ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Classifying a family of edge-transitive metacirculant graphs

Shu-Jiao Song1 , Cai Heng Li2 and Dianjun Wang1
1Department of Mathematical Sciences, Qinghua (Tsing Hua) University, Beijing, 100084 P. R. China
2School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan 650091, P. R. China

DOI: 10.1007/s10801-011-0311-7

Abstract

A characterization is given of the class of edge-transitive Cayley graphs of Frobenius groups \mathbb Z p d:\mathbb Z q \mathbb{Z}_{p^{d}}{:}\mathbb{Z}_{q} with p, q odd prime, of valency coprime to p. This characterization is then used to study an isomorphism problem regarding Cayley graphs, and to construct new families of half-arc-transitive graphs.

Pages: 497–513

Keywords: edge-transitive; metacirculant; half-arc-transitive; Cayley graph

Full Text: PDF

References

1. Babai, L.: Isomorphism problem for a class of point-symmetric structures. Acta Math. Acad. Sci. Hung. 29, 329-336 (1977)
2. Feng, Y.Q., Kwak, J.H., Xu, M.Y., Zhou, J.X.: Tetravalent half-arc-transitive graphs of order p4. Eur. J. Comb. 29, 555-567 (2008)
3. Godsil, C.D.: On the full automorphism group of a graph. Combinatorica 1, 243-256 (1981)
4. Gorenstain, D.: Finite Simple Groups. Plenum, New York (1982)
5. Jones, G.: Cyclic regular subgroups of primitive permutation groups. J. Group Theory 5(4), 403-407 (2002)
6. Kovács, I.: Classifying arc-transitive circulants. J. Algebr. Comb. 20(3), 353-358 (2004)
7. Kovács, I., Maruši\check c, D., Muzychuck, M.: On dihedrants admitting arc-regular group actions. J. Algebr. Comb. 35, 409-426 (2011)
8. Li, C.H.: On isomorphisms of connected Cayley graphs. Discrete Math. 178, 109-122 (1998)
9. Li, C.H.: On isomorphisms of connected Cayley graphs II. J. Comb. Theory, Ser. B 74, 28-34 (1998)
10. Li, C.H.: On isomorphisms of finite Cayley graphs-a survey. Discrete Math. 256, 301-334 (2002)
11. Li, C.H.: The finite primitive permutation groups containing an abelian regular subgroup. Proc. Lond. Math. Soc. 87, 725-747 (2003)
12. Li, C.H.: Permutation groups with a cyclic regular subgroup and arc transitive circulants. J. Algebr. Comb. 21, 131-136 (2005)
13. Liebeck, M., Praeger, C.E., Saxl, J.: Regular Subgroups of Primitive Permutation Groups. Mem. Am. Math. Soc. 203(952) (2010), iv+74 pp
14. Maruši\check c, D.: Recent developments in half-transitive graphs. Discrete Math. 182, 219-231 (1998)
15. Maruši\check c, D., Šparl, P.: On quartic half-arc-transitive metacirculants. J. Algebr. Comb. 28, 365-395 (2008)
16. Praeger, C.E., Xu, M.Y.: Vertex-primitive graphs of order a product of two distinct primes. J. Comb. Theory, Ser. B 59, 245-266 (1993)
17. Praeger, C.E., Wang, R.J., Xu, M.Y.: Symmetric graphs of order a product of two distinct primes. J.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition