ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

An inductive approach to Coxeter arrangements and Solomon's descent algebra

J.Matthew Douglass , Götz Pfeiffer and Gerhard Röhrle

DOI: 10.1007/s10801-011-0301-9

Abstract

In our recent paper (Douglass et al. arXiv:1101.2075 ( 2011)), we claimed that both the group algebra of a finite Coxeter group W as well as the Orlik-Solomon algebra of  W can be decomposed into a sum of induced one-dimensional representations of centralizers, one for each conjugacy class of elements of  W, and gave a uniform proof of this claim for symmetric groups. In this note, we outline an inductive approach to our conjecture. As an application of this method, we prove the inductive version of the conjecture for finite Coxeter groups of rank up to 2.

Pages: 215–235

Keywords: keywords Coxeter groups; reflection arrangements; descent algebra; dihedral groups

Full Text: PDF

References

1. Bergeron, F., Bergeron, N., Garsia, A.M.: Idempotents for the free Lie algebra and q-enumeration. In: Invariant Theory and Tableaux, Minneapolis, MN, 1988, IMA Vol. Math. Appl., vol. 19, pp. 166-190. Springer, New York (1990)
2. Bergeron, F., Bergeron, N., Howlett, R.B., Taylor, D.E.: A decomposition of the descent algebra of a finite Coxeter group. J. Algebr. Comb. 1(1), 23-44 (1992)
3. Brieskorn, E.: Sur les groupes de tresses [d'après V. I. Arnol'd]. In: Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Lecture Notes in Math., vol. 317, pp. 21-44. Springer, Berlin (1973)
4. Douglass, J.M., Pfeiffer, G., Röhrle, G.: Coxeter arrangements and Solomon's descent algebra. (2011)
5. Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. London Mathematical Society Monographs. New Series, vol.
21. Clarendon Press, New York (2000)
6. Hanlon, P.: The action of Sn on the components of the Hodge decomposition of Hochschild homology. Mich. Math. J. 37(1), 105-124 (1990)
7. Howlett, R.B.: Normalizers of parabolic subgroups of reflection groups. J. Lond. Math. Soc. 21, 62-80 (1980)
8. Konvalinka, M., Pfeiffer, G., Röver, C.: A note on element centralizers in finite Coxeter groups. J. Group Theory (2011). doi:
9. Lehrer, G.I., Solomon, L.: On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes. J. Algebra 104(2), 410-424 (1986)
10. Orlik, P., Solomon, L.: Coxeter arrangements. In: Singularities, Part 2, Arcata, Calif.,
1981. Proc. Sympos. Pure Math., vol. 40, pp. 269-291. Amer. Math. Soc, Providence (1983)
11. Orlik, P., Terao, H.: Arrangements of Hyperplanes. Grundlehren der Mathematischen Wissenschaften, vol.
300. Springer, Berlin, (1992)
12. Pfeiffer, G.: A quiver presentation for Solomon's descent algebra. Adv. Math. 220(5), 1428-1465 (2009)
13. Pfeiffer, G., Röhrle, G.: Special involutions and bulky parabolic subgroups in finite Coxeter groups. J. Aust. Math. Soc. 79(1), 141-147 (2005)
14. Schocker, M.: Über die höheren Lie-Darstellungen der symmetrischen Gruppen. Bayreuth. Math.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition