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Abstract Let G be a group, U a subgroup of G of finite index, X a finite alphabet and
q an indeterminate. In this paper, we study symmetric polynomials MG(X,U) and
M

q
G(X,U) which were introduced as a group-theoretical generalization of necklace

polynomials. Main results are to generalize identities satisfied by necklace polyno-
mials due to Metropolis and Rota in a bijective way, and to express M

q
G(X,U) in

terms of MG(X,V )’s, where [V ] ranges over a set of conjugacy classes of subgroups
to which U is subconjugate. As a byproduct, we provide the explicit form of the
GLm(C)-module whose character is M

q

Z
(X,nZ), where m is the cardinality of X.

Keywords Necklace polynomial · G-set and G-orbit · Character · Free Lie algebra ·
Symmetric polynomial

1 Introduction

In the theory of algebraic combinatorics, it is well known that the number of non-
periodic circular strings of n-beads out of x-beads (i.e., primitive necklaces) is given
by the polynomial

M(x,n) := 1

n

∑

d|n
μ(d)x

n
d , (1.1)

where μ denotes the classical Möbius inversion function. In the literature, it is usually
called a necklace polynomial (for instance, see [11]).
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Necklace polynomials are concerned with many algebraic objects such as free
Lie algebras, Witt vectors, and so on. Let L (V ) be the free Lie algebra generated
by an m-dimensional vector space V over an arbitrary field k and Ln(V ) (n ≥ 1)

its nth homogeneous component. In 1937, Witt [19] proved that when x is spe-
cialized into m, the above polynomial gives the dimension of Ln(V ). In addition,
Ln(V ) can be viewed as a finite dimensional GLm(k)-submodule of V ⊗n. In 1944,
Brandt [2] showed that when V = C

m, the character of Ln(V ) (i.e., the trace of
diag(x1, x2, . . . , xm) on Ln(V )) is given by

chLn(V ) = 1

n

∑

d|n
μ(d)pd(X)

n
d ,

where pd(X) = xd
1 + · · · + xd

m is the d th power-sum symmetric polynomial. As for
Witt vectors, Metropolis and Rota noticed some remarkable identities satisfied by
necklace polynomials (more precisely, Theorems 1 through 6 in [11, Sect. 3]) and
utilized them to demonstrate the beautiful connection between the ring of Witt vectors
over Z and the ring of necklaces over Z.

In the present paper, we study a group-theoretical generalization of M(x,n) and
chLn(V ). A group-theoretical generalization of necklace polynomials was first in-
troduced by Dress and Siebeneicher [3, 4] to construct an almost finite “exponential
G-space”, where G denotes an arbitrary profinite group. The polynomials thus ob-
tained count the number of certain orbits in an exponential G-space and play a crucial
role in showing that the Witt–Burnside ring of G over Z is isomorphic to the Burnside
ring of G.

On the other hand, a group-theoretical generalization of chLn(V ) first appeared
implicitly in [14] to reveal the structure of Witt–Burnside ring of a profinite group
G over an arbitrary special λ-ring. To be more precise, to each open subgroup U

of G and a finite alphabet X = {x1, . . . , xm} we assign a new symmetric polynomial
MG(X,U) in x1, . . . , xm which specializes to chLn(V ) when G = Ĉ and U = Ĉn.
Here Ĉ denotes the profinite completion of the infinite cyclic group C and Ĉn a
unique open subgroup of Ĉ of index n. Further, in [16], a q-analog of MG(X,U),
denoted by M

q
G(X,U), was introduced where q ranges over the set of integers. As one

expects, it coincides with MG(X,U) when q = 1 (refer to Definition 2.9). When all
xi ’s are specialized into 1, M

q
G(X,U) reduces to a polynomial MG(x,U) in x = |X|

and it counts the number of orbits isomorphic to G/U in a certain “q-exponential
G-space”. The above introduction can be illustrated well in the following diagram:

M(x,n)
x=|X|��� chLn(V ) ������ the set of congruence maps (see [4])�⏐⏐ if G=Ĉ,U=Ĉn

�⏐⏐ if G=Ĉ,U=Ĉn

�⏐⏐ if G=Ĉ,U=Ĉn

MG(x,U)
x=|X|��� MG(X,U) ������ exponential G-space�⏐⏐ if q=1

�⏐⏐ if q=1

�⏐⏐ if q=1

M
q
G(x,U)

x=|X|��� M
q
G(X,U) ������ q-exponential G-space

As in the case of MG(X,U)’s, M
q
G(X,U) play a crucial role in demonstrating struc-

ture of q Witt–Burnside ring over an arbitrary special λ-ring. The closed formula for
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M
q
G(X,U) can be found in [16, Theorem 3.6], which is stated as follows:

M
q
G(X,U) =

∑

[W ]�[U ]
μ

q
G

([U ], [W ])q(G:W)−1 p(W :U)(X)(G:W).

Here μ
q
G denotes q-Möbius function associated with the poset of the conjugacy

classes of open subgroups of G, where [W ] � [U ] means that U is subconjugate
to W .

Throughout this paper, we assume that G is a group such that the poset of all con-
jugacy classes of subgroups of finite index is locally finite, that is, every interval is
finite. With this assumption, the first main result is to generalize the identities among
necklace polynomials which are due to Metropolis and Rota (see Theorems 1 through
6 in [11, Sect. 3]). In fact, these identities can be deduced by comparing the cardi-
nality and weight between two isomorphic G-sets, respectively (see Theorem 3.2,
Theorem 3.6, and Theorem 3.11).

The second main result relates to connection between MG(x,U) (resp. MG(X,U))
and M

q
G(x,U) (resp. M

q
G(X,U)). More precisely, we express M

q
G(x,U) as a linear

combination of MG(x,V )’s such as

M
q
G(x,U) =

∑

[G]�[V ]�[U ]
(in C (G))

cU (V )MG(x,V ),

where [V ] ranges over a set of conjugacy classes of subgroups containing U (see
Theorem 4.1). Moreover, we give a combinatorial interpretation of cU (V ). Indeed,
when q is a positive integer, it turns out to be the number of f̄ ∈ H such that the
isotropy subgroup of π2 ◦ f is G-conjugate to V , where

H := {f̄ ∈ (Z/qZ × X)G/ ∼: G · f̄ ∼= G/U, f̄ is aperiodic
}

(see Theorem 4.5). As a byproduct, we show that when G = Z,U = nZ, M
q
G(X,U)

is a character of some GLn(C)-module (see Example 4.7).
This paper is organized as follows. Section 2 involves basic definitions and nota-

tion on our group-theoretical generalization of M(x,n) and chLn(V ). In Sect. 3, we
generalize Theorems 1 through 6 in [11, Sect. 3] and provide their combinatorial in-
terpretation. In Sect. 4, we express M

q
G(x,U) as a linear combination of MG(x,V )’s,

and using this we find relations between M
q
G(X,U)’s and MG(X,U)’s. In the final

section, some interesting relations among necklace polynomials will be dealt with.

2 Group-theoretical generalization of necklace polynomials

2.1 Group-theoretical generalization of M(x,n)

Let G be a group. Denote by C (G) the set of subgroups U of G such that G/U is
finite. And we denote by C (G) the set of conjugacy classes of subgroups in C (G).
For instance, if G is a finitely generated profinite group, then C (G) coincides with
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the set of open subgroups of G (see [13]). Given subgroups U and V of G, we say
that U is subconjugate to V if U is a subgroup of some conjugates of V . This induces
a partial-ordering on C (G), and will be denoted by [V ] � [U ].

Recall that for any two subgroups U and V of G, G/U is isomorphic to G/V as a
G-set if and only if U and V are G-conjugate. It follows that the set of isomorphism
classes of finite transitive G-sets is in one to one correspondence with C (G).

Convention Throughout the present paper, we will assume that C (G) is locally fi-
nite, that is, every interval of C (G) is finite.

A G-set X is said to be essentially finite if XU , the set of U -invariant elements
in X, is finite for all U ∈ C (G), and said to be almost finite if it is essentially finite
and every element lies in a finite orbit. Note that if X is almost finite, then every
orbit in X is finite and there are only finitely many orbits isomorphic to G/U for
all U ∈ C (G). Let us form the Burnside–Grothendieck ring Ω̂(G) of the (virtual)
isomorphism classes of almost-finite G-sets whose addition is defined via disjoint-
union and whose multiplication via Cartesian product. The notation [X] will be used
to denote an element of Ω̂(G).

For any two G-sets S and T , the set T S of maps from S into T is made into a
G-set by supplying the standard G-action defined by (g · f )(s) = g · f (g−1s) for
all g ∈ G,f ∈ T S , and s ∈ S. Letting X = {x1, x2, . . . , xm} be a finite alphabet, it
is a G-set with the trivial G-action. Given a subgroup U ∈ C (G), let us consider
HomU(G,X), the set of U -invariant maps in XG. Note that HomU(G,X) can be
naturally identified with XU\G and the cardinality of XU\G is given by m(G:U).1 On
the other hand, each U -invariant element in XG appears in an orbit isomorphic to
G/V such that U is subconjugate to V . Let MG(m,V ) denote the number of orbits
in XG isomorphic to G/V . This notation makes sense since it depends only on the
cardinality of X, not on X. As a consequence, one has the following formula:

m(G:U) =
∑

[G]�[V ]�[U ]
ϕU(G/V )MG(m,V ), (2.1)

where ϕU(G/V ) means the number of U -invariant elements in G/V . Substituting x

for m we obtain an integral-valued polynomial MG(x,U) ∈ Q[x] for all [U ] ∈ C (G).

Example 2.1 Let G = Z and U = nZ. Then (2.1) implies that

xn =
∑

d|n
dMZ(x, dZ), n ∈ N.

Using Möbius inversion formula one can see that MZ(x,nZ) is identical to the neck-
lace polynomial M(x,n) in (1.1). Also, by considering the identity

∑

n≥1

xntn−1 =
∑

n≥1

∑

d|n
dMZ(x, dZ)tn−1,

1It should be mentioned that XG\U denotes the set of maps from G\U to X, not the set of U \G-invariant
elements in X, especially in the case where G is an abelian group.
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one can deduce the well known cyclotomic identity [5, 11]:

1

1 − xt
=
(

1

1 − tn

)M(x,n)

.

For variations of necklace polynomials and cyclotomic identity, refer to [8, 9, 12].

2.2 Group-theoretical generalization of chLn(V )

To begin with, we will introduce the notion of weight of an arbitrary element in
HomU(G,X) for all U ∈ C (G). To do this let us choose a set of representatives of
left-cosets of U in G, say {u1 = e,u2, . . . , u(G:U)}. Here e means the identity of G.

Definition 2.2 Let U ∈ C (G).

(a) Let f ∈ HomU(G,X). The U -weight of f , denoted by wtU(f ), is defined by

∏

1≤i≤(G:U)

f (ui).

(b) The U -weight of HomU(G,X), denoted by wtU(HomU(G,X)), is defined by

∑

f ∈HomU (G,X)

wtU(f ).

(c) The polynomial SG(X,U) is defined by

∑

f ∈XG

G·f ∼=G/U

wtGf
(f ),

where Gf denotes the isotropy subgroup of f in G.
(d) The polynomial MG(X,U) is defined by

∑′

f ∈XG

G·f ∼=G/U

wtGf
(f ).

Here the symbol
∑′ is meant to indicate that for each orbit isomorphic to G/U

in XG exactly one summand has to be taken.

Remark 2.3

(a) Note that

MG(X,U) =
∑′

f ∈HomU (G,X)
G·f ∼=G/U

wtU(f )

since we can always choose a U -invariant element f in G · f ∼= G/U .
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(b) From the above definition it follows that SG(X,U) = (G : U)MG(X,U). Also,
it should be remarked that MG(X,U) depends only on the conjugacy class of U ,
not on U .

(c) In the same manner, we can define SG(x,U) to be the number of elements in
HomU(G,X) whose isotropy subgroup is G-conjugate to U . Then SG(x,U) =
(G : U)MG(x,U).

It is all but obvious that MG(X,U) is a symmetric polynomial in x1, . . . , xm over
Z, and thus we can consider pn(X) ◦ MG(X,U), where ◦ denotes the plethysm and
pn(X) the nth power-sum symmetric polynomial in x1, . . . , xm (see [10]). Since
wtU(HomU(G,X)) = p1(X)(G:U) for all U ∈ C (G), it follows that

p1(X)(G:U) =
∑

[V ]�[U ]
ϕU(G/V ) p(V :U)(X) ◦ MG(X,V ). (2.2)

A closed formula MG(X,U) can be found in [16, Sect. 3]. For instance, if G is
abelian, then we have

MG(X,U) = 1

(G : U)

∑

U⊆W

μG(U,W) p(W :U)(X)(G:W), (2.3)

where μG denotes the Möbius function of C (G).

Example 2.4 Let G = Z and U = nZ. In view of (2.3), one can see that MG(X,U)

coincides with chLn(V ). In addition, by (2.2) we have

p1(X)n =
∑

d|n
d pn

d
(X) ◦ MZ(X,dZ), ∀n ≥ 1.

This gives the identity

∑

n≥1

p1(X)ntn−1 =
∑

n≥1

(
∑

d|n
d pn

d
(X) ◦ MZ(X,dZ)

)
tn−1,

and which induces a generalized version of the cyclotomic identity:

1

1 − p1(X)t
=

∞∏

n=1

exp

( ∞∑

r=1

1

r
pr(X) ◦ M(X,n)tnr

)
.

2.3 q-analog

As before, G is an arbitrary group such that C (G) is locally finite and U,V ∈ C (G).
In this section, we will consider q-analogs of MG(X,V ) and MG(x,V ). To begin
with, q is assumed to be a positive integer. Consider Z/qZ × X which will be re-
garded as a Z/qZ × G-set with respect to the action defined by

(c̄, g) · (ā, x) = (ā + c̄, g · x), ∀ ā, c̄ ∈ Z/qZ, g ∈ G,x ∈ X.



J Algebr Comb (2012) 35:389–420 395

In a similar way, (Z/qZ × X)G becomes a Z/qZ × G-set with respect to the action
given by

(
(c̄, g) · f )(h) = (c̄ + π1 ◦ f (h),

(
g · (π2 ◦ f )

)
(h)
)

for all ā, c̄ ∈ Z/qZ, g,h ∈ G, and f ∈ (Z/qZ × X)G. Here πi, (i = 1,2) denotes
the i-th projection map. Given any two elements f,f ′ ∈ (Z/qZ × X)G, let f ∼ f ′
if f ′ = c̄ · f for some c̄ ∈ Z/qZ. One can see that if f ∼ f ′ then g · f ∼ g · f ′ for
all g ∈ G and thus (Z/qZ × X)G/ ∼ can be viewed as a G-set. Use f̄ to indicate the
equivalence class of f with respect to the equivalence relation “∼”.

Given a subgroup U ∈ C (G), we can view HomU(G,Z/qZ × X)/ ∼ as a G-set
since HomU(G,Z/qZ × X) is closed under the above Z/qZ-action. Note that the
cardinality of HomU(G,Z/qZ × X)/ ∼ is equal to q(G:U)−1m(G:U). Let M

q

G(m,V )

denote the number of orbits in (Z/qZ × X)G/ ∼ isomorphic to G/V . Note that it
depends only on the cardinality of X, not on X. Then it follows that

q(G:U)−1m(G:U) =
∑

[V ]�[U ]
ϕU(G/V )M

q

G(m,V ).

By multiplying either side of the above identity by q one can easily derive that

M
q

G(m,V ) = 1

q
MG(qm,V ).

Now, regard q as a variable and substitute x for m. Then one can obtain a poly-
nomial M

q

G(x,V ) ∈ Q[q][x] for all [V ] ∈ C (G). Clearly M
q

G(x,V ) coincides with
MG(x,V ) at q = 1. Note that these polynomials take integer values if q, x are inte-
gers.

Example 2.5 Let G = Z, U = nZ, and q = −1. For every positive integer n, it fol-
lows from [18, Sect. 3] that

M−1(x,n) =
{

M(x,n) if n is odd,

−∑k
i=1 M(x,2in′) if n = 2kn′ where k ≥ 1 and n′ is odd.

In the rest of this section, we will introduce another q-analog of MG(x,V ) which
is of main interest in this paper. For this purpose, we need to count HomU(G,Z/qZ×
X)/ ∼ using so called aperiodic functions. For the time being, q is assumed to be a
positive integer.

Definition 2.6 (cf. [16]) Assume that h ∈ HomV (G,Z/qZ × X) for some open sub-
group V of G. Given an open subgroup W of G, we say that h has a period W if

1. Gh ⊆ W, and
2. for 1 ≤ i ≤ (G : W), there exists an element hW ∈ HomW(G,Z/qZ × X) and

sj ∈ Z/qZ, 1 ≤ j ≤ (W : Gh), such that

h(tjwi) = sj · hW(wi).
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Here, {wi : 1 ≤ i ≤ (G : W)} is a set of right-coset representatives of W in G and
{tj : 1 ≤ j ≤ (W : Gh)} a set of right-coset representatives of Gh in W .

If h has no period other than Gh, then it is called aperiodic.

Lemma 2.7 Assume that h ∈ HomV (G,Z/qZ×X) for some open subgroup V of G.
Then we have the following:

(a) If h is aperiodic and h ∼ h′, then h′ is also aperiodic.
(b) Let g ∈ G. If h is aperiodic, then g · h is also aperiodic.

Proof (a) is straightforward since Gh = Gh′ . For (b), note that the isotropy subgroup
of g · h is given by gGhg

−1. Assume that g · h is not aperiodic. Then it has a period
W with gGhg

−1
� W . Now, we will show that h has a period g−1Wg which con-

tains Gh strictly. Let {wi : 1 ≤ i ≤ (G : W)} be a set of right-coset representatives
of W in G and {tj : 1 ≤ j ≤ (W : gGhg

−1)} a set of right-coset representatives of
gGhg

−1 in W . Then {g−1wig : 1 ≤ i ≤ (G : W)} is a set of right-coset represen-
tatives of g−1Wg in G and {g−1tj g : 1 ≤ j ≤ (W : gGhg

−1)} a set of right-coset
representatives of Gh in W . Let g · h(tjwi) = sj · hW(wi) for all i, j. Then

h
((

g−1tj g
)(

g−1wig
))= g · h(tjwig)

= sj · hW(wig)

= sj · (g−1 · hW

)(
g−1wig

)
.

This justifies our assertion since the isotropy subgroup of g−1 · hW is given by
g−1Wg. But this is absurd since h is aperiodic. As a consequence, g · h should be
aperiodic. �

Let us say that f̄ is aperiodic if f is aperiodic. This definition makes sense due
to Lemma 2.7(a). Define M

q
G(m,U) to be the cardinality of aperiodic functions in

(Z/qZ × X)G/ ∼.

Lemma 2.8 [16] For every [U ] ∈ C (G) and every positive integer m, we have

q(G:U)−1m(G:U) =
∑

[V ]�[U ]
ϕU(G/V )q(V :U)−1M

q
G(m,V ). (2.4)

As before, let us obtain a polynomial M
q
G(x,U) ∈ Q[q][x] from M

q
G(m,U) for

all [U ] ∈ C (G) by substituting x for m and regarding q as an indeterminate. Ap-
plying mathematical induction on the degree to (2.4) one can easily show that
M

q
G(x,U) is a polynomial of degree (G : U) and the leading coefficient is given

by q(G:U)−1/(NG(U) : U). In addition, it coincides with MG(x,U) at q = 1.
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Definition 2.9 Let q be any positive integer and G be a group. For every [U ] ∈
C (G), we define M

q
G(X,U) by the weight generating polynomial

∑′

G·f̄ ∼=G/U

f̄ is aperiodic

wtGπ2◦f
(π2 ◦ f )(Gπ2◦f :U).

Here the symbol
∑′ is meant to indicate that for each orbit isomorphic to G/U in

(Z/qZ × X)G/ ∼ exactly one summand has to be taken.

Note that M
q
G(X,U) is a symmetric polynomial in x1, . . . , xm over Z of degree

(G : U) if q is a positive integer. If we regard q as an indeterminate, it can be viewed
as a symmetric polynomial in x1, . . . , xm over Q[q].

Lemma 2.10 [16] For every [U ] ∈ C (G) and an indeterminate q , we have

q(G:U)−1p1(X)(G:U) =
∑

[V ]�[U ]
ϕU(G/V ) q(V :U)−1p(V :U)(X) ◦ M

q
G(X,V ).

Proposition 2.11 For every [U ] ∈ C (G) and an indeterminate q , we have
M

q
G(1,G) = 1 and M

q
G(1,U) = 0 for all [U ] � [G].

Proof The desired result can be obtained by applying inductive argument on the in-
dex to the following identity:

q(G:U)−1(x1 + x2 + · · · + xm)(G:U)

=
∑

[G]�[V ]�[U ]
ϕU(G/V )q(V :U)−1p(V :U)(X) ◦ M

q
G(X,V )

for every [U ] ∈ C (G). �

It is worthwhile to mention that the fact that M
q
G(1,U) = 0 for all [U ] � [G] can

be interpreted combinatorially. To do this, we first assume that G ·f ∼= G/U for some
f ∈ (Z/qZ × X)G/ ∼. Fix a set of right-coset representatives {ui : 1 ≤ i ≤ (G : U)}
of U in G. Then G = ⋃̇1≤i≤(G:U)Uui . Notice that f is U -invariant and

f (ui) = (c̄ · fG)(e), ∀1 ≤ i ≤ (G : U),

where f (ui) = (c̄,1) and fG ∈ (Z/qZ × {1})G/ ∼ is a constant function such that
fG(g) = (0̄,1) for all g ∈ G. It implies that the period of f is G and thus there is no
U -invariant function whose period equals U unless U = G.

3 Generalizing identities among necklace polynomials

The purpose of this section is to generalize identities among necklace polynomi-
als observed by Metropolis and Rota in [11] and provide their bijective proofs.
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Throughout this section, we assume that X and Y alphabets {x1, x2, . . . , xm} and
Y = {y1, y2, . . . , yl}, respectively. Then XY is defined to be the alphabet XY =
{xayb : 1 ≤ a ≤ m, 1 ≤ b ≤ l} and Xk (k ≥ 1) the alphabet of all monomials in xi ’s
of degree k.

Definition 3.1 Let G be a group and U,W,W ′ subgroups of G. Define aW,W ′(U) to
be the number of double coset representatives, g, of W and W ′ in G satisfying that
W ∩ gW ′g−1 is G-conjugate to U.

Theorem 3.2 For every subgroup U ∈ C (G), we have

MG(xy,U) =
∑

[W ],[W ′]∈C (G)

aW,W ′(U)MG(x,W)MG(y,W ′). (3.1)

Proof Note that Φ : (XY)G → XG × YG, f �→ Φ(f ) = (f1, f2) is an isomorphism
of G-sets, where f1(g) = π1 ◦f (g) and f2(g) = π2 ◦f (g) for all g ∈ G. Here πi (i =
1,2) represents the i-th projection. Let A := {f ∈ (XY)G : G ·f ∼= G/U} and B :=
{h ∈ XG × YG : G · h ∼= G/U}. Then Φ|A : A → B is also an isomorphism of G-
sets. Recall that the cardinality of A is SG(ml,U) by definition. Now, let us compute
the cardinality of B. Given W,W ′ ∈ C (G), the number of orbits in XG (resp. YG)
isomorphic to G/W (resp. G/W ′) is MG(m,W) (resp. MG(l,W ′)). On the other
hand, by Mackey’s formula

G/W × G/W ′ ∼=
⋃̇

VgW

G/W ∩ gW ′g−1

where g ranges over a set of double coset representatives of W and W ′ in G. As a
consequence, the total number of h ∈ XG × YG such that G · h ∼= G/U is given by

∑

[W ],[W ′]∈C (G)

aW,W ′(U)MG(m,W)MG(l,W ′)(G : U).

Substituting x, y for m, l, respectively, and then dividing both sides of

SG(ml,U) =
∑

[W ],[W ′]∈C (G)

aW,W ′(U)MG(m,W)MG(l,W ′)(G : U),

by (G : U) we obtain the desired result. �

Let G be an abelian group. In this case, the total number of h ∈ XG × YG such
that G · h ∼= G/U in the proof of Theorem 3.2 has a very simple form. To be more
precise, it is exactly equal to the cardinality of the set

{
h = (f1, f2) ∈ XG × YG : Gf = W and Gf ′ = W ′ with W ∩ W ′ = U

}

since

G · (f1, f2) ∼= G/Gf × G/Gf ′ ∼=
⋃̇

Gf gGf ′
G/Gf ∩ Gf ′ .
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This implies the identity

SG(ml,U) =
∑

W,W ′∈C (G)
W∩W ′=U

SG(m,W)SG(l,W ′).

Substituting x, y for m, l, respectively, we have

Theorem 3.3 Let G be an abelian group. Then, for every subgroup U ∈ C (G), we
have

SG(xy,U) =
∑

W,W ′∈C (G)
W∩W ′=U

SG(x,W)SG(y,W ′). (3.2)

Remark 3.4

(a) Equation (3.2) can be derived directly by multiplying either side of (3.1) by
(G : U) since aW,W ′(U) = (G : W + W ′). However, we will focus on the combi-
natorial proof throughout this paper.

(b) If G is abelian, (3.1) has a very simple form such as

MG(xy,U) =
∑

W,W ′∈C (G)
W∩W ′=U

(G : W + W ′)MG(x,W)MG(y,W ′). (3.3)

In particular, when G = Z,U = nZ, (3.2) and (3.3) reduces to [11, Theorem 1
and Theorem 2], respectively.

Corollary 3.5 For every subgroup U ∈ C (G), we have

MG(XY,U)

=
∑

[W ],[W ′]∈C (G)

aW,W ′(U)
(
p(W :U)(X) ◦ MG(X,W)

) (
p(W ′:U)(X) ◦ MG(Y,W ′)

)
.

Proof For f ∈ A , let Φ(f ) = (f1, f2). Note that Gf is G-conjugate to U and

Gf = G(f1,f2) = Gf1 ∩ Gf2 .

