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Erratum

The following statements involving ‘the metric graph Γ (Δ1, . . . ,Δr)’ are false:

• [2, Theorem 10]
• [2, Conjecture 2]
• [2, Conjecture 3].

The erratum is remedied by replacing Γ (Δ1, . . . ,Δr) by another metric graph Γ (v),
which depends on an upper-convex piece-wise linear function v : Δ → R realizing
the given subdivision Δ1, . . . ,Δr and satisfying v(Δ ∩ Z

2) ⊂ Z. The construction of
Γ (v) is discussed in Sect. 1 below.

Background to the erratum

We have made a conceptual error in the construction of our regular strongly semi-
stable arithmetic surface X over C[[t]], as explained in [2, Sect. 7]. The error lies
in the last part, involving toric resolutions of singularities. Namely, it has been over-
looked that the exceptional curves that are introduced during the resolution may ap-
pear with non-trivial multiplicities, turning X non-stable. Whereas our construction
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suggested that one can keep blowing up to an arbitrary extent, one should be much
more careful and blow up just the ‘right’ number of times:

• all singularities should become resolved (enough blow-ups),
• no non-trivial multiplicities should appear (not too many blow-ups).

Luckily, this ‘right’ number always exists and can be controlled in a purely combina-
torial way.

1 The graph Γ (v)

Let Δ ⊂ R
2 be a two-dimensional lattice polygon. Let Δ1, . . . ,Δr ⊂ Δ be a regular

subdivision and let v : Δ → R be an upper-convex piece-wise linear function realiz-
ing this subdivision. Assume that v(Δ ∩ Z

2) ⊂ Z. Let G(Δ1, . . . ,Δr) be the graph
with vertex set {v1, . . . , vr} such that for all �,m the number of edges between v�

and vm is equal to the integral length L(�,m) of Δ� ∩ Δm (i.e. the number of lattice
points minus one).

Let G(v) be obtained from G(Δ1, . . . ,Δr) by replacing each such edge with a
linear graph of length d(�,m). Here, d(�,m) is the greatest common divisor of the
(2 × 2)-minors of (

a�1 a�2 1
am1 am2 1

)
,

where (a�1, a�2,1) and (am1, am2,1) are primitive normal vectors to the graphs of v

restricted to Δ� and Δm, respectively. The third coordinate can be taken 1 because
v(Δ ∩ Z

2) ⊂ Z.
Finally, let Γ (v) be the metric graph associated to G(v), obtained by identifying

each edge with the unit interval.

Example Consider Δ = Conv{(−3,0), (3,0), (0,3)}. Let v : Δ → R be the piece-
wise linear function whose graph is the lower convex hull of {(−1,1,0), (1,1,0),
(0,2,0), (−3,0,1), (3,0,1), (0,3,1)}.

Denoting the induced subdivision by Δ1,Δ2,Δ3,Δ4, one finds that G(Δ1,Δ2,Δ3,

Δ4) equals
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However, it is easily verified that G(v) equals

Remark. By Khovanskii’s theorem, a generic Laurent polynomial f ∈ C[x±1, y±1]
for which Δ(f ) ⊂ Δ, defines a non-hyperelliptic genus 4 curve U(f ) which canon-
ically embeds into Tor(Δ(1)) ⊂ P

3. Since Tor(Δ(1)) is a cone, by [3, Example 5.5.2]
this curve carries a unique g1

3 (computed by projection from the singular top of the
cone). If Γ (Δ1,Δ2,Δ3,Δ4) is the metric graph associated to G(Δ1, . . . ,Δ4), then
Γ (Δ1,Δ2,Δ3,Δ4) carries at least two distinct g1

3’s: it can be verified that the divi-
sors 3v1 and 3v2 are non-equivalent. One concludes that Γ (Δ1,Δ2,Δ3,Δ4) cannot
be the ‘correct’ metric graph associated to this example, since the existence of two
distinct g1

3’s would contradict M. Baker’s specialization theory [1, Lemma 2.1 and
Remark 2.3]. In the case of Γ (v), the divisors 3v1 and 3v2 are easily seen to become
equivalent.

2 Details of the toric resolution

We resume at [2, Sect. 7], right after the sentence ‘For more details on resolving
non-degenerate hypersurface singularities, . . . ’.

Let Σ(Δ̃) be the normal fan of Δ̃. Any subdivision Σ ′ of Σ(Δ̃) induces a bira-
tional morphism ρ : Tor(Σ ′) → Tor(Σ(Δ̃)) ∼= Tor(Δ̃). If one writes Y ′ = Tor(Σ ′)
and let X′ ⊂ Y ′ be the strict transform of X under ρ, then the morphism p′ = p ◦ ρ

yields a fibration Y ′ → P
1, and one can redo the argument to obtain an arith-

metic surface X′ over C[[t]]. One can always choose Σ ′ such that X′ is a regular,
strongly semi-stable arithmetic surface. Such a Σ ′ can be constructed as follows. Let
σ1, . . . , σk ∈ Σ(Δ̃) be the two-dimensional cones that are strictly contained in the
open upper half-space—these correspond to the edges of Δ̃ that are not projected on
the boundary of Δ. Let Σ0 = Σ(Δ̃) and repeat the following for i = 1, . . . , k:

Because v(Δ ∩ Z
2) ⊂ Z, the extremal rays of σi are generated by vectors

(α,β,1) and (γ, δ,1) with α,β, γ, δ ∈ Z,

hence by applying a Z-affine transformation if necessary, we may assume that σi

is generated by

(0,0,1) and (d,0,1),

where d is the greatest common divisor of the (2 × 2)-minors of
(

α β 1
γ δ 1

)
.
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Subdivide σi by introducing d − 1 new rays, generated by (1,0,1), (2,0,1), . . . ,

(d − 1,0,1),

and denote the resulting fan by σ sub
i . Extend this to a subdivision of Σi−1 by con-

necting each of the newly introduced rays with a fixed third extremal ray of each
three-dimensional cone adjacent to σi . Let Σi be the resulting fan.

Then let Σ ′ = Σk . Note that the construction of Σ ′ is highly non-canonical: it de-
pends on the way we ordered σ1, . . . , σk and on the respective choices of the third
extremal rays of the adjacent cones. But since by local non-degeneracy X0 does not
contain any of the zero-dimensional toric orbits of Y , these choices affect neither X′
nor p′.

By normality, Y is non-singular except possibly at its one-dimensional and zero-
dimensional toric orbits. If τ̃ is the graph of v restricted to an edge τ of Δ, then Y

is non-singular at O(τ̃ ): the corresponding cone of Σ(Δ̃) is generated by vectors
of the form (a, b,0), (α,β,1) with gcd(a, b) = 1, hence it is smooth. By local non-
degeneracy, we conclude that X cannot have any singularities at X0, except possibly
at the toric orbits O(τ̃ ) associated to the lower edges τ̃ of Δ̃ that are not of the above
form graph(v|τ ). These edges exactly correspond to the cones σ1, . . . , σk .

To prove that X′ is a regular strongly semi-stable arithmetic surface, it suffices to
make a local analysis around these toric orbits. That is, for i = 1, . . . , k we consider
the strict transform of X ∩ Tor(σi) under the restriction of ρ to Tor(σ sub

i ). Let τ̃i be
the lower edge of Δ̃ corresponding to σi . As mentioned above, modulo a Z-affine
transformation we may assume that σi is generated by (0,0,1) and (d,0,1). In fact,
we can make the slightly stronger assumption that τ̃i is supported on the y-axis, that
the supporting hyperplanes of the adjacent facets Δ̃� and Δ̃m contain (1,0,0) resp.
(−1,0, d), and that the t-direction remains vertical. By local non-degeneracy, we can
write

ft = gτ̃

(
y±1)+u ·gΔ̃�

(
y±1, u

)+x ·gΔ̃m

(
y±1, x

)+ t ·gΔ̃

(
y±1, u, x, t

)
, u = x−1td ,

where

• gτ̃ ∈ C[y±1] is a square-free Laurent polynomial (having L(�,m) zeroes in O(τ̃ )),
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• gτ̃ + u · gΔ̃�
∈ C[y±1, u] defines a smooth curve in T

2 = O(Δ̃�) (the completion

inside Tor(Δ̃�) of which is exactly X(�)),
• gτ̃ + x · gΔ̃m

∈ C[y±1, x] defines a smooth curve in T
2 = O(Δ̃m) (the completion

inside Tor(Δ̃m) of which is exactly X(m)).

Then locally, X is defined by ft (y
±1, u, t, x) inside

Tor(σi) = Spec
C[y±1, u, t, x]

(td − ux)
⊂ Tor

(
Σ(Δ̃)

)
.

We will restrict our analysis of its strict transform in Tor(σ sub
i ) to the patch Tor(σ sub

i,1 ),

where σ sub
i,1 is the cone spanned by (0,0,1) and (1,0,1). The dual cone is generated

by (−1,0,1) and (1,0,0), hence

Tor
(
σ sub

i,1

) = Spec C
[
y±1, v, x

]
, v = x−1t.

Since this dual cone contains the dual cone of σi , we have a natural inclusion map
which exactly describes our toric resolution ρ:

Tor
(
σ sub

i,1

) → Tor(σi) : (y, v, x) 	→ (
y, vdxd−1, vx, x

)
. (1)

The strict transform of X under this map is described by

f ′
t

(
y±1, v, x

) = gτ̃

(
y±1) + vdxd−1 · gΔ̃�

(
y±1, vdxd−1) + x · gΔ̃m

(
y±1, x

)
+ vx · gΔ̃

(
y±1, vdxd−1, x, vx

)
.

The fiber above t = 0 corresponds to taking v = 0, in which case we find gτ̃ (y
±1) +

x · gΔ̃m
(y±1, x) = 0 (the curve X(m)), and taking x = 0, in which case we find

gτ̃ (y
±1) = 0 (L(�,m) exceptional lines). These are easily checked to be non-singular

points of the strict transform, and all components intersect each other transversally.
By making a similar analysis of the other patches, one concludes that X′ is indeed a
regular, strongly semi-stable arithmetic surface.

Now the generic fibers of X and X′ are isomorphic, because ρ|X′ is an isomor-
phism on p′−1(V ) for an open subset V of P

1. On the other hand, the special fiber of
X′ differs from the special fiber of X. To see how the latter modifies under the above
toric resolution, it suffices to have a second look at the above analysis. Suppose that
τi corresponds to adjacent lower facets Δ̃� and Δ̃m of Δ̃. Then d(�,m) − 1 new
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rays are introduced. The introduction of a first new ray separates the curves X(�) and
X(m), and each intersection point becomes replaced by an exceptional curve inter-
secting X(�) and X(m) transversally. This exceptional curve is contained in the strict
transform of X and hence belongs to the special fiber of our new arithmetic surface.
All intersections remain transversal. More generally, if d(�,m) − 1 rays are added,
then each intersection point becomes replaced by a chain of d(�,m)− 1 transversally
intersecting exceptional curves. Hence in the dual graph of X, if an edge corresponds
to Δ� and Δm, then it becomes replaced by a linear graph of length d(�,m).

3 Further remarks and adjustments

• In the third paragraph of the proof of [2, Theorem 10], one should let X′ be the
regular strongly semi-stable arithmetic surface constructed in Sect. 2 above.

• The graph associated to the example following [2, Conjecture 2] should be re-
placed, e.g. by

(we leave the determination of v as an easy exercise)—the according conclusion
remains unaffected.

• In the proof of [2, Theorem 11], it is easy to find an upper-convex piece-wise
linear function v realizing the given subdivision, such that v(Δ ∩ Z

2) ⊂ Z and all
d(�,m)’s equal 1. Therefore, the proof remains valid.
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