sλ(q) = (−1)n(l−1)(Q0Q1 · · ·Ql−1)
−nq−α(λ)

·
∏

0≤s≤l−1

∏

(i,j)∈[λs ]
Qs

[
h

λs,λs

i,j

]
q

·
∏

0≤s<t≤l−1

Xλ
st ,

where

α(λ) =
∑

0≤s≤l−1

n
(
λs

)

and

Xλ
st =

∏

(i,j)∈[λt ]

(
qj−iQt − Qs

)

·
∏

(i,j)∈[λs ]

(
(
qj−iQs − qλt

1Qt

) ∏

1≤k≤λt
1

qj−iQs − qk−1−λt ′
k Qt

qj−iQs − qk−λt ′
k Qt

)

.

The formula by Geck, Iancu and Malle is more symmetric, and describes the Schur
elements in terms of beta numbers. If λ = (λ0, λ1, . . . , λl−1) is an l-partition of n,
then the length of λ is �(λ) = max{�(λs) |0 ≤ s ≤ l − 1}. Fix an integer L such
that L ≥ �(λ). The L-beta numbers for λs are the integers βs

i = λs
i + L − i for i =

1, . . . ,L. Set Bs = {βs
1, . . . , β

s
L} for s = 0, . . . , l − 1. The matrix B = (Bs)0≤s≤l−1 is

called the L-symbol of λ.

Theorem 2.9 Let λ = (λ0, . . . , λl−1) be an l-partition of n with L-symbol B =
(Bs)0≤s≤l−1, where L ≥ �(λ). Let aL := n(l − 1) + (

l
2

)(
L
2

)
and bL := lL(L −

1)(2lL − l − 3)/12. Then
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sλ(q) = (−1)aLqbL(q − 1)−n(Q0Q1 . . .Ql−1)
−nνλ/δλ,

where

νλ =
∏

0≤s<t≤l−1

(Qs − Qt)
L

∏

0≤s, t≤l−1

∏

bs∈Bs

∏

1≤k≤bs

(
qkQs − Qt

)

and

δλ =
∏

0≤s<t≤l−1

∏

(bs ,bt )∈Bs×Bt

(
qbs Qs − qbt Qt

) ∏

0≤s≤l−1

∏

1≤i<j≤L

(
qβs

i Qs − q
βs

j Qs

)
.

As the reader may see, in both formulas above, the factors of sλ(q) are not obvious.
Hence, it is not obvious for which values of q the Schur element sλ(q) becomes zero.

3 A cancellation-free formula for the Schur elements

In this section, we will give a cancellation-free formula for the Schur elements of Hq
n .

This formula is also symmetric.

3.1 Let X and Y be multisets of rational numbers ordered so that their elements form
decreasing sequences. We will write X 	 Y for the (ordered) multiset consisting of
all the elements of X and Y together and such that the elements of X 	 Y form a
decreasing sequence. We have |X 	 Y | = |X| + |Y |.

Theorem 3.2 Let λ = (λ0, λ1, . . . , λl−1) be an l-partition of n. Set λ̄ := ⊔
0≤s≤l−1 λs.

Then

sλ(q) = (−1)n(l−1)q−n(λ̄)(q − 1)−n
∏

0≤s≤l−1

∏

(i,j)∈[λs ]

∏

0≤t≤l−1

(
q

h
λs ,λt

i,j QsQ
−1
t − 1

)
.

(1)
Since the total number of nodes in λ is equal to n, the above formula can be rewritten
as follows:

sλ(q) = (−1)n(l−1)q−n(λ̄)

·
∏

0≤s≤l−1

∏

(i,j)∈[λs ]

(
[
h

λs,λs

i,j

]
q

∏

0≤t≤l−1, t 
=s

(
q

h
λs ,λt

i,j QsQ
−1
t − 1

)
)

. (2)

3.3 We will now proceed to the proof of the above result using the formula of Theo-
rem 2.8. The following lemma relates the terms q−n(λ̄) and q−α(λ).

Lemma 3.4 Let λ be an l-partition of n. We have

α(λ) +
∑

0≤s<t≤l−1

∑

i≥1

λs′
i λt ′

i = n(λ̄).
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Proof Following the definition of the conjugate partition, we have λ̄
′
i = ∑

0≤s≤l−1 λs′
i ,

for all i ≥ 1. Therefore,

n(λ̄) =
∑

i≥1

(
λ̄

′
i

2

)

=
∑

i≥1

(∑
0≤s≤l−1 λs′

i

2

)

=
∑

i≥1

( ∑

0≤s≤l−1

(
λs′

i

2

)

+
∑

0≤s<t≤l−1

λs′
i λt ′

i

)

= α(λ) +
∑

0≤s<t≤l−1

∑

i≥1

λs′
i λt ′

i .
�

Hence, to prove Equality (2), it is enough to show that, for all 0 ≤ s < t ≤ l − 1,

Xλ
st = q−∑

i≥1 λs′
i λt ′

i Q|λt |
s Q

|λs |
t

∏

(i,j)∈[λs ]

(
q

h
λs ,λt

i,j QsQ
−1
t − 1

)

·
∏

(i,j)∈[λt ]

(
q

h
λt ,λs

i,j QtQ
−1
s − 1

)
. (3)

3.5 We will proceed by induction on the number of nodes of λs . We do not need
to do the same for λt , because the symmetric formula for the Schur elements given
by Theorem 2.9 implies the following: if μ is the multipartition obtained from λ by
exchanging λs and λt , then

Xλ
st (Qs,Qt ) = X

μ
st (Qt ,Qs).

