ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Phylogenetic toric varieties on graphs

Weronika Buczyńska
Department of Mathematics, Texas A\&M University, College Station, TX 77843, USA

DOI: 10.1007/s10801-011-0308-2

Abstract

We define phylogenetic projective toric model of a trivalent graph as a generalization of a binary symmetric model of a trivalent phylogenetic tree. Generators of the projective coordinate ring of the models of graphs with one cycle are explicitly described. The phylogenetic models of graphs with the same topological invariants are deformation-equivalent and share the same Hilbert function. We also provide an algorithm to compute the Hilbert function.

Pages: 421–460

Keywords: binary symmetric model; GIT quotient; Hilbert function

Full Text: PDF

References

1. Białynicki-Birula, A.: Quotients by actions of groups. In: Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action. Encyclopedia Math. Sci., vol. 131, pp. 1-82. Springer, Berlin (2002)
2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3-4), 235-265 (1997). Computational algebra and number theory (London, 1993)
3. Buczyńska, W., Wiśniewski, J.A.: On geometry of binary symmetric models of phylogenetic trees. J. Eur. Math. Soc. 9(3), 609-635 (2007)
4. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol.
150. Springer, New York (1995)
5. Felsenstein, J.: Inferring Phylogenies. Sinauer Press, Sunderland (2004)
6. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol.
131. Princeton University Press, Princeton, NJ (1993). The William H. Roever Lectures in Geometry
7. Grothendieck, A.: Éléments de géometrie algébrique (rédigés avec la collaboration de Jean Dieudonné): II. Étude globale élémentaire de quelques classes de mophismes. Graduate Texts in Mathematics, vol.
52. Publications mathématique de l'IHÉS, Bures-sur-Yvette (1961)
8. Haiman, M., Sturmfels, B.: Multigraded Hilbert schemes. J. Algebr. Geom. 13(4), 725-769 (2004)
9. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol.
52. Springer, New York (1977).
10. Jeffrey, L.C., Weitsman, J.: Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula. Commun. Math. Phys. 150(3), 593-630 (1992)
11. Manon, C.A.: The algebra of conformal blocks. arXiv:[math.AG] (2009)
12. Manon, C.A.: Coordinate rings for the moduli of SL2(C) quasi-parabolic principal bundles on a curve and toric fiber products. arXiv[math.AC]
13. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, 3rd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol.
34. Springer, Berlin (1994) J Algebr Comb (2012) 35:421-460
14. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol.
227. Springer, New York (2005)
15. Oda, T.: Convex Bodies and Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol.
15. Springer, Berlin, (1988). An introduction to the theory of toric varieties, Translated from the Japanese
16. Pachter, L., Sturmfels, B.: Statistics. In: Algebraic Statistics for Computational Biology, pp. 3-42.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition