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Abstract Two types of equivalence relation are used to classify functions between
finite groups into classes which preserve combinatorial and algebraic properties im-
portant for a wide range of applications. However, it is very difficult to tell when func-
tions equivalent under the coarser (“graph”) equivalence are inequivalent under the
finer (“bundle”) equivalence. Here we relate graphs to transversals and splitting rel-
ative difference sets (RDSs) and introduce an intermediate relation, canonical equiv-
alence, to aid in distinguishing the classes. We identify very precisely the conditions
under which a graph equivalence determines a bundle equivalence, using transversals
and extensions. We derive a new and easily computed algebraic measure of nonlin-
earity for a function f , calculated from the image of its coboundary ∂f . This measure
is preserved by bundle equivalence but not by the coarser equivalences. It takes its
minimum value if f is a homomorphism, and takes its maximum value if the graph
of f contains a splitting RDS.

Keywords Equivalent functions · Graph of function · Finite field polynomial ·
Linear equivalence · Relative difference set · Nonlinear function · APN function

1 Introduction

Many equivalence relations for functions between finite groups exist: their usefulness
depends on the groups, the types of functions and the purpose of the classification.
In particular, classification of functions between finite rings and fields, as functions
between the underlying finite abelian groups, is needed for applications in finite ge-
ometry, coding and cryptography.
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Typically, classification of a set of functions between finite groups into equiva-
lence classes will have value when each class consists of functions sharing common
properties or invariants. Two quite separate approaches to defining equivalence for
functions over (GF(pn),+), which preserve important algebraic or combinatorial
properties across a wide range of interesting functions, have been used.

The first of these approaches involves pre- and post-composition of a given func-
tion f : G → G, G = GF(pn), with other functions having specified characteristics,
to obtain an equivalent function. Probably the earliest instance of this is the weak
equivalence between f and f ′ introduced by Cavior [6] as

f ′ = τ ◦ f ◦ σ (1)

for any elements τ, σ of the symmetric group Sym(G) of G. Mullen [13] restricts τ

and σ to (possibly equal) subgroups of Sym(G), so defining a relative form of weak
equivalence, and shows, for instance, that a function f ′ is a permutation polynomial
if and only if it is weakly equivalent to the identity polynomial f (x) = x. Linear
equivalence (e.g. see [1, p. 80]) between f and f ′ is defined by

f ′ = τ ◦ f ◦ σ + χ, (2)

where τ, σ are linear permutations and χ is linear, so is a coarsening of weak equiv-
alence relative to linear permutations, by addition of a linear function.

The second approach involves defining equivalence between functions in terms
of an equivalence between their graphs. This approach was introduced by Carlet,
Charpin and Zinoviev [5, Proposition 3]. More generally, for a function f : G → N

between finite abelian groups G and N , Pott [15] has recommended we focus on
properties of the graph1 {(f (x), x), x ∈ G} of f as a means of measuring combina-
torial and spectral properties of f .

In [11], the author generalises these two types of equivalence to functions f : G →
N between arbitrary finite groups G and N , and shows that it is sufficient to work
with the group C1(G,N) of normalised functions2 (i.e. with f (1) = 1).

Definition 1 Two functions f,f ′ ∈ C1(G,N) are bundle equivalent if there exist
r ∈ G, θ ∈ Aut(G), γ ∈ Aut(N) and χ ∈ Hom(G, ζ(N)) such that

f ′ = (
γ ◦ (f · r) ◦ θ

)
χ, (3)

where f · r(x) = f (r)−1f (rx) and ζ(N) is the centre of N .
Two functions f,f ′ ∈ C1(G,N) are graph equivalent if there exist e ∈ N ×G and

α ∈ Aut(N × G) such that

α
({(

f (x), x
)
, x ∈ G

}) = e
{(

f ′(x), x
)
, x ∈ G

}
. (4)

1Usually the graph of f is the set {(x, f (x)) : x ∈ G} ⊂ G × N , but we swap coordinates consistently,
without loss of generality, for convenience later when working with split extensions.
2Usually C1(G,N) denotes the group of 1-cocycles, and N must be abelian. The notation is adopted here
to cover the case of non-abelian N as well.
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For example, suppose G = N = (GF(pn),+). Every f ∈ C1(G,G) is the eval-
uation map of some polynomial f (x) ∈ GF(pn)[x] of degree less than pn with
f (0) = 0. The homomorphisms Hom(G,G) are the linearised polynomials, and
Aut(G) consists of the linearised permutation polynomials. Weak equivalence (1)
relative to Aut(G) is the case r = 0, χ ≡ 0 of (3) and linear equivalence (2) is the
case r = 0 of (3).