If λs = ∅, then

Xλ
st =

∏

(i,j)∈[λt ]

(
qj−iQt − Qs

)

= Q|λt |
s

∏

(i,j)∈[λt ]

(
qj−iQtQ

−1
s − 1

)

= Q|λt |
s

∏

1≤i≤λt ′
1

∏

1≤j≤λt
i

(
qj−iQtQ

−1
s − 1

)

= Q|λt |
s

∏

1≤i≤λt ′
1

∏

1≤j≤λt
i

(
qλt

i−j+1−iQtQ
−1
s − 1

)

= Q|λt |
s

∏

(i,j)∈[λt ]

(
q

h
λt ,λs

i,j QtQ
−1
s − 1

)
,

as required.
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3.6 Now assume that our assertion holds when #[λs] ∈ {0,1,2, . . . ,N − 1}. We want
to show that it also holds when #[λs] = N ≥ 1. If λs 
= ∅, then there exists i such that
(i, λs

i ) is a removable node of λs . Let ν be the multipartition defined by

νs
i := λs

i − 1, νs
j := λs

j for all j 
= i, νt := λt for all t 
= s.

Then [λs] = [νs] ∪ {(i, λs
i )}. Since (3) holds for Xν

st and

Xλ
st = Xν

st ·
(

(
qλs

i −iQs − qλt
1Qt

) ∏

1≤k≤λt
1

qλs
i −iQs − qk−1−λt ′

k Qt

qλs
i −iQs − qk−λt ′

k Qt

)

,

it is enough to show that (to simplify notation, from now on set λ := λs and μ := λt ):

(
qλi−iQs − qμ1Qt

) ∏

1≤k≤μ1

qλi−iQs − qk−1−μ′
kQt

qλi−iQs − qk−μ′
kQt

= q
−μ′

λi Qt

(
q

λi−i+μ′
λi

−λi+1
QsQ

−1
t − 1

) · A · B, (4)

where

A :=
∏

1≤k≤λi−1

qλi−i+μ′
k−k+1QsQ

−1
t − 1

qλi−i+μ′
k−kQsQ

−1
t − 1

and

B :=
∏

1≤k≤μ′
λi

q
μk−k+λ′

λi
−λi+1

QtQ
−1
s − 1

q
μk−k+λ′

λi
−λi QtQ

−1
s − 1

.

Note that, since (i, λi) is a removable node of λ, we have λ′
λi

= i. We have

A = qλi−1
∏

1≤k≤λi−1

qλi−iQs − qk−1−μ′
kQt

qλi−iQs − qk−μ′
kQt

.

Moreover, by Lemma 2.2, for y = qi−λi QtQ
−1
s , we obtain

B = (qμ1+i−λi QtQ
−1
s − 1)

(q
−μ′

λi
+λi−1+i−λi QtQ

−1
s − 1)

·
( ∏

λi≤k≤μ1

q−μ′
k+k−1+i−λi QtQ

−1
s − 1

q−μ′
k+k+i−λi QtQ

−1
s − 1

)

,

i.e.,

B = Q−1
t q

μ′
λi

−λi+1 (qλi−iQs − qμ1Qt)

(q
μ′

λi
−λi+1+λi−i

QsQ
−1
t − 1)

·
( ∏

λi≤k≤μ1

qλi−iQs − qk−1−μ′
kQt

qλi−iQs − qk−μ′
kQt

)

.

Hence, Equality (4) holds.
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4 First consequences

We give here several direct applications of Formula (2) obtained in Theorem 3.2.

4.1 A first application of Formula (2) is that we can easily recover a well-known
semisimplicity criterion for the Ariki–Koike algebra due to Ariki [1]. To do this,
let us assume that q,Q0, . . . ,Ql−1 are indeterminates and R = Q(q,Q0, . . . ,Ql−1).
Then the resulting “generic” Ariki–Koike algebra Hq

n is split semisimple. Now as-
sume that θ : Z[q±1,Q±1

0 , . . . ,Q±1
l−1] → K is a specialization and let KHq

n be the
specialized algebra, where K is any field. Note that for all λ ∈ Πl

n, we have sλ(q) ∈
Z[q±1,Q±1

0 , . . . ,Q±1
l−1]. Then by [12, Theorem 7.2.6], KHq

n is (split) semisimple if
and only if, for all λ ∈ Πl

n, we have θ(sλ(q)) 
= 0. From this, we can deduce the
following:

Theorem 4.2 (Ariki) Assume that K is a field. The algebra KHq
n is (split) semisimple

if and only if θ(P (q)) 
= 0, where

P(q) =
∏

1≤i≤n

(
1 + q + · · · + qi−1)

∏

0≤s<t≤l−1

∏

−n<k<n

(
qkQs − Qt

)
.

Proof Assume first that θ(P (q)) = 0. We distinguish three cases:

(a) If there exists 2 ≤ i ≤ n such that θ(1 + q + · · · + qi−1) = 0, then we have

θ([hλ0,λ0

1,n−i+1]q) = 0 for λ = ((n),∅, . . . ,∅) ∈ Πl
n. Thus, for this l-partition, we

have θ(sλ(q)) = 0, which implies that KHq
n is not semisimple.

(b) If there exist 0 ≤ s < t ≤ l − 1 and 0 ≤ k < n such that θ(qkQs − Qt) = 0, then

we have θ(q
h

λs ,λt

1,n−kQsQ
−1
t − 1) = 0 for λ ∈ Πl

n such that λs = (n), λt = ∅. We
have θ(sλ(q)) = 0 and KHq

n is not semisimple.
(c) If there exist 0 ≤ s < t ≤ l −1 and −n < k < 0 such that θ(qkQs −Qt) = 0, then

we have θ(q
h

λt ,λs

1,n+kQtQ
−1
s − 1) = 0 for λ ∈ Πl

n such that λs = ∅, λt = (n). Again,
we have θ(sλ(q)) = 0 and KHq

n is not semisimple.