Now our assertion follows from the following identity:

wtGf
(f ) = wtGf1

(f1)
(Gf1 :Gf ) wtGf2

(f2)
(Gf2 :Gf ). �

Next, we will generalize [11, Theorem 3 and Theorem 4].

Theorem 3.6 For any subgroups U,V ∈ C (G) with U ⊆ V , we have

SV (x(G:V ),U) =
∑

[W ]∈C (G)

bV,W (U) MG(x,W)(V : U), (3.4)
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where bV,W (U) is the number of double coset representatives, g, of V and W in G

satisfying that V ∩ gWg−1 is V -conjugate to U.

Proof Let {ai : 1 ≤ i ≤ (G : V )} be a set of right-coset representatives of V in G.
Note that

Φ : ResG
V (XG) →

(G : V )-times︷ ︸︸ ︷
XV × · · · × XV , f �→ Φ(f ) = (f1, . . . , f(G:V )) (3.5)

is a V -set isomorphism, where fi(v) = f (vai) for all v ∈ V and 1 ≤ i ≤ (G : V ). To
see that Φ preserves V -action, observe that

(g · f )i(v) = (g · f )(vai) = f
(
g−1vai

)

and

(g · fi)(v) = fi(g
−1v) = f

(
g−1vai

)

for all g, v ∈ V and 1 ≤ i ≤ (G : V ). Also, note that

Id :
(G : V )-times︷ ︸︸ ︷

XV × · · · × XV → (
X(G:V )

)V
, (f1, . . . , f(G:V )) �→ f1 · · ·f(G:V )

is a V -set isomorphism, where f1 · · ·f(G:V )(v) := f1(v) · · ·f(G:V )(v) for all v ∈ V .
Let D := {f ∈ ResG

V (XG) : V · f ∼= V/U} and E := {h ∈ (X(G:V ))V : V ·h ∼= V/U}.
Then Id ◦ Φ|D : D → E is also a V -set isomorphism. The cardinality of D can
be computed in the following way: Given W ∈ C (G), the number of orbits in XG

isomorphic to G/W is given by MG(m,W). Note that

ResG
V (G/W) ∼=

⋃̇

VgW

V/V ∩ gWg−1 (as a V -set),

where g ranges over a set of double coset representatives of V and W in G. As a
result, the total number of f ∈ XG such that V · f ∼= V/U as a V -set is given by

∑

[W ]∈C (G)

bV,W (U) MG(m,W)(V : U),

whereas the cardinality of E is SV (m(G:V ),U), we obtain the identity

SV

(
m(G:V ),U

)=
∑

[W ]∈C (G)

bV,W (U) MG(m,W)(V : U).

Finally, by replacing m by x one can derive the desired result. �

If we assume that G is an abelian group, then the cardinality of D (in the proof
of Theorem 3.6) is exactly given by that of the set {f ∈ XG : Gf = W with V ∩
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W = U}. Immediately this induces the equality:

SV

(
m(G:V ),U

)=
∑

W∈C (G)
V ∩W=U

SG(m,W).

Substituting x, y for m, l, respectively, we have

Theorem 3.7 Let G be an abelian group. Then, for any subgroups U,V ∈ C (G)

with U ⊆ V , we have

SV

(
x(G:V ),U

)=
∑

W∈C (G)
V ∩W=U

SG(x,W). (3.6)

As a corollary of Theorem 3.6, we have

Corollary 3.8 For subgroups U,V ∈ C (G) with U ⊆ V , we have

MV

(
x(G:V ),U

)=
∑

[W ]∈C (G)

bV,W (U) MG(x,W), (3.7)

and

MV

(
X(G:V ),U

)=
∑

[W ]∈C (G)

bV,W (U) p(W :U)(X) ◦ MG(X,W). (3.8)

Proof (a) is straightforward. For (b), given a subgroup W ∈ C (G), let {wi : 1 ≤ i ≤
(G : W)} be a set of right-coset representatives of W in G. Let f ∈ D with Gf = W .
Then wtWf =∏1≤i≤(G:W). Now, let us compute the weight of Id ◦ Φ(f ). Note that
the isotropy subgroup of Id ◦ Φ(f ) is W ∩ V which is V -conjugate to U . Let {uj :
1 ≤ j ≤ (V : W ∩ U)} be a set of right-coset representatives of V ∩ W in V . Let
{vi : 1 ≤ i ≤ (G : V )} be a set of right-coset representatives of V in G. Then the
U -weight of Id ◦ Φ(f ) in V is given by

wtW∩V (Id ◦ Φ(f )) =
∏

1≤j≤(V :V ∩W)

f1(uj )f2(uj ) · · ·f(G:V )(uj )

=
∏

1≤i≤(G:V )
1≤j≤(V :V ∩W)

f (ujvi)

= (wtWf )(W :V ∩W).

This implies the desired result. �

Example 3.9 If G is an abelian group, then bV,W (U) = (G : V + W). Hence (3.7) is
simplified as

MV

(
x(G:V ),U

)=
∑

W∈C (G)
V ∩W=U

(G : V + W) MG(x,W). (3.9)
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Note that (3.6) and (3.9) reduce to [11, Theorem 3 and Theorem 4], respectively, when
G = Z,V = rZ,U = rnZ. And this specialization, when applied to (3.8), gives rise
to the formula: For any positive integers a and n, we have

M
(
Xa,n

)=
∑

j≥1
[j,a]=an

j

n
pan

j
(X) ◦ M(X,j),

equivalently,

chLn

((
C

m
)⊗a)=

∑

j≥1
[j,a]=an

j

n
pan

j
(X) ◦ chLj

(
C

m
)
.

In the rest of this section, we focus on a generalization of [11, Theorem 5 and
Theorem 6].

Lemma 3.10 [3] Let G be a profinite group. For any two open subgroups U, V of G

and all x ∈ Ω̂(U), y ∈ Ω̂(V ), one has

IndG
U(x) IndG

V (y) =
∑

UgV ⊆G

IndG
U∩gVg−1

(
ResU

U∩gVg−1(x)
(
ResV

U∩gVg−1(g)(y)
))

.

(3.10)
Here g ranges over a set of double coset representatives of U and V and
ResV

U∩gVg−1(g) is induced from the embedding U ∩ gVg−1 ↪→ V : x �→ g−1xg.

It is easy to show that Lemma 3.10 is also applicable to an arbitrary group if U,V ∈
C (G). Using this lemma, we can obtain the following identity:

Theorem 3.11 For any subgroups U,V,W ∈ C (G) with [U ], [V ] � [W ], one has

∑

UgV

∑

[Z]∈C (U∩gVg−1)
Z is G-conjugate to W

MU∩gVg−1

(
x(U :U∩gVg−1)y(V :U∩gVg−1),Z

)

=
∑

[S],[T ]∈C (G)
SgT ⊆G

S∩gT g−1 is G-conjugate to W

(
∑

[Z]∈C (U)
Z is G-conjugate to S

MU(x,Z)

)

×
(

∑

[Z′]∈C (V )
Z′ is G-conjugate to T

MV (y,Z′)
)

.

(3.11)

Here g (resp. h) ranges over a set of double coset representatives of U and V (resp.
S and T ) in G satisfying that V ∩ gWg−1 (resp. S ∩ hT h−1) is G-conjugate to W.
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Proof Let x = [XU ], y = [YV ]. Then we have the following relation (in Ω̂(G)):

IndG
U(x) =

∑

[S]∈C (G)

(
∑

[Z]∈C (U)
Z is G-conjugate to S

MU(m,Z)

)
[G/S],

IndG
V (y) =

∑

[T ]∈C (G)

(
∑

[Z′]∈C (V )
Z′ is G-conjugate to T

MV (l,Z′)
)

[G/T ].

Therefore, given any [W ] ∈ C (G), the coefficient of [G/W ] in IndG
U(x) ◦ IndG

V (y) is
given by the right hand side of (3.11). On the other hand, in view of (3.5), one has

ResU
U∩gVg−1(x) =

[(
X(U :U∩gVg−1)

)U∩gVg−1]

and

ResV
U∩gVg−1(g)(x) =

[(
Y (V :U∩gVg−1)

)U∩gVg−1]
.

As a result, we have

ResU
U∩gVg−1(x)ResV

U∩gVg−1(g)(x) =
[(

X(U :U∩gVg−1)Y (V :U∩gVg−1)
)U∩gVg−1]

.

Thus the coefficient of [G/W ] on the right hand side of (3.10) is given by the left
hand side of (3.11). Finally by substituting x, y for m, l, respectively, we obtain the
desired result. �

Example 3.12 If G is abelian, then (3.11) can be simplified in the following form:
For any subgroups U,V,W ∈ C (G) with W ⊆ U ∩ V we have

(G : U + V )MU∩V

(
x(U :U∩V )y(V :U∩V ),W

)

=
∑

Z∈C (U),Z′∈C (V )
Z∩Z′=W

(G : Z + Z′)MU(x,Z)MV (y,Z′). (3.12)

In particular, letting G = Z,U = rZ,V = sZ,W = n[r, s]Z, Z = prZ, and Z′ =
qsZ, then (3.12) is written as

(r, s)M[r,s]Z
(
x

[r,s]
r y

[r,s]
s , n[r, s]Z)

=
∑

p,q≥1
prZ∩qsZ=n[r,s]Z

(G : prZ + qsZ)MrZ(x,prZ)MsZ(y, qsZ).

Equivalently,

(r, s)M
(
x

[r,s]
r y

[r,s]
s , n

)=
∑

p,q
[pr,qs]=n[r,s]

(pr, qs)M(x,p)M(y, q).
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Since [r,s]
r

= s
(r,s)

, [r,s]
s

= r
(r,s)

and pq
(pr,qs)

= n
(r,s)

, the above identity is exactly equal
to [11, Theorem 6].

If G is an abelian group, then one can see immediately that the cardinality of the
set

{
f ∈ IndG

U

(
XU
)× IndG

V

(
YV
) : G · f = G/W

}

is given by the following formula:
∑

Z∈C (U),Z′∈C (V )
Z∩Z′=W

SU(x,Z)SV (y,Z′),

whereas the cardinality of the set
{

f ∈
⋃̇

UgV ⊆G

IndG
U∩V

(
ResU

U∩V

(
XU
)× (ResV

U∩V

(
YV
)) : G · f = G/W

}

is given by SU∩V (x(U :U∩V )y(V :U∩V ),W). As a consequence, we have the following
identity:

Theorem 3.13 Let G be an abelian group. Given any U,V,W ∈ C (G) with W ⊆
U ∩ W , we have

SU∩V

(
x(U :U∩V )y(V :U∩V ),W

)=
∑

Z∈C (U),Z′∈C (V )
Z∩Z′=W

SU(x,Z)SV (y,Z′).

Example 3.14 If G = Z,U = rZ,V = sZ,W = n[r, s]Z, Z = prZ, and Z′ = qsZ,

S[r,s]Z
(
x

[r,s]
r y

[r,s]
s , n[r, s]Z

)

=
∑

p,q≥1
prZ∩qsZ=n[r,s]Z

SrZ(x,prZ)SsZ(y, qsZ).

Equivalently,

S
(
x

[r,s]
r y

[r,s]
s , n

)
=

∑

p,q≥1
[pr,qs]=n[r,s]

S(x,p)S(y, q).

In particular, if r, s are relatively prime, then the above identity reduces to

S
(
xsyr , nZ

)=
∑

p,q≥1
[pr,qs]=nrs

s(x,p)s(y, q).

Note that this identity was first provided in [11, Theorem 6].
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Corollary 3.15 For any subgroups U,V,W ∈ C (G) with [U ], [V ] � [W ], one has
∑

UgV

∑

[Z]∈C (U∩gVg−1)
Z is G-conjugate to W

MU∩gVg−1

(
X(U :U∩gVg−1)Y (V :U∩gVg−1),Z

)

=
∑

[S],[T ]∈C (G)
SgT ⊆G

S∩gT g−1 is G-conjugate to W

p(S:W)(X) ◦
(

∑

[Z]∈C (U)
Z is G-conjugate to S

MU(X,Z)

)

× p(T :W)(Y ) ◦
(

∑

[Z′]∈C (V )
Z′ is G-conjugate to T

MV (Y,Z′)
)

,

where g (resp. h) ranges over a set of double coset representatives of U and V (resp.
S and T ) in G satisfying that V ∩ gWg−1 (resp. S ∩ hT h−1) is G-conjugate to W.

Proof Let Ψ : F → G be a G-set isomorphism, where

F := {(f, g) ∈ IndG
U

(
XU
)× IndG

V

(
YV
) : G · (f, g) ∼= G/W

}

and

G :=
{

η ∈
⋃̇

UgV ⊆G

IndG
U∩gVg−1

(
ResU

U∩gVg−1

(
XU
)× ResV

U∩gVg−1(g)
(
YV
)) : G · η ∼= G/W

}
.

Given (f,f ′) ∈ F , let Ψ (f,f ′) = (f1f2, . . . , fi, f
′
1, f

′
2, . . . , f

′
j ), where i = (U :

U ∩ gVg−1) and j = (V : U ∩ gVg−1). Note that G(f,f ′) is G-conjugate to W and
G(f,f ′) = Gf ∩ Gf ′ . Now our assertion follows from the identity

wtG(f,f ′)
(
Ψ (f,f ′)

)= wtGf
(f )

(Gf :G(f,f ′))wtGf ′ (f
′)(Gg :G(f,f ′)),

which can be shown in the same manner as Corollary 3.8 was proven. �

Remark 3.16 Letting G = Z,U = rZ,V = sZ,W = k[r, s]Z, one has

(r, s)M
(
X

[r,s]
r Y

[r,s]
s , k

)

=
∑

i,j
[ri,sj ]=k[r,s]

(ri, sj)
(
pk[r,s]

ri
(X) ◦ M(X, i)

) (
pk[r,s]

sj
(Y ) ◦ M(Y, j)

)
.

It should be remarked that [15, Theorem 3.9(C)] was wrongly stated. There Ψ
[ s
(r,s)

,i]
i

should appear as Ψ
[ ks
(r,s)

,i]
i and Ψ

[ r
(r,s)

,j ]
j should appear as Ψ

[ kr
(r,s)

,j ]
j . This is because

k[r, s]
ri

= ks

i(r, s)
= [ ks

(r,s)
, i]

i
and

k[r, s]
sj

= kr

j (r, s)
= [ kr

(r,s)
, j ]

j
.
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4 Expressing M
q
G(x,U) as a linear combination of MG(x,V )’s

The aim of this section is to express M
q
G(x,U) (resp. M

q
G(X,U)) in terms of

MG(x,V )’s (resp. MG(X,V )’s), where [V ] � [U ]. To begin with, let us observe
that M

q
G(x,G) = x = MG(x,G) and M

q
G(X,G) = p1(X) = MG(X,G). So, we will

assume that U �= G throughout this section.
The first main theorem of this section can be stated as follows:

Theorem 4.1 For every U ∈ C (G) with U �= G, we have

M
q
G(x,U) =

∑

[G]�[V ′]�[U ]
(in C (G))

cU (V ′) MG(x,V ′), (4.1)

where cU (V ′) is given by

∑

[Ui ]∈C (V ′)
Ui is G-conjugate to U

MV ′
(
q(G:V ′)−1,Ui

)
.

Proof Let us proceed the proof in the following two steps.

Step 1: In the first step, we will show that cU (V ′) is given by

∑

[V ′]�[W ]�[U ] (in C (G))

(
∑

[S]∈C (W)
S is G-conjugate to U

M
q
W

(
1

q
,S

))( ∑

[V ]∈C (G)

aV,V ′(W)MG(q,V )

)

(4.2)
Here aV,V ′(W) denotes the number of double coset representatives, g, of V and V ′
in G satisfying that V ∩ gV ′g−1 is G-conjugate to W.

Let q, r be indeterminates and [U ] ∈ C (G). From [17, Sect. 2] it follows that

qM
q
G(rx,U) =

∑

[G]�[W ]�[U ]
(in C (G))

g[U ],[W ](r, q)rMr
G(qx,W), (4.3)

where g[U ],[W ](r, q) is given by

q

r

(
∑

[S]∈C (W)
S is G-conjugate to U

M
q
W

(
r

q
, S

))
.

Thus (4.3), when r specializes into 1, reduces to the following identity:

M
q
G(x,U) =

∑

[G]�[W ]�[U ]
(in C (G))

(
∑

[S]∈C (W)
S is G-conjugate to U

M
q
W

(
1

q
,S

))
MG(qx,W). (4.4)
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On the other hand, from Theorem 3.2 it follows that

MG(qx,W) =
∑

[G]�[V ],[V ′]�[W ]
(in C (G))

aV,V ′(W)MG(q,V )MG(x,V ′), (4.5)

where aV,V ′(W) is the number of double coset representatives, g, of V and V ′ in
G satisfying that V ∩ gV ′g−1 is G-conjugate to W. Hence, by applying (4.5) to the
right hand side of (4.4), we can express M

q
G(x,U) as

∑

[G]�[W ]�[U ]
(in C (G))

(
∑

[S]∈C (W)
is G-conjugate to U

M
q
W

(
1

q
,S

))

×
(

∑

[G]�[V ],[V ′]�[W ]
(in C (G))

aV,V ′(W)MG(q,V )MG(x,V ′)
)

. (4.6)

Writing the above summation as a linear combination of MG(x,V ′)’s we have

M
q
G(x,U) =

∑

[G]�[V ′]�[U ]
(in C (G))

cU (V ′) MG(x,V ′),

where cU (V ′) ∈ Q[q] is given by

∑

[V ′]�[W ]�[U ]
(in C (G))

(
∑

[S]∈C (W)
S is G-conjugate to U

M
q
W

(
1

q
,S

))( ∑

[V ]∈C (G)

aV,V ′(W)MG(q,V )

)
.