The equivalence defined by (3) is known implicitly to finite geometers because
planar functions equivalent by (3) will determine isomorphic planes [7]. Planarity
of f (x) is preserved by the operations of linear transformation, addition of a lin-
earised polynomial of G or pre- or post-composition with a linearised permutation
polynomial. In particular, if r ∈ G, then the linear transformation f (x + r) − f (r) is
(f · r)(x).

When (3) is extended to include un-normalised functions, it coincides with ex-
tended affine (EA) equivalence, introduced in [3], and now one of the main classifying
equivalences for cryptographic functions. A very large number of cryptographically
strong almost perfect nonlinear (APN) functions f : Z

n
2 → Z

n
2 have been found in

the past 5 years, and it is important to be able to tell if they are genuinely new.
The choice of equivalence relation best suited to classify cryptographic functions

has attracted considerable attention in this period. This has been prompted by the
observation that if f is invertible, then its compositional inverse inv(f ) has the same
cryptographic robustness as f with respect to several measures of nonlinearity, so the
inverse of a function is often regarded as being equivalent to it. However, inv(f ) is
not always EA equivalent to f .

One other equivalence has been very influential in this context. CCZ equivalence
(which is, in fact, graph equivalence (4) for this case) is a coarser equivalence than
EA equivalence and includes permutations and their inverses in the same equivalence
class. It was originally proposed by Carlet, Charpin and Zinoviev [5, Proposition 3]
for p = 2 (as cited in [3]), though Breveglieri et al. [1] appear to have arrived inde-
pendently at the same idea, much later. In [3], translation by e ∈ G×G is on the right,
rather than on the left as in (4), but composition with the inner automorphism defined
by e shows they give the same CCZ equivalence classes. In [1], the graph of f is
called the implicit embedding and no translation is included. It is currently very dif-
ficult to decide, either theoretically or computationally, whether two APN functions
are CCZ (graph) equivalent, and if so, whether they are EA (bundle)-inequivalent.

In previous work [11], the author shows that in the general case of functions f :
G → N between arbitrary finite groups G and N , bundle and graph equivalence
have a common source in the equivalence relation for splitting semiregular relative
difference sets (RDSs). Furthermore, graph equivalent functions f and f ′ are related
by a formula

f ′ = (
β ◦ (f · r) ◦ σ

)
(ξ ◦ σ), (5)

where σ is a permutation of restricted type and β and ξ are homomorphisms. This
formula is an intriguing mix of weak equivalence (1) and bundle equivalence (3).

This paper has three aims. The first aim is to pin down very precisely the relation-
ship between graphs, transversals and splitting RDSs in N × G, relative to N × {1}.
This is presented in Sect. 3, and involves introduction of an intermediate equivalence
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relation, canonical equivalence, which is coarser than bundle equivalence but finer
than graph equivalence. In Theorem 2, we show that if the graph of f contains a
splitting RDS, then the graph generates N × G and the canonical equivalence class
of f equals its bundle equivalence class.

The second aim is to identify exactly the conditions under which the formula in
(5) is rewritable as the formula in (3). This work is undertaken in Sect. 4 and the iden-
tification appears in Corollary 4. Proof takes two steps (Theorem 3 and Theorem 4),
using the relationship between graphs and transversals identified in Sect. 3. The tech-
nical effort here only arises because N is arbitrary and we work with commuting
diagrams of split extensions of N by G. In the elementary abelian case N = Z

n
p , each

canonical equivalence class is a single bundle equivalence class. This has implica-
tions for the classification of APN functions.

The third aim is to investigate invariants of our equivalence classes. We note that
a combinatorial measure of nonlinearity, differential uniformity, is preserved by all
three equivalences. When G and N are abelian, a spectral measure, maximal nonlin-
earity, is also preserved by all three equivalences. A new algebraic measure, N(f ),
which is invariant on bundles but not in general on canonical or graph bundles, is
derived. It is defined as N(f ) = |N̂f |, where

N̂f = {
aba−1 : a ∈ N,b ∈ 〈

f (x)f (y)f (xy)−1, x, y ∈ G
〉}

. (6)

If f is a group homomorphism, N(f ) takes its minimum value 1, and if the graph of
f contains a splitting RDS, N(f ) takes its maximum value |N |. This work appears
in Sect. 5.

The next section covers the necessary background and terminology. A brief sum-
mary and discussion of future research questions appears in Sect. 6.

Throughout, let G and N be finite groups, written multiplicatively unless other-
wise specified. Denote the group of permutations of the elements of a group A by
Sym(A). Denote the subgroup of normalised permutations (permutations which fix
the identity element 1) by Sym1(A), and its subgroup of automorphisms by Aut(A).
Denote the identity automorphism by id and the inverse under composition of a
set injection ı : A � B by inv(ı) (whether or not ı is a bijection onto B). We de-
note by C1(G,N) = {f : G → N,f (1) = 1} the group of all normalised functions
from G to N , under the operation of pointwise multiplication. The pointwise in-
verse of f is denoted f −1. The set of homomorphisms Hom(G,N) is a subgroup
of C1(G,N), and Hom(G, ζ(N)), where ζ(N) is the centre of N , is a normal sub-
group. Note N = ζ(N) if and only if N is abelian. Denote the trivial homomorphism
by 1.

2 Equivalence classes of normalised functions

This section summarises background material and notation. New material in it is the
definition of the three conditions WeakC1(α), C1(α) and C2(α); and the proof of
some additional equivalences for [11, Theorem 4] (see Theorem 1).
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Any un-normalised f has a normalisation f · 1 ∈ C1(G,N) given by f · 1(x) =
f (1)−1f (x). If f is normalised, then f · 1 = f . For each r ∈ G, the shift f · r of f

by r is

(f · r)(x) = f (r)−1f (rx), x ∈ G. (7)

For any r, s ∈ G,(f · r) · s = f · (rs). Consequently, a right group action, the shift
action of G on C1(G,N), is defined by the mapping (f, r) �→ f · r . Furthermore,
f ∈ Hom(G,N) if and only if f · r = f for all r ∈ G.

The graph of f is the set Sf = {(f (x), x), x ∈ G} ⊂ N × G. It is normalised if f

is normalised.
Two functions f,f ′ ∈ C1(G,N) are graph equivalent (written f ∼g f ′) if their

graphs Sf and Sf ′ are equivalent, that is, if there exist α ∈ Aut(N ×G) and e ∈ N ×G

such that α(Sf ) = eSf ′ . They are graph isomorphic (written f 
g f ′) if α(Sf ) = Sf ′ ,
i.e. e = (1,1). The set of all normalised functions in the graph equivalence class of f

is denoted g(f ). We call it the graph bundle of f :

g(f ) = {
f ′ ∈ C1(G,N) : ∃ e ∈ N × G,α ∈ Aut(N × G) : α(Sf ) = eSf ′

}
. (8)

Multiplying each function in g(f ) by any constant from N gives the affine graph
bundle ĝ(f ) of f .

Two functions f,f ′ ∈ C1(G,N) are bundle equivalent (written f ∼b f ′) if there
exist r ∈ G, θ ∈ Aut(G), γ ∈ Aut(N) and χ ∈ Hom(G, ζ(N)) such that

f ′ = (
γ ◦ (f · r) ◦ θ

)
χ. (9)

They are bundle isomorphic (written f 
b f ′) if r = 1 in (9). The set of all nor-
malised functions equivalent to f is denoted b(f ) and called the bundle of f :

b(f ) = {(
γ ◦ (f · r) ◦ θ

)
χ : r ∈ G,γ ∈ Aut(N), θ ∈ Aut(G),χ ∈ Hom

(
G,ζ(N)

)}
.

(10)
Multiplying each function in b(f ) by any constant from N gives the affine bundle
b̂(f ) of f .

It is sufficient [11, see (8) and (10)] to restrict consideration to normalised func-
tions and, without loss of generality, we assume from now on that every function
f : G → N is normalised.

2.1 The equivalences in terms of group actions

In this subsection, we relate graph and bundle equivalence within a common frame-
work of group actions.