Conversely, if KHq
n is not semisimple, then there exists λ ∈ Πl

n such that θ(sλ(q)) =
0. As for all 0 ≤ s, t ≤ l − 1 and (i, j) ∈ [λs], we have −n < h

λs,λt

i,j < n, we conclude
that θ(P (q)) = 0. �

4.3 We now consider a remarkable specialization of the generic Ariki–Koike algebra.
Let u be an indeterminate. Let r ∈ Z>0 and let r0, . . . , rl−1 be any integers. Set r :=
(r0, . . . , rl−1) and ηl := exp(2

√−1π/l). For all i = 0, . . . , l − 1, we set mi := ri/r

and we define m := (m0, . . . ,ml−1) ∈ Q
l . Assume that R = Z[q±1,Q±1

0 , . . . ,Q±1
l−1]

and consider the morphism

θ : R → Z[ηl]
[
u±1]

such that θ(q) = ur and θ(Qj ) = η
j
l urj for j = 0,1, . . . , l − 1. We will denote by

Hm,r
n the specialization of the Ariki–Koike algebra Hq

n via θ . The algebra Hm,r
n is
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called a cyclotomic Ariki–Koike algebra. It is defined over Z[ηl][u±1] and has a pre-
sentation as follows:

• generators: T0, T1, . . . , Tn−1,
• relations:

(
T0 − ur0

)(
T0 − ηlu

r1
) · · · (T0 − ηl−1

l url−1
) = 0,

(
Tj − ur

)
(Tj + 1) = 0 for j = 1, . . . , n − 1

and the braid relations symbolized by the diagram

� 4 � � · · · �

T0 T1 T2 Tn−1
.

We set K := Q(ηl). The algebra K(u)Hm,r
n , which is obtained by extension of

scalars to K(u), is a split semisimple algebra. As a consequence, one can apply Tits’s
Deformation Theorem (see, for example, [12, §7.4]), and see that the set of simple
K(u)Hm,r

n -modules Irr(K(u)Hm,r
n ) is given by

Irr
(
K(u)Hm,r

n

) = {
V λ | λ ∈ Πl

n

}
.

Using the Schur elements, one can attach to every simple K(u)Hm,r
n -module V λ

a rational number a(m,r)(λ), by setting a(m,r)(λ) to be the negative of the valuation
of the Schur element of V λ in u, that is, the negative of the valuation of θ(sλ(q)). We
call this number the a-value of λ. By [11, §5.5], this value may be easily computed
combinatorially: Let λ ∈ Πl

n and let s ∈ Z>0 such that s > �(λ). Let B be the shifted
m-symbol of λ of size s ∈ Z>0. This is the l-tuple (B0, . . . ,Bl−1) where, for all
j = 0, . . . , l − 1 and for all i = 1, . . . , s + [mj ] (where [mj ] denotes the integer part
of mj ), we have

B
j
i = λ

j
i − i + s + mj and B

j = (
B

j
s+[mj ], . . . ,B

j

1

)
.

Write

κ1(λ) ≥ κ2(λ) ≥ · · · ≥ κh(λ)

for the elements of B written in decreasing order (allowing repetitions), where h =
ls + ∑

0≤j≤l−1[mj ]. Let κm(λ) = (κ1(λ), . . . , κh(λ)) ∈ Q
h
≥0 and define

nm(λ) :=
∑

1≤i≤h

(i − 1)κi(λ).

Then, by [11, Proposition 5.5.11], the a-value of λ is

a(m,r)(λ) = r
(
nm(λ) − nm(∅)

)
,

where ∅ denotes the empty multipartition.
Generalizing the dominance order for partitions, we will write κm(λ) � κm(μ) if

κm(λ) 
= κm(μ) and
∑

1≤i≤t κi(λ) ≥ ∑
1≤i≤t κi(μ) for all t ≥ 1. The following result

[11, Proposition 5.5.16] will be useful in then next sections:
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Proposition 4.4 Assume that λ and μ are two l-partitions with the same rank such
that κm(λ) � κm(μ). Then a(m,r)(μ) > a(m,r)(λ).

Now, Formula (2) allows us to give an alternative description of the a-value of λ:

Proposition 4.5 Let λ ∈ Πl
n. The a-value of λ is

a(m,r)(λ) = r

(

n(λ) −
∑

0≤s≤l−1

∑

(i,j)∈[λs ]

∑

0≤t≤l−1,t 
=s

min
(
h

λs,λt

i,j + ms − mt,0
)
)

.

4.6 We now consider another type of specialization. Let v0, . . . , vl−1 be any integers.
Let k be a subfield of C and let η be a primitive root of unity of order e > 1. Assume
that R = Z[q±1,Q±1

0 , . . . ,Q±1
l−1] and consider the morphism

θ : R → k(η)

such that θ(q) = η and θ(Qj ) = ηvj for j = 0,1, . . . , l − 1. By Theorem 4.2, the
specialized algebra k(η)Hq

n is not generally semisimple, and a result by Dipper and
Mathas which will be specified later (see Sect. 5.2) implies that the study of this
algebra is enough for studying the non-semisimple representation theory of Ariki–
Koike algebras in characteristic 0. Let

D = ([
V λ : M])

λ∈Πl
n,M∈Irr(k(η)Hq

n)

be the associated decomposition matrix (see [12, §7.4]), which relates the irreducible
representations of the split semisimple Ariki–Koike algebra Hq

n and the specialized
Ariki–Koike algebra k(η)Hq

n . We are interested in the classification of the blocks
of defect 0. That is, we want to classify the l-partitions λ ∈ Πl

n which are alone
in their blocks in the decomposition matrix. These correspond to the modules V λ

which remain projective and irreducible after the specialization θ . By [17, Lemme
2.6] (see also [12, Theorem 7.2.6]), these elements are characterized by the property
that θ(sλ(q)) 
= 0. In our setting, using Formula (2), we obtain the following:

Proposition 4.7 Under the above hypotheses, λ ∈ Πl
n is in a block of defect 0 if and

only if, for all 0 ≤ s, t ≤ l − 1 and (i, j) ∈ [λs], e does not divide h
λs,λt

i,j + vs − vt .