This proves the first step.

Step 2: In the second step, we will show that (4.2) is equal to

∑

[T ]∈C (V ′)
T is V ′-conjugate to U

MV ′
(
q(G:V ′)−1, T

)
.

To begin with, assume that q is a positive integer. Then one can show that

∑

[V ]∈C (G)

aV,V ′(W)MG(q,V )

means the number of orbits isomorphic to G/W in the G-set G/V ′ × qG, where qG

is the set of maps from G to q := {1,2, . . . , q}. To be more precise, it can be done by
combining the fact that [q] =∑[V ]∈C (G)

MG(q,V )[G/V ] in Ω̂(G) with Mackey’s
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theorem (for example, see [3, (2.6.1)]). One can also see that

G/V ′ × qG = IndG
V ′(V ′/V ′) × qG

= IndG
V ′
(
V ′/V ′ × ResG

V ′(qG)
)

= IndG
V ′
(
q(G:V ′)V

′)
.

The second equality follows from Frobenius reciprocity (for example, see [3,
(2.10.3)]) and the third one from Theorem 3.6. Note that the number of orbits iso-

morphic to G/W in IndG
V ′(q(G:V ′)V

′
) is given by

∑

[T ]∈C (V ′)
T is V ′-conjugate to W

MV ′
(
q(G:V ′), T

)
.

Combining the result thus obtained with the identity
(

∑

[S]∈C (W)
S is G-conjugate to U

M
q
W

(
1

q
,S

))

=
∑

[Ui ]∈C (W)
Ui is G-conjugate to U

(
∑

[S]∈C (W)
S is W -conjugate to Ui

M
q
W

(
1

q
,S

))
,

one can immediately rewrite (4.2) in the following form:

∑

[V ′]�[W ]�[U ]
(in C (G))

∑

[Ui ]∈C (W)
Ui is G-conjugate to U

(
∑

[S]∈C (W)
S is W -conjugate to Ui

M
q
W

(
1

q
,S

))

×
(

∑

[T ]∈C (V ′)
T is V ′-conjugate to W

MV ′
(
q(G:V ′), T

)
)

,

and which can be expressed much simpler in the following way:

∑

[Ui ]∈C (V ′)
Ui is G-conjugate to U

∑

[V ′]�[T ]�[Ui ]
(in C (V ′))

(
∑

[S]∈C (T )
S is W -conjugate to Ui

M
q
W

(
1

q
,S

))
MV ′

(
q(G:V ′), T

)
.

Finally, by (4.4), the above summation can be written as
∑

[Ui ]∈C (V ′)
Ui is G-conjugate to U

MV ′
(
q(G:V ′)−1,Ui

)
.

This completes the proof. �
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If G is an abelian group, then (4.1) turns out to be very simple.

Corollary 4.2 Let G be an abelian group. Then, for any subgroup U ∈ C (G) with
U �= G, we have

M
q
G(x,U) =

∑

U⊆W�G

M
q
W

(
q(G:W)−1,U

)
MG(x,W). (4.7)

For understanding of readers, let us give an example of the above corollary.

Example 4.3 Let p be a prime and let G = Z/pZ×Z/pZ. In this case there are p+1
subgroups of order p, say H1,H2, . . . ,Hp+1. Note that, for every 1 ≤ i ≤ p + 1, one
has

M
q
G(x,Hi) = qp−1 (xp − x)

p

= MHi

(
q(G:Hi)−1,Hi

)
MG(x,Hi)

since qp−1 = MHi
(q(G:Hi)−1,Hi). Also one can see immediately that

M
q
G

(
x, {0})= qp2−1

p2

(
qp2−1xp2 − (p + 1)q2(p−1)xp + ((p + 1)q2(p−1) − qp2−1)x

)

= qp2−1MG(x, {0}) +
∑

1≤i≤p+1

qp−1

p

(
qp(p−1) − qp−1)MG(x,Hi)

= M{0}
(
q(G:{0})−1, {0})MG(x, {0})

+
∑

1≤i≤p+1

MHi

(
q(G:Hi)−1, {0})MG(x,Hi).

In the following, we will provide a combinatorial interpretation of the coefficient
cU (V ′) in (4.1). First of all, let us assume that q is a positive integer and x the car-
dinality of X. It should be remarked that they will be regarded as an indeterminate
later. Let

H := {f̄ ∈ (Z/qZ × X)G/ ∼: G · f̄ ∼= G/U, f̄ is aperiodic
}
. (4.8)

Then it is easily seen that, for every element f̄ ∈ H , the isotropy subgroup of π2 ◦ f

is G-conjugate to some subgroup V ′ ∈ C (G) to which U is subconjugate. Here π2 is
the projection map to the second component and thus it induces a function,

G
f→ Z/qZ × X

π2→ X,

from G to X. As a consequence, it is possible to write M
q
G(x,U) as

∑

[V ′]�[U ] (in C (G))

dU (V ′) MG(x,V ′),
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where dU (V ′) is the number of elements, say f̄ ∈ H , such that the isotropy subgroup
of π2 ◦ f is G-conjugate to V ′. But it should be noted that it is never obvious that
dU(V ′) is equal to cU (V ′) since {MG(x,V ′) : [V ′] � [U ]} is not linearly independent
(over Q[q]) in general (for example, refer to Example 4.3). In the rest of this section,
we will show that this is indeed true.

As the first step, let us decompose C (G,Z/qZ×X)/ ∼ into disjoint G-orbits and
then consider its union, say

⋃̇

h̄

Gh̄,

in which the number of orbits isomorphic to G/U is given by M
q
G(x,U). Recall that

if G · h̄ ∼= G/U , then G · (π2 ◦ h) ∼= G/V for some U ⊆ V .

Lemma 4.4 Let U ∈ C (G) with U �= G and [G] � [V ] � [U ] in C (G). For each
f ∈ XG with G · f ∼= G/V , let A be the set of functions h ∈ C (G,Z/qZ × X)

satisfying the conditions (C1)–(C3):
(C1) π2 ◦ h = f,

(C2) G · h ∼= G/U , and
(C3) h is aperiodic.

And we let B be the set of functions τ ∈ C (Gf ,Z/qZ × (Z/qZ)(G:V )−1) satisfying
the conditions (C′1)–(C′2):

(C′1) Gf · τ ∼= Gf /Ui for some Ui ∈ C (Gf ) which is G-conjugate to U , and
(C′2) τ is aperiodic.

Then A, B have the same cardinality.

Proof Let us construct a bijection Ξ : B → A. Given a function τ ∈ B, we will define
Ξ(τ) in the following steps:

Step 1:
For simplicity of notation, let V ′ = Gf . First, we choose a set of right-coset rep-

resentatives
{
a1(= e), a2, . . . , a(G:V )

}

of V ′ in G, and also a set of right-coset representatives

{
b1(= e), b2, . . . , b(V :U)

}

of V ′
τ in V ′. Then the set

{
bjai : 1 ≤ i ≤ (G : V ), 1 ≤ j ≤ (V : U)

}

becomes a set of coset representatives of V ′
τ in G. Equivalently

G =
⋃̇

1≤i≤(G:V )
1≤j≤(V :U)

V ′
τ (bj ai).
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Step 2:
Define Ξ(τ) as follows:

Ξ(τ) : G → Z/qZ × X,

u(bjai) �→
{

(c1j , f (a1)) if i = 1, j = 1,2, . . . , (V : U)

(cij + c1j − c11, f (ai)) otherwise,

for all u ∈ Vτ . Here τ(bj ) = (c1j , (c2j , . . . , c(G:V )j )). We claim that Ξ is indeed a
bijection. To prove this the followings should be checked.

(i) Firstly, we will show that Ξ is well defined, that is, Ξ(τ) ∈ A.

By definition of Ξ(τ), the condition (C1) is straightforward. To show that the
condition (C2) is satisfied, we note that V ′

τ ⊆ GΞ(τ) ⊆ V ′. Hence every element
g ∈ GΞ(τ) can be written uniquely as u0bm for some 1 ≤ m ≤ (V : U) and u0 ∈ V ′

τ .
For all 1 ≤ i ≤ (G : V ), 1 ≤ j ≤ (V : U), it holds that

g · Ξ(τ)(bj ai) = Ξ(τ)
(
b−1
m u−1

0 bjai

)= Ξ(τ)(bj ai)

since g ∈ GΞ(τ). Note that if b−1
m u−1

0 bj = u′bk for some k with 1 ≤ k ≤ (V : U) and
u′ ∈ Vτ , then the above equality implies that

{
c1j = c1k if i = 1,

cij + c1j − c11 = cik + c1k − c11 otherwise.

This gives that cij = cik . But, since i’s are arbitrary, τ(b−1
m u−1

0 bj ) = τ(bj ) for all
1 ≤ j ≤ (V : U) and thus g stabilizes τ . However, it is a contradiction to the con-
dition (C′1) unless V ′

τ = GΞ(τ). Finally, let us show that Ξ(τ) satisfies the condi-
tion (C3). If Ξ(τ) is of period W with V ′

τ � W ⊆ V ′, then there exists a function
hW ∈ HomW(G,Z/qZ × X) and sk ∈ Z/qZ, 1 ≤ k ≤ (W : U), such that

Ξ(τ)(tkw1) = sk · hW(w1)

Ξ(τ)(tkw2) = sk · hW(w2)

...

Ξ(τ)(tkw(G:W)) = sk · hW(w(G:W)).

(4.9)

Here {wl : 1 ≤ l ≤ (G : W)} is a set of right-coset representatives of W in G and
{tk : 1 ≤ k ≤ (W : V ′

τ )} a set of right-coset representatives of V ′
τ in W . In particular,

we may assume that s1 = 0. Choose a set of right-coset representatives {zm : 1 ≤ m ≤
(V : W)} of W in V ′ so that

w(G:V )(i−1)+m = zmai,

tkzm = b(W :U)(m−1)+k

(4.10)
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for all 1 ≤ i ≤ (G : V ), 1 ≤ m ≤ (V : W) and 1 ≤ k ≤ (W : U). Then the requirement
(4.9) forces that, for every m with 1 ≤ m ≤ (V : W), we have

c1,(W :U)(m−1)+2 = c1,(W :U)(m−1)+1 + s2

c1,(W :U)(m−1)+3 = c1,(W :U)(m−1)+1 + s3

...

c1,(W :U)m = c1,(W :U)(m−1)+1 + s(W :U),

and, for every i with 1 < i ≤ (G : V ) and for every m with 1 ≤ m ≤ (V : W),

ci,(W :U)(m−1)+2 + c1,(W :U)(m−1)+2 − c11 = ci,(W :U)(m−1)+1 + c1,(W :U)(m−1)+1

− c1,1 + s2

ci,(W :U)(m−1)+3 + c1,(W :U)(m−1)+3 − c11 = ci,(W :U)(m−1)+1 + c1,(W :U)(m−1)+1

− c1,1 + s3

...

ci,(W :U)m + c1,(W :U)m − c11 = ci,(W :U)(m−1)+1 + c1,(W :U)(m−1)+1 − c1,1 + s(W :U).

As a consequence, we have

ci,(W :U)(m−1)+1 = ci,(W :U)(m−1)+2 = · · · = ci,(W :U)m

for all 1 < i ≤ (G : V ) and 1 ≤ m ≤ (V : W). But this cannot happen due to the
condition (C′2). To show this, consider a W -invariant function τW ∈ C (Gf ,Z/qZ ×
(Z/qZ)(G:V )−1) defined by

τW (zm) = (c1,(W :U)(m−1)+1, (c2,(W :U)(m−1)+1, . . . , c(G:V ),(W :U)(m−1)+1))

for 1 ≤ m ≤ (V ′ : W). Then it is easy to see that, for every 1 ≤ k ≤ (W : U), we have

τ(tkz1) = sk · τW (z1),

τ (tkz2) = sk · τW (z2),

...,

τ (tkz(V ′:W)) = sk · τW (z(V ′:W)).

This means that W is a period of τ , but it is a contradiction to the condition (C′2).
Consequently we can conclude that Ξ(τ) is aperiodic.

(ii) Secondly, let us prove the injectiveness of Ξ .

For τ, τ ′ ∈ B, let us assume that Ξ(τ) = Ξ(τ ′). Clearly GΞ(τ) = GΞ(τ ′). But we have
already shown in the above that GΞ(τ) = V ′

τ and GΞ(τ ′) = V ′
τ ′ . As a consequence,

V ′
τ = V ′

τ ′ , which says that τ = τ ′.
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(iii) Finally, let us prove the surjectiveness of Ξ .

Choose any function h ∈ A. It is obvious that Gh ⊆ Gf (= V ′). Let

{
b1(= e), b2, . . . , b(V :U)

}

be a set of right-coset representatives of Gh in V ′. Now, consider a Gh-invariant
function τ ∈ C (V ′,Z/qZ × (Z/qZ)(G:V )−1) defined by

τ(ubj ) = (d1, (d2, d3, . . . , d(G:V ))
)

for all u ∈ U , where

di =
{

π1 ◦ h(bj a1) if i = 1,

π1 ◦ h(bj ai) − π1 ◦ h(bja1) + π1 ◦ h(b1a1) otherwise

for all 1 ≤ j ≤ (V : U). Here π1 is the projection map to the first component. By our
construction it is obvious that Ξ(τ) = h. Thus, we have only to show that τ ∈ A. By
its definition it is clear that τ is Gh-invariant. We claim that the isotropy subgroup V ′

τ

of τ is exactly the same as Gh. This is because if V ′
τ � Gh, then V ′

τ is a period of h.
But it is absurd since h is aperiodic. Thus we have shown that τ satisfies the condition
(C′1). To show that τ satisfies the condition (C′2), assume that τ is of period W

with V ′
τ � W ⊆ V ′. Then there exists a W -invariant function τW ∈ C (Gf ,Z/qZ ×

(Z/qZ)(G:V )−1) and sk ∈ Z/qZ, 1 ≤ k ≤ (W : U) such that, for every 1 ≤ k ≤ (W :
U), we have

τ(tkz1) = sk · τW (z1),

τ (tkz2) = sk · τW (z2),

...

τ (tkz(V ′:W)) = sk · τW (z(V ′:W))

(4.11)

with s1 = 0. Note that we are using sets of representatives {ai : 1 ≤ (G : V )}, {bj : 1 ≤
j ≤ (V : U)}, {wl : 1 ≤ l ≤ (G : W)}, {tk,1 ≤ k ≤ (W : U)}, {zm,1 ≤ m ≤ (V : W)}
satisfying the condition (4.10) in Step 1 (i). Then (4.11) implies that, for every m with
1 ≤ m ≤ (V : W), we have

d1,(W :U)(m−1)+2 = d1,(W :U)(m−1)+1 + s2

d1,(W :U)(m−1)+3 = d1,(W :U)(m−1)+1 + s3

...

d1,(W :U)m = d1,(W :U)(m−1)+1 + s(W :U)

and, for all 1 < i ≤ (G : V ) and 1 ≤ m ≤ (V : W), we have

di,(W :U)(m−1)+1 = di,(W :U)(m−1)+2 = · · · = di,(W :U)m.
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Using the notation eij = π1 ◦ h(bj ai) for all 1 ≤ i ≤ (G : V ), 1 ≤ j ≤ (V : U), the
above equality can be expressed as follows: For every 1 ≤ i ≤ (G : V ) and every
1 ≤ m ≤ (V : W), it holds that

ei,(W :U)(m−1)+2 = e1,(W :U)(m−1)+1 + s2

ei,(W :U)(m−1)+3 = e1,(W :U)(m−1)+1 + s3

...

ei,(W :U)m = e1,(W :U)(m−1)+1 + s(W :U).

Letting hW ∈ HomW(G,Z/qZ × X) be a W -invariant function defined by

hW(wi) = h(wi), 1 ≤ i ≤ (G : W),

it is obvious that

h(tkw1) = sk · hW(w1)

h(tkw2) = sk · hW(w2)

...

h(tkw(G:W)) = sk · hW(w(G:W))

for 1 ≤ k ≤ (W : U) with s1 = 0. From this it follows that W is a period of h. How-
ever, it is absurd since h is aperiodic. Therefore we can conclude that τ is aperiodic,
and so we are done. �

Theorem 4.5 The cardinality of A/ ∼ is given by

∑

[Ui ]∈C (V ′)
Ui is G-conjugate to U

MV ′
(
q(G:V ′)−1,Ui

)
.

Proof For each τ ∈ A, [τ ] has q(V :U)-elements. Similarly, for each h ∈ B, [h] has
q(V :U)-elements. As a consequence, |A/ ∼ | = |B/ ∼ |. �

The subsequent corollary can be deduced by considering the degree of either side
of (4.12) below. To be more precise,

Corollary 4.6 For every U ∈ C (G) with U �= G, we have

M
q
G(X,U) =

∑

[V ′]�[U ] (in C (G))

cU (V ′) p(V ′:U)(X) ◦ MG(X,V ′). (4.12)

Proof Let

H := {f̄ ∈ (Z/qZ × X)G/ ∼: G · f̄ ∼= G/U, f̄ is aperiodic
}
.
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For f̄ ∈ H note that the Gf̄ weight of f̄ is given by

wtGπ2◦f
(π2 ◦ f )

(Gπ2◦f :Gf̄ )
.