If α ∈ Aut(N × G), it has a factorisation α = ı × η, where its action on the first
component N × {1} determines a monomorphism ı = (ı1, ı2) : N � N × G and its
action on the second component {1} × G determines a monomorphism η = (η1, η2) :
G � N × G which commutes with (ı1, ı2), with

α(a, x) = (ı × η)(a, x) = (
ı1(a)η1(x), ı2(a)η2(x)

)
. (11)
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Set α1(a, x) = ı1(a)η1(x) = η1(x)ı1(a), α2(a, x) = ı2(a)η2(x) = η2(x)ı2(a) in (11)
to give a second factorisation α = (α1, α2) of α into homomorphisms α1 : N × G →
N and α2 : N × G → G, with

α(a, x) = (α1, α2)(a, x) = (
α1(a, x),α2(a, x)

)
. (12)

If α(Sf ′) = eSf then, since the graphs are normalised, there exists r ∈ G such that
e = (f (r)−1, r−1) and eSf = Sf ·r , so e = (1,1) if and only if r = 1. Replacing α by
its inverse we have: f ′ ∈ g(f ) if and only if there exist r ∈ G and α ∈ Aut(N × G)

such that α(Sf ·r ) = Sf ′ if and only if there exist r ∈ G and α = ı × η ∈ Aut(N × G)

such that

ρ := (
ı2 ◦ (f · r))η2 ∈ Sym1(G), (13)

f ′ = (
ı1 ◦ (f · r) ◦ inv(ρ)

)(
η1 ◦ inv(ρ)

)
, (14)

both hold. Note the formal similarity between (14) and (9). If it happens that ρ ∈
Aut(G) and ı1 ∈ Aut(N) then (14) is an example of (9) and f ′ ∼b f . It is tempting to
hope that these sufficient conditions are necessary, but this is not so. Although we will
show the first condition (ρ ∈ Aut(G)) is indeed necessary, a more subtle conversion,
which takes some effort to establish, is required (see Corollary 4).

Defining

Af := {
ı × η ∈ Aut(N × G) : ρ = (ı2 ◦ f ) η2 ∈ Sym1(G)

}
, (15)

f ı×η := (
ı1 ◦ f ◦ inv(ρ)

)(
η1 ◦ inv(ρ)

)
, for ı × η ∈ Af , (16)

we have

g(f ) = {
(f · r)α : r ∈ G,α ∈ Af

}
. (17)

Formula (17) has two components, the shift action and an action by automor-
phisms in Af . Since f · r ∈ b(f ) by (10), and (f · r)α = (f α) · ρ(r) by [11, Lemma
15], where ρ is the permutation defined in (13) from α, shift action is wholly confined
to bundles. Hence when considering how graph bundles partition into bundles we
may ignore any translation action on graphs. From now on, we restrict to e = (1,1)

in (8) and r = 1 in (10) and focus on graph isomorphisms f 
g f ′ and bundle
isomorphisms f 
b f ′.

In [11], the author investigates the problem of identifying all the automorphisms
α in Af for which f α ∈ b(f ), in terms of three subsets Ef , B+

f and3 B− of Af :

Ef := {
α ∈ Af : f α ∈ b(f )

}
, (18)

B+
f := {

α = ı × η ∈ Aut(N × G) : (ı2 ◦ f )η2 ∈ Aut(G)
}
, (19)

B− := {
α = ı × η ∈ Aut(N × G) : ı2 = 1, η2 ∈ Aut(G)

}
. (20)

3In [11, Definition 10], the condition η2 ∈ Aut(G) for B− is implied but not explicitly stated.
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These sets vary according to the invariants and characteristics of the function f .
Plainly, B− ⊆ B+

f , for any f . If α = ı × η ∈ B− then ı1 ∈ Aut(N) since ı is a
monomorphism. On setting γ = ı1, θ = inv(η2) and χ = η1 ◦ inv(η2) in (9), for any
f we have f α ∈ b(f ), so α ∈ Ef . We have

B− ⊆ B+
f ⊆ Af , (21)

B− ⊆ Ef ⊆ Af , (22)

and, in general, these four sets are different. For example, when G = N is abelian,
the trivial homomorphism 1 : G → N has B− = B+

1 [11, Example 19]. When G =
N = Z

n
p , B− ⊆ B+

f ⊆ Ef ⊆ Af for any f , by [11, Theorem 21]. In this case, if

p = 2 and n is odd, consider the permutation f (x) = x3 (with multiplication defined
in GF(2n)). It is in the graph bundle g(inv(f )) of its inverse inv(f ) but not in the
bundle b(inv(f )) of its inverse, so Einv(f ) = Ainv(f ) and B+

inv(f )
= Ainv(f ). By [3,

Example 1], B− = Einv(f ) and when n = 3 direct checking of this example shows
B+

inv(f ) = Einv(f ).