Remark 4.8 As pointed out by M. Fayers and A. Mathas, the above proposition can
also be obtained using [10].

5 Canonical basic sets for Ariki–Koike algebras

In this part, we generalize some known results on basic sets for Ariki–Koike algebras,
using a fundamental result by Dipper and Mathas. This will help us determine the
canonical basic sets for cyclotomic Ariki–Koike algebras in full generality.
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5.1 We consider the cyclotomic Ariki–Koike algebra Hm,r
n defined in Sect. 4.3, re-

placing from now on the indeterminate u by the indeterminate q (following the usual
notation). Let θ : Z[ηl][q±1] → K(η) be a specialization such that θ(q) = η ∈ C

∗.
We obtain a specialized Ariki–Koike algebra K(η)Hm,r

n . The relations between the
generators are the usual braid relations together with the following ones:

(
T0 − ηr0

)(
T0 − ηlη

r1
) · · · (T0 − ηl−1

l ηrl−1
) = 0,

(
Tj − ηr

)
(Tj + 1) = 0 for j = 1, . . . , n − 1.

Let

D = ([
V λ : M])

λ∈Πl
n,M∈Irr(K(η)Hm,r

n )

be the associated decomposition matrix (see [12, §7.4]). The matrix D relates the
irreducible representations of the split semisimple Ariki–Koike algebra K(q)Hm,r

n

and the specialized Ariki–Koike algebra K(η)Hm,r
n . The goal of this section is to

study the form of this matrix in full generality.
First assume that η is not a root of unity. Then, for all 0 ≤ i 
= j ≤ l − 1, we have

η
i−j
l ηri−rj 
= ηrd

for all d ∈ Z>0. By the criterion of semisimplicity due to Ariki (Theorem 4.2), this
implies that the algebra K(η)Hm,r

n is split semisimple, and thus D is the identity
matrix. Hence, from now, one may assume that η is a primitive root of unity of order
e > 1. Then there exists k ∈ Z>0 such that gcd(k, e) = 1 and η = exp(2

√−1πk/e).

5.2 We will now use a reduction theorem by Dipper and Mathas, which will help us
understand the form of D. Set I := {0,1, . . . , l − 1}. There is a partition

I = I1 	 I2 	 · · · 	 Ip

such that

• for all 1 ≤ α < β ≤ p, (i, j) ∈ Iα × Iβ and d ∈ Z>0, we have

ηrd − η
i−j
l ηri−rj 
= 0

• for all 1 ≤ α ≤ p and (i, j) ∈ Iα × Iα , there exists d ∈ Z>0 such that

ηrd − η
i−j
l ηri−rj = 0.

For all j = 1, . . . , p, we set l[j ] := |Ij | and we consider Ij as an ordered set

Ij = (ij,1, ij,2, . . . , ij,l[j ]) with ij,1 < ij,2 < · · · < ij,l[j ].

We define

πj : Q
l → Q

li

(x0, x1, . . . , xl−1) �→ (xij,1 , xij,2 , . . . , xij,l[j ])
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For nj ∈ Z>0, we have an Ariki–Koike algebra of type G(l[j ],1, nj ) which we de-

note by Hmj ,r
nj

with mj := πj (m) = (mij,1 ,mij,2 , . . . ,mij,l[j ]). The relations between
the generators are the usual braid relations together with the following ones:

(
T0 − η

ij,1
l q

rij,1
)(

T0 − η
ij,2
l q

rij,2
) · · · (T0 − η

ij,l[j ]
l q

rij,l[j ]
) = 0,

(
Tx − qr

)
(Tx + 1) = 0 for x = 1, . . . , nj − 1.

Note, however, that Hmj ,r
nj

is not a cyclotomic Ariki–Koike algebra in general, be-
cause l[j ] 
= l. The specialization θ : Z[ηl][q±1] → K(η) such that θ(q) = η defines

a specialized algebra K(η)Hmj ,r
nj

, and we have an associated decomposition matrix

D
j
nj

= ([
V λ : M])

λ∈Π
l[j ]
nj

,M∈Irr(K(η)Hmj ,r
nj

)
.

In [8], Dipper and Mathas have shown that K(η)Hm,r
n is Morita equivalent to the

algebra

⊕

n1,...,np≥0
n1+···+np=n

K(η)Hm1,r
n1

⊗K(η) K(η)Hm2,r
n2

⊗K(η) · · · ⊗K(η) K(η)Hmp,r
np

.