This implies the desired result. �

Example 4.7

(a) Let G be an abelian group. Then, for any subgroup U ∈ C (G) with U �= G, we
have

M
q
G(X,U) =

∑

U⊆W�G

M
q
W

(
q(G:W)−1,U

)
p(W :U)(X) ◦ MG(X,W). (4.13)

(b) In the case where G = Ĉ, (4.13) reduces to

Mq(X,n) =
∑

d|n
d>1

Mq
(
qd−1,

n

d

)
pn

d
(X) ◦ M(X,d).

Note that if q is a positive integer, then Mq(qd−1, n
d
) is also a non-negative integer.

Therefore one can see that Mq(X,n) is a character of some GLm(C)-module. Let us
explain it in more detail. Let L (Cm) be the free Lie algebra generated by Cm and
Ln(C

m) (n ≥ 1) its nth homogeneous component. For every positive integer n ≥ 2,
let

L̃
q
n

(
C

m
) :=

⊕

d|n
d>1

Ψ
n
d
(
Ld(V )

)⊕Mq
(
qd−1, n

d

)
,

where Ψ
n
d denotes the n

d
-th Adams operation. Then Mq(X,n) = chL̃n(C

m) (=the

trace of diag(x1, . . . , xm) on L̃n(V )).

Note that cU (V ′) can be easily calculated in the following cases.

Proposition 4.8 For U ∈ C (G) with U �= G, we have
(a) cU (G) = 0.

(b) cU (U) = q(G:U)−1.

Proof

(a) By Theorem 4.1 cU (G) equals MG(1,U). But one can show that M
q
G(1,U) =

0 for U ∈ C (G) with U �= G by applying an inductive argument on index to
Lemma 2.8.

(b) By Theorem 4.1 cU (U) equals MU(q(G:U)−1,U), which equals q(G:U)−1. �

In the rest of this section, we provide some properties of the polynomials of the
form MG(qm,U) and M

q
G(qm,U) with m ≥ 1. Indeed, these polynomials are in

Q[q].



416 J Algebr Comb (2012) 35:389–420

Lemma 4.9 Let U be a subgroup of G with U ∈ C (G). If x = qm for some positive
integer m, then 1

q
M

q
G(x,U) is a numerical polynomial in q .

Let us recall (4.4) again:

M
q
G(x,U) =

∑

[G]�[W ]�[U ]
(in C (G))

(
∑

[S]∈C (W)
S is G-conjugate to U

M
q
W

(
1

q
,S

))
MG(qx,W).

It would be worthwhile to remark that letting q = 1 and then replacing r by q in (4.3)
yields the identity:

MG(qx,U) =
∑

[W ]�[U ]

(
∑

[S]∈C (W)
S is G-conjugate to U

MW(q,S)

)
M

q
G(x,W). (4.14)

Let us introduce a notation. Let C (G; [U ]) to denote a subposet of C (G) which
consist of [W ] ∈ C (G) with [G] � [W ] � [U ]. Fix an enumeration of this poset
satisfying the condition:

If [V ] � [U ], then [V ] precedes [U ].

For the simplicity of notation, let k[U ] to denote the cardinality of C (G; [U ]).

Proposition 4.10

(a) Let U be a subgroup of G with U ∈ C (G). If x = qm for some positive integer
m > 1, then 1

q
MG(x,U) is a numerical polynomial in q .

(b) For any W ∈ C (G) with [G] � [W ] � [U ],

qk[U ]

(
∑

[S]∈C (W)
S is G-conjugate to U

M
q
W

(
1

q
,S

))

is a numerical polynomial in q .

Proof

(a) It can be obtained by combining (4.14) with Lemma 4.9.
(b) We also define a C (G; [U ]) × C (G; [U ]) matrix ζ by

ζ([V ], [W ]) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∑

[S]∈C (W)
S is G-conjugate to V

MW(q,S)

)
if [W ] � [V ]

0 otherwise.
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This matrix is upper triangular with diagonal entries q . Hence the determinant ζ is
qk[U ] . On the other hand, the ([U ], [W ])-th entry of the inverse of ζ is given by

ζ−1([V ], [W ]) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∑

[S]∈C (W)
S is G-conjugate to V

MW(
1

q
,S)

)
if [W ] � [V ]

0 otherwise.

Now our assertion is straightforward. �

5 Other relations

The final section is devoted to introducing a few more relations among necklace poly-
nomials. To begin with, let us introduce necessary notation. For X = {x1, x2, . . . , xm},
let the notation −X denote the alphabet {−xa : 1 ≤ a ≤ m}. Also, for a positive inte-
ger k, the notation ψk(X), which is introduced to be consistent with that of a λ-ring,
will denote an alphabet {xk

1 , xk
2 , . . . , xk

s }. For the definition of λ-rings, see [1, 6, 7].
Recall that

M(X,n) = 1

n

∑

d|n
μ(d)pd(X)

n
d = 1

n

∑

d|n
μ(d)pd

(
X

n
d
)
. (5.1)

Therefore we have

M
(
X,pk

)= 1

pk

(
Xpk − pp

(
Xpk−1))

, ∀k ≥ 1.

This formula can be generalized further as follows:

Lemma 5.1 Let X = {x1, x2, . . . , xm} be an alphabet. We also let n be a positive
integer n and p be a prime divisor of n. Write n = n′pk with (n′,p) = 1, k ≥ 1. Then

(a)

M(X,n) = 1

pk

(
M
(
Xpk

,n′)− pp(X) ◦ M
(
Xpk−1

, n′)). (5.2)

(b)

M
(
X,pk

)= 1

pk−1
M
(
Xpk−1

,p
)
. (5.3)

(c)

M(−X,n) =

⎧
⎪⎨

⎪⎩

−M(X,n) if n is odd,

M(X,n) if 4|n,

M(X,n) + p2(X) ◦ M(X, n
2 ) if 2|n, but 4 � n.
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Proof

(a) Note that pij (X) = pi(ψ
j (X)) for all i, j ≥ 1. Therefore, we have

∑

d|n
μ(d)pd(X)

n
d =

∑

e|n′
μ(e)pe(X)

n′
e

pk +
∑

e|n′
μ(ep)pep(X)

n′
e

pk−1

=
∑

e|n′
μ(e)pe

(
X

n′
e

pk )−
∑

e|n′
μ(e)

(
pe

(
ψp(X)

) n′
e

pk−1

=
∑

e|n′
μ(e)pe

(
X

n′
e

pk )−
∑

e|n′
μ(e) pe

(
ψp(X)p

k−1 n′
e
)
.

Dividing both sides by n yields the desired result.
(b) Consider the case where n′ = 1 in (5.2). Then the desired result follows from the

identity that

M
(
Xpk−1

,p
)= 1

p

(
Xpk − ψp(X)

pk−1)
.

(c) We will prove only third case. Other cases can be verified in the exactly same
way. Let p = 2. Then Lemma 5.1 implies that

M(X,n) = 1

2

(
M

(
X2,

n

2

)
− M

(
ψ2(X),

n

2

))
, and

M(−X,n) = 1

2

(
M

(
X2,

n

2

)
+ M

(
ψ2(X),

n

2

))
.

Now, our assertion is obvious. �

Equations (5.2) and (5.3) can be interpreted representation-theoretically in the fol-
lowing way: Let V = C

m. Then we have

chLn(V ) = 1

pk

(
chLn′

(
V ⊗pk )− pp(X) ◦ chLn′

(
V ⊗pk−1))

and

chLpk (V ) = 1

pk−1
chLp

(
V ⊗pk−1)

.

Also, if 2|n, but 4 � n, the proof of Lemma 5.1(c) implies that

M(−X,n) = M

(
X2,

n

2

)
− M(X,n)

= chL n
2

(
V ⊗2)− chLn(V )

= chLn(V ) + p2(X) ◦ chL n
2
(V ).

Finally, we close this section by providing the following connection between
M(X,n) and M−1(X,n) for all n ≥ 1.
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Proposition 5.2

(a) For every positive integer n = 2kn′ with n′ odd and k ≥ 1, we have

k∑

i=0

M

(
−ψ2i

(X),
n

2i

)
=

k−1∑

i=0

M

(
ψ2i

(X),
n

2i

)
. (5.4)

(b) For every positive integer n = 2kn′ with n′ odd, we have

M−1(X,n) =
{

M(X,n) if k = 0,

−∑k−1
i=0 M(ψ2i

(X), n
2i ) if k ≥ 1.

Proof It was shown in [18, Sect. 3] that

k∑

i=0

M

(
−x,

n

2i

)
=

k−1∑

i=0

M

(
x,

n

2i

)
.

(a) follows from this by considering the degree of either side of (5.4). (b) follows
from Example 2.5. �
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