Given f , it is easy to characterise the α ∈ Af for which α ∈ B+
f . We use the

coboundary function ∂f : G × G → N defined as

∂f (x, y) = f (x)f (y)f (xy)−1, x, y ∈ G, (23)

which measures how much f differs from a homomorphism.

Lemma 1 [11, Lemma 22] Let α = ı ×η ∈ Af . Then α ∈ B+
f if and only if im(∂f ) ⊆

ker(ı2).

3 The common framework: transversals, graphs and RDSs

3.1 Transversals and graphs

In this subsection, transversals are used to compare graph and bundle isomorphism.

An extension of N by G is a short exact sequence of groups N
ı

� E
π
� G, that

is, ı is a monomorphism and π an epimorphism with kerπ = imı, so ı(N) is normal
in E and E/ı(N) ∼= G. Necessarily, |E| = |N ||G|. Each section t : G → E of π

(that is, a mapping x �→ tx such that π(tx) = x, x ∈ G) determines a transversal
T = {tx, x ∈ G} with π(tx) = x, in E, and vice versa. Every element of E has a
unique factorisation as ı(a)tx for some a ∈ N and x ∈ G, so T is a set of coset
representatives4 of the normal subgroup ı(N). A transversal T is normalised if it
intersects ı(N) in 1, or equivalently, if t1 = 1.

4Sometimes, for brevity, any set of coset representatives of ı(N) is called a transversal of ı(N). In this case,
π is understood to be a composition of the canonical quotient map E � E/ı(N) with some isomorphism

E/ı(N)
∼=� G. We assume that π is known, and work with N

ı
� E

π
� G.
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Here we consider only the case E = N × G, that is, we have a split extension

N
ı

� N × G
π
� G. (24)

For each normalised transversal of π in (24), there exist an f ∈ C1(G,N) and a pair
of functions of the form (∂f,f ), which is a factor pair for a split extension equivalent
to (24). The function ∂f is as in (23) and f : G → Aut(N) is the G-action induced
by f on N by inner automorphisms:

f (x)(a) = af (x) = f (x)af (x)−1, a ∈ N,x ∈ G. (25)

Thus if N is abelian, the action induced by f is trivial. For details see a textbook such
as [16], or [10, Sect. 7.1].

The graph Sf of f : G → N carries various structures. For instance, because
N × {1} is a subgroup of N × G, Sf is a complete set of coset representatives of
N × {1} in N × G. More importantly for us, because N × G is a split extension of
N by G, the graph Sf has the overlying structure of a transversal (usually in many
different ways).

The standard split extension of N by G

N
ι

� N × G
κ
� G, (26)

has ι(a) = (a,1) and κ(a, x) = x. For each f the section t : G → N ×G with t (x) =
tx = (f (x), x) defines the canonical transversal Tf in (26),

Tf = {
tx = (f (x), x), x ∈ G

}
, (27)

with κ(tx) = x. Tf is a set of coset representatives of ι(N) = N × {1}, has Sf as
underlying set, and defines the factor pair (∂f,f ).

Note that the factor pair (∂f,f ) determines not the split extension (26), but instead

the equivalent split extension N
ι

� Ef

κ
� G, where the group Ef is the set N × G

with multiplication defined by (a, x)(b, y) = (abf (x)∂f (x, y), xy).
However, transversals other than Tf can define the same factor pair (∂f,f ),

and Sf can also carry a different transversal structure with respect to some other

split extension N
ı

� N × G
π
� G. These alternatives are important, as we see in the

work following.

Two transversals T ,T ′, respectively, in split extensions N
ı

� N × G
π
� G,

N
ı′
� N × G

π ′
� G, respectively, are isomorphic (written T 
 T ′) if there exists

α ∈ Aut(N × G) satisfying both the conditions

(i) α(T ) = T ′, that is, α is a set bijection between sets T and T ′, and
(ii) α(ı(N)) = ı′(N), that is, α is an isomorphism between subgroups ı(N)

and ı′(N).