Thus, for a suitable ordering of the rows and columns, D has the form of a block
diagonal matrix where each block is given by D1

n1
⊗· · ·⊗D

p
np

with n1 +· · ·+np = n.
More precisely, we have the following result ([8, Proposition 4.11]):

Theorem 5.3 (Dipper–Mathas) Let λ ∈ Πl
n and M ∈ Irr(K(η)Hm,r

n ). There exist in-

tegers n1, . . . , np ≥ 0 with n1 + · · · + np = n, and Mj ∈ Irr(K(η)Hmj ,r
nj

) such that

[
V λ : M] =

{∏
1≤j≤p[V πj (λ) : Mj ], if πj (λ) ∈ Π

l[j ]
nj

∀j ∈ [1,p],
0, otherwise.

5.4 We now fix j ∈ {1, . . . , p}. By definition of Ij = (ij,1, ij,2, . . . , ij,l[j ]), one may
assume that, for all t = 1, . . . , l[j ], there exist st ∈ Z such that

η
ij,t−ij,1
l η

rij,t −rij,1 = ηrst

(with s1 = 0). We have

rij,t − rij,1 = rst − e(ij,t − ij,1)/(kl),

whence we deduce the following relation:

mij,t − mij,1 = st − e(ij,t − ij,1)/(klr). (5)

Set sj := (s1, . . . , sl[j ]).
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5.5 Keeping the above notation, let us consider the Ariki–Koike algebra K(η)Hmj ,r
nj

of type G(l[j ],1, nj ) (with nj ≤ n) with relations

(
T0 − η

ij,1
l η

rij,1
)(

T0 − η
ij,2
l η

rij,2
) · · · (T0 − η

ij,l[j ]
l η

rij,l[j ]
) = 0,

(
Tx − ηr

)
(Tx + 1) = 0 for x = 1, . . . , nj − 1.

This is then isomorphic to the Ariki–Koike algebra with relations

(
T0 − ηrs1

)(
T0 − ηrs2

) · · · (T0 − ηrsl[j ]
) = 0,

(
Tx − ηr

)
(Tx + 1) = 0 for x = 1, . . . , nj − 1.

The following is a direct consequence of [11, Theorem 6.7.2].

Proposition 5.6 Under the above hypothesis, there exists a set �
l[j ]
nj

(sj ) ⊂ Π
l[j ]
nj

with

∣
∣�

l[j ]
nj

(
sj

)∣
∣ = ∣

∣Irr
(
K(η)Hmj ,r

nj

)∣
∣

such that the following property is satisfied: For any M ∈ Irr(K(η)Hmj ,r
nj

), there ex-

ists a unique l[j ]-partition λM ∈ �
l[j ]
nj

(sj ) such that

• [V λM : M] = 1 and
• [V λ : M] 
= 0 for λ ∈ Π

l[j ]
nj

only if κmj (λM) � κmj (λ) or λ = λM .

Proof For t = 1,2, . . . , l[j ], set mij,t
:= st −eij,t /(klr) and mj := (mij,1

, . . . ,mij,l[j ]).

By [11, Theorem 6.7.2], there exists a set Φ
l[j ]
nj

⊂ Π
l[j ]
nj

satisfying the property of the
proposition except that κmj is replaced by κmj . By Equality (5), we have

mij,t
= mij,t − mij,1 + mij,1

.

It easily follows that κmj (λM)�κmj (λ) if and only if κmj (λM)�κmj (λ), which yields
the desired result. �

5.7 In the following lemma, we use the notation introduced in Sect. 3.1. All multisets
of rational numbers are considered ordered so that their elements form decreasing
sequences.

Lemma 5.8 Let μ and ν be two multisets of positive rational numbers. Assume that
there exist multisets μ1,μ2, . . . ,μh and ν1, ν2, . . . , νh such that

μ =
h⊔

i=1

μi, ν =
h⊔

i=1

νi and μi � νi for all i = 1, . . . , h.

Then μ � ν (with the equality holding only when μi = νi for all i = 1, . . . , h).
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Proof If h = 1, there is nothing to prove. Suppose that h = 2, and let t ≥ 1. We have∑
1≤j≤t μj = ∑

1≤j≤t1
μ1

j + ∑
1≤j≤t2

μ2
j for some t1, t2 ≥ 1 such that t1 + t2 = t ,

and
∑t

j=1 νj = ∑
1≤j≤t ′1 ν1

j + ∑
1≤j≤t ′2 ν2

j for some t ′1, t ′2 ≥ 1 such that t ′1 + t ′2 = t .

Suppose that t1 ≥ t ′1. Then t2 ≤ t ′2, and we have

∑

1≤j≤t

μj =
∑

1≤j≤t ′1

μ1
j +

∑

t ′1+1≤j≤t1

μ1
j +

∑

1≤j≤t2

μ2
j .

Now,

∑

1≤j≤t ′1

μ1
j +

∑

t ′1+1≤j≤t1

μ1
j +

∑

1≤j≤t2

μ2
j ≥

∑

1≤j t ′1

μ1
j +

∑

t2+1≤j≤t ′2

μ2
j +

∑

1≤j≤t2

μ2
j

≥
∑

1≤j≤t ′1

ν1
j +

∑

1≤j≤t ′2

ν2
j

and we can conclude because
∑

1≤j≤t ′1

ν1
j +

∑

1≤j≤t ′2

ν2
j =

∑

1≤j≤t

νj .

Induction yields the result for h > 2. �

5.9 We are now in position to prove the main result of this section:

Theorem 5.10 In the setting of Sect. 4.3, the algebra Hm,r
n admits a canonical basic

set Bθ with respect to any specialization θ : Z[ηl][q±1] → K(η) such that θ(q) =
η ∈ C

∗, i.e., there exists a set Bθ ⊂ Πl
n with

|Bθ | =
∣
∣Irr

(
K(η)Hm,r

n

)∣
∣

such that the following property is satisfied: For any M ∈ Irr(K(η)Hm,r
n ), there exists

a unique l-partition λM ∈ Bθ such that

• [V λM : M] = 1 and
• [V λ : M] 
= 0 for λ ∈ Πl

n only if a(m,r)(λ) > a(m,r)(λM) or λ = λM .

In addition, we have that λ ∈ Bθ if and only if there exist integers n1, . . . , np ≥ 0 with

n1 + · · · + np = n such that, for all j = 1, . . . , p, πj (λ) ∈ Φ
l[j ]
nj

(sj ).

Proof Let

Bθ = {
λ ∈ Πl

n | ∃n1, . . . , np ≥ 0, n1 +· · ·+np = n : ∀j ∈ [1,p], πj (λ) ∈ Φ
l[j ]
nj

(
sj

)}
.

First note that, by Sect. 5.2, we have

|Bθ | =
∣
∣Irr

(
K(η)Hm,r

n

)∣
∣.
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Let λ ∈ Πl
n and M ∈ Irr(K(η)Hm,r

n ). By Proposition 5.3, there exist integers

n1, . . . , np ≥ 0 with n1 + · · · + np = n, and Mj ∈ Irr(K(η)Hmj ,r
nj

) such that

[
V λ : M] =

{∏
1≤j≤p[V πj (λ) : Mj ], if πj (λ) ∈ Π

l[j ]
nj

∀j ∈ [1,p],
0, otherwise.

(6)

We consider the l-partition λM ∈ Πl
n such that πj (λM) = λMj

for all j = 1, . . . , p,

where λMj
∈ Φ

l[j ]
nj

(sj ) is defined in Proposition 5.6. Note that we have λM ∈ Bθ and
[V λM : M] = 1.

Now let λ ∈ Πl
n, λ 
= λM . Following (6) and Proposition 5.6, if [V λ : M] 
= 0,

then, for all j = 1, . . . , p,

either πj (λ) = λMj
= πj (λM) or κmj

(
πj (λM)

)
� κmj

(
πj (λ)

)
.

By the definition of κm, we have κm(λ) = ⊔p

j=1 κmj (πj (λ)). By Lemma 5.8, since
λ 
= λM , we must have κm(λM) � κm(λ). The result follows now from Proposi-
tion 4.4. �

Remark 5.11 If r = 1, then the elements of Bθ are the e-Uglov l-partitions of n.
(cf. [15, Definition 3.2]). For r > 1, we will refer to the elements of Bθ as generalized
e-Uglov l-partitions of n.

5.12 Let us give an example, where we calculate the canonical basic set when n = 2,
r = 6 and m = (1/2,−1/6,−1/3). Consider the cyclotomic Ariki–Koike algebra
Hm,r

2 of type G(3,1,2), with generators T0, T1 and relations

T0T1T0T1 = T1T0T1T0,
(
T0 − q3)(T0 − η3q

−1)(T0 − η2
3q

−2) = 0,

(
T1 − q6)(T1 + 1) = 0.

Let θ : Z[η3][q±1] → Q(η12) be a specialization such that θ(q) = η12 (we have e =
12 and k = 1). Then the specialized Ariki–Koike algebra Q(η12)Hm,r

2 is generated
by T0 and T1 with relations

T0T1T0T1 = T1T0T1T0, (T0 − η4)
2(T0 + 1) = 0, (T1 + 1)2 = 0.

By [8, Theorem 1.1], the specialized Ariki–Koike algebra Q(η12)Hm,r
2 is Morita

equivalent to the algebra

Q(η12)H
m1,r
2 ⊕ (

Q(η12)H
m1,r
1 ⊗ Q(η12)H

m2,r
1

) ⊕ Q(η12)H
m2,r
2 ,

where m1 = (1/2,−1/6) and m2 = (−1/3). We now have

• the algebra Q(η12)H
m1,r
2 is isomorphic to the cyclotomic Ariki–Koike algebra of

type G(2,1,2) ∼= B2 with generators T0 and T1, and relations

T0T1T0T1 = T1T0T1T0, (T0 − η4)
2 = 0, (T1 + 1)2 = 0,
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• the algebra Q(η12)H
m1,r
1 is isomorphic to the cyclotomic Ariki–Koike algebra of

type G(2,1,1) ∼= Z/2Z with quadratic relation (T0 − η4)
2 = 0,

• the algebra Q(η12)H
m2,r
1 is isomorphic to the algebra of the trivial group, and

• the algebra Q(η12)H
m2,r
2 is isomorphic to the cyclotomic Ariki–Koike algebra of

type G(1,1,2) ∼= S2 with quadratic relation (T1 + 1)2 = 0.

Keeping the notation of Sect. 5.4 and Proposition 5.6, we obtain

• Φ2
2 (s1) = {((2),∅), ((1), (1))},

• Φ2
1 (s1) = {((1),∅)},

• Φ1
1 (s2) = {(1)},

• Φ1
2 (s2) = {(2)}.

Therefore, the canonical basic set with respect to θ for Hm,r
2 is

Bθ = {(
(2),∅,∅)

,
(
(1), (1),∅)

,
(
(1),∅, (1)

)
,
(∅,∅, (2)

)}
.

6 Canonical basic sets for cyclotomic Hecke algebras of type G(l,p,n)

The purpose of this last part is to deduce from the last section the existence of
the explicit parametrization of the basic sets for Cyclotomic Hecke algebra of type
G(l,p,n).

6.1 Let l, p,n be three positive integers such that either n > 2, or n = 2 and p is
odd. Set d := l/p. Let r ∈ Z>0 and let r0, r1, . . . , rd−1 be any integers. For all i =
0, . . . , d−1, we set mi := ri/(pr) and we define m := (m0, . . . ,md−1,m0, . . . ,md−1,

. . . ,m0, . . . ,md−1) ∈ Q
l (where the d-tuple (m0, . . . ,md−1) is repeated p times).

We consider the cyclotomic Hecke algebra Hm,pr
p,n of type G(l,p,n) over Z[ηl][q±1]

with presentation as follows:

• generators: t0, t1, . . . , tn,
• relations:

(
t0 − qpr0

)(
t0 − ηdqpr1

) · · · (t0 − ηd−1
d qprd−1

) = 0,

(
tj − qpr

)
(tj + 1) = 0 for j = 1, . . . , n

and the braid relations
– t1t3t1 = t3t1t3, tj tj+1tj = tj+1tj tj+1 for j = 2, . . . , n − 1,
– t1t2t3t1t2t3 = t3t1t2t3t1t2,
– t1tj = tj t1 for j = 4, . . . , n,
– ti tj = tj ti for 2 ≤ i < j ≤ n with j − i > 1,
– t0tj = tj t0 for j = 3, . . . , n,
– t0t1t2 = t1t2t0,
– t2t0t1t2t1t2t1 . . .

︸ ︷︷ ︸
p+1 factors

= t0t1t2t1t2t1t2 . . .
︸ ︷︷ ︸

p+1 factors

.
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6.2 Let us denote by G the cyclic group of order p. The algebra Hm,pr
p,n can be viewed

as a subalgebra of index p of the cyclotomic Hecke algebra Hm,pr
n of type G(l,1, n):

in fact, Hm,pr
n is a “twisted symmetric algebra” of G over Hm,pr

p,n (see [5, §5.5.1]).
The action of G on Irr(K(q)Hm,pr

n ) corresponds to the action generated by the cyclic
permutation by d-packages on the l-partitions of n:

σ : λ = (
λ0, . . . , λd−1, λd, . . . , λ2d−1, . . . , λpd−d, . . . , λpd−1

)

�→ σ λ = (
λpd−d, . . . , λpd−1, λ0, . . . , λd−1, . . . , λpd−2d, . . . , λpd−d−1

)
.

By [6, Proposition 2.5], we have a(m,pr)(λ) = a(m,pr)(σ λ).

6.3 In this section, we will use extensively some results known as “Clifford theory”.
For more details, the reader may refer to [5, §2.3] and [14]. At the end, we will be
able to deduce the existence and the explicit parametrization of a canonical basic
set for Hm,pr

p,n . The proof below is inspired from [14, Proof of Theorem 3.1]. From
now on, we will write H for Hm,pr

n and H̄ for Hm,pr
p,n . Let θ : Z[ηl][q±1] → K(η)

be a specialization such that θ(q) = η ∈ C
∗. As before, one may assume that η is a

primitive root of unity of order e > 1.
Let E ∈ Irr(K(q)H̄). By Clifford theory, there exists V λ ∈ Irr(K(q)H) such that

E is a composition factor of ResH
H̄(V λ). We write Eλ for E. Moreover, there is an

action of G on Irr(K(q)H̄) such that, if we denote by Ω̄λ the orbit of Eλ under the
action of G, we have

[
ResH

H̄
(
V λ

)] =
∑

E∈Ω̄λ

[E].

Let V ∈ Irr(K(q)H). The elements of Ω̄λ appear as composition factors in ResH
H̄(V )

if and only if V = gV λ for some g ∈ G. In particular, if σ is the map defined in
Sect. 6.2, we have

[
ResH

H̄
(
σ V λ

)] = [
ResH

H̄
(
V λ

)]
.

We deduce that

Irr
(
K(q)H̄

) = {
E | E ∈ Ω̄λ,λ ∈ Πl

n

}
.

Now, if we denote by Ωλ the orbit of V λ under the action of G, we have

|Ωλ||Ω̄λ| = |G| = p.

(see [14, Lemma 2.2]). Thus, |Ω̄λ| = |Gλ|, where Gλ := {g ∈ G | gλ = λ}. Further-
more, applying the restriction functor ResH

H̄ does not affect the a-value of simple

modules over K(q) (see [5, Proposition 2.3.15]). Hence, we obtain

a(m,pr)(λ) = a(m,pr)
(
σ λ

) = a(m,pr)(E), for all E ∈ Ω̄λ. (7)

Now, to each simple K(η)H-module M , one can attach an a-value as follows:

a(m,pr)(M) = min
{
a(m,pr)(λ) | [V λ : M] 
= 0

}
.
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Respectively, to each simple K(η)H̄-module N , one can attach an a-value as follows:

a(m,pr)(N) = min
{
a(m,pr)(E) | E ∈ Irr

(
K(q)H̄

)
, [E : N ] 
= 0

}
.

Let N ∈ Irr(K(η)H̄). By Clifford theory, there exists M ∈ Irr(K(η)H) such that
N is a composition factor of ResH

H̄(M). We write NM for N . There is an action of G

on Irr(K(η)H̄) such that, if we denote by ω̄M the orbit of NM under the action of G,
we have

[
ResH

H̄(M)
] =

∑

N∈ω̄M

[N ].

By Theorem 5.10, the algebra H admits a canonical basic set Bθ with respect to
θ . Thus, there exists λM ∈ Bθ such that the conditions of Theorem 5.10 are sat-
isfied. By [6, Proposition 3.2], we also have σ λM ∈ Bθ . Therefore, there exists
σ M ∈ Irr(K(η)H) such that σ λM = λσ M ∈ Bθ . This action of G on Irr(K(η)H)

agrees with the action on Irr(K(η)H̄), that is

[
ResH

H̄
(
σ M

)] = [
ResH

H̄(M)
] =

∑

N∈ω̄M

[N ].

Let L ∈ Irr(K(η)H). The elements of ω̄M appear as composition factors in ResH
H̄(L)

if and only if L = gM for some g ∈ G.
By definition of Bθ , we get

a(m,pr)(M) = a(m,pr)(λM) = a(m,pr)
(
σ λM

) = a(m,pr)
(
σ M

)

and
[
V λM

] = [M] +
∑

a(m,pr)(L)<a(m,pr)(M)

[
V λM : L][L].

By definition of the a-function and (7), we get

a(m,pr)(M) = a(m,pr)(N), for all N ∈ ω̄M.

Moreover, if L is a simple K(η)H-module such that [V λM : L] 
= 0 and a(m,pr)(L) <

a(m,pr)(M), and N ′ ∈ Irr(K(η)H̄) is a composition factor of ResH
H̄(L), then

a(m,pr)(M) > a(m,pr)(N ′).

We deduce that

[
ResH

H̄
(
V λM

)] = [
ResH

H̄(M)
] +

(
sum of classes of simple modules with
a-value strictly less than a(m,pr)(M)

)

,

whence we obtain

∑

E∈Ω̄λM

[E] =
∑

N∈ω̄M

[N ] +
(

sum of classes of simple modules with
a-value strictly less than a(m,pr)(M)

)

.
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Suppose that NM is a composition factor of EλM . Then σ NM is a composition
factor of σ EλM , and, in general, gNM is a composition factor of gEλM , for all g ∈ G.
This is possible only if |ω̄M | = |Ω̄λM

| = |GλM
|. For g, h ∈ GλM

, we get

[
gEλM : hNM

] =
{

1, if g = h,
0, otherwise.

Hence, we have

[
gEλM

] = [
gNM

] +
(

sum of classes of simple modules with
a-value strictly less thana(m,pr)(gNM)

)

.

Thus, we have proved the following result:

Theorem 6.4 The algebra H̄ admits a canonical basic set B̄θ with respect to any
specialization θ : Z[ηl][q±1] → K(η) such that θ(q) = η ∈ C

∗, i.e., there exists a set
B̄θ ⊂ Irr(K(q)H̄) with

|B̄θ | =
∣
∣Irr

(
K(η)H̄

)∣
∣

such that the following property is satisfied: For any N ∈ Irr(K(η)H̄), there exists a
unique EN ∈ B̄θ such that

• [EN : N ] = 1 and
• [E : N ] 
= 0 for E ∈ Irr(K(q)H̄) only if a(m,pr)(E) > a(m,pr)(EN) or E = EN .

In addition, we have that E ∈ B̄θ if and only if there exists λ ∈ Bθ ⊂ Πl
n such that

E ∈ Ω̄λ.

Remark 6.5 In this section, we have also shown that the assumptions of [14, Theorem
3.1], which yields the existence of canonical basic sets for cyclotomic Hecke algebras
of type G(l,p,n), are satisfied for any choice of H̄.

6.6 Let us give an example where we will apply Theorem 6.4 in the case where
G(l,p,n) = G(3,3,2) ∼= S3.1 Note that we have d = 1, thus we can take m =
(0,0,0). Let r = 2 and consider the cyclotomic Hecke algebra Hm,6

3,2 of type
G(3,3,2), with generators t1, t2 and relations

t2t1t2 = t1t2t1,
(
t1 − q6)(t1 + 1) = (

t2 − q6)(t2 + 1) = 0.

The algebra Hm,6
3,2 is a subalgebra of index 3 of the cyclotomic Hecke algebra Hm,6

2
of type G(3,1,2) with generators T0, T1 and relations

T0T1T0T1 = T1T0T1T0, T 3
0 = 1,

(
T1 − q6)(T1 + 1) = 0.

1Of course, there is an easier way to deal with this case, but we simply want to illustrate the use of
Theorem 6.4 in a small example.
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Let θ : Z[η3][q±1] → Q(η12) be a specialization such that θ(q) = η12. Then the spe-
cialized Hecke algebra Q(η12)Hm,6

2 is generated by T0 and T1 with relations

T0T1T0T1 = T1T0T1T0, T 3
0 = 1, (T1 + 1)2 = 0.

By [8, Theorem 1.1], the specialized Hecke algebra Q(η12)Hm,6
2 is Morita equivalent

to the algebra

⊕

n1+n2+n3=2

Q(η12)Hm1,6
n1

⊗ Q(η12)Hm2,6
n2

⊗ Q(η12)Hm3,6
n3

,

where m1 = m2 = m3 = (0). Let j ∈ {1,2,3}. The algebra Q(η12)H
mj ,6
1 is isomor-

phic to the algebra of the trivial group, and the algebra Q(η12)H
mj ,6
2 is isomor-

phic to the cyclotomic Hecke algebra of type G(1,1,2) ∼= S2 with quadratic rela-
tion (T1 + 1)2 = 0. Keeping the notation of Sect. 5.4 and Proposition 5.6, we have
Φ1

1 (sj ) = {(1)} and Φ1
2 (sj ) = {(2)}. Therefore, the canonical basic set with respect

to θ for Hm,6
2 is

Bθ = {(
(1), (1),∅)

,
(∅, (1), (1)

)
,
(
(1),∅, (1)

)
,
(
(2),∅,∅)

,
(∅, (2),∅)

,
(∅,∅, (2)

)}
.

Following Theorem 6.4, the canonical basic set with respect to θ for Hm,6
3,2 is

B̄θ = {
E((1),(1),∅),E((2),∅,∅)

}
.
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