Thus, an isomorphism of canonical transversals Tf and Tf ′ requires two condi-
tions, while an isomorphism of their underlying graphs Sf and Sf ′ requires only one.
However, the conditions are directly comparable.
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Definition 2 Let f , f ′ ∈ C1(G,N) and α ∈ Aut(N ×G). Define three conditions on
α with respect to f,f ′:

1. WeakC1(α) : α(Sf ) = Sf ′ ;
2. C1(α) : α(Tf ) = Tf ′ ;
3. C2(α) : α(N × {1}) = N × {1}.

By definition, f 
g f ′ if and only if there exists α ∈ Aut(N × G) such that
WeakC1(α) holds. Obviously, if α(Tf ) = Tf ′ then α(Sf ) = Sf ′ . Thus for any such
α,

C1(α) ⇒ WeakC1(α) .
Transversal isomorphism is important because bundle isomorphism f 
b f ′ is
known to correspond to isomorphism of any pair of transversals T ,T ′ in split ex-

tensions N
ı

� N × G
π
� G, N

ı′
� N × G

π ′
� G, respectively, which define the pairs

(∂f,f ), (∂f ′, f ′), respectively. The following result describes this correspondence,
including two equivalences additional to those given in [11], which we need in sub-
sequent proofs.

Theorem 1 Let f , f ′ ∈ C1(G,N) and let T , T ′ be normalised transversals in the

split extensions N
ı

� N × G
π
� G, N

ı′
� N × G

π ′
� G, such that T , T ′ determine

(∂f,f ), (∂f ′, f ′), respectively. Set T = {tx, x ∈ G}, where π(tx) = x and, with the
same order of elements in G, set T ′ = {t ′x, x ∈ G}, where π ′(t ′x) = x.

The following are equivalent to the statement f 
b f ′.

1. There exist γ ∈ Aut(N), θ ∈ Aut(G) and χ ∈ Hom(G, ζ(N)) such that

f = (γ ◦ f ′ ◦ θ)χ;
2. There exists α ∈ Aut(N × G) such that α(T ) = T ′ and α(ı(N)) = ı′(N);
3. There exist α ∈ Aut(N × G), δ ∈ Aut(N) and θ ∈ Aut(G) such that α(tx) = t ′

θ(x)
,

x ∈ G, and the diagram below commutes (corresponding transversals are listed
on the right of each extension):

N
ı−−−−→ N × G

π−−−−→ G T

δ

⏐⏐
 α

⏐⏐
 θ

⏐⏐


N
ı′−−−−→ N × G

π ′−−−−→ G T ′

(28)

4. There exist δ ∈ Aut(N) and θ ∈ Aut(G) such that the function

α
(
ı(a)tx

) = ı′
(
δ(a)

)
t ′θ(x), a ∈ N,x ∈ G (29)

is an automorphism of N × G.

Proof By (9), Part 1 is equivalent to f 
b f ′. The equivalence Part 1 ⇔ Part 2
appears in [11, Definition 3, Theorem 4] with s = 1 and δ = inv(γ ).
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Part 2 ⇔ Part 3. If Part 2 holds, the diagram (28) commutes, with δ = inv(ı′) ◦α ◦
ı ∈ Aut(N) and some θ ∈ Aut(G) satisfying θ ◦ π = π ′ ◦ α. By assumption α(T ) =
T ′, so there exists σ ∈ Sym1(G) such that α(tx) = t ′σ(x), x ∈ G. Thus π ′(α(tx)) =
π ′(t ′σ(x)) = σ(x) = θ(π(tx)) = θ(x) and σ = θ ∈ Aut(G). That is, α(tx) = t ′θ(x). The
converse is immediate since α ◦ ı = ı′ ◦ δ.

Part 3 ⇔ Part 4. In the upper extension of (28), each element of N × G can
be uniquely represented as ı(a)tx . If Part 3 holds then by definition α(ı(a)tx) =
α(ı(a))α(tx) = ı′(δ(a))t ′θ(x). If Part 4 holds then α ◦ ı = ı′ ◦ δ, α(tx) = t ′θ(x) and
θ ◦ π(ı(a)tx) = θ(tx) = θ(x) = π ′(ı′(δ(a))t ′θ(x)), so (28) commutes. �

When Theorem 1 is applied to canonical transversals Tf = T and Tf ′ = T ′, we
obtain a simple characterisation of bundle isomorphism in terms of automorphism
action.

Corollary 1 [11, Lemma 18]

f 
b f ′ ⇔ ∃α ∈ Aut(N × G) :C1(α) and C2(α) both hold

⇔ ∃α ∈ B− :f ′ = f α.

For each f , let Ff ⊆ Aut(G × N) be the stabiliser of its graph Sf . By definition

Ff = {
α ∈ Aut(G × N) : α(Sf ) = Sf

} = {
α ∈ Af : f α = f

} ⊆ Ef . (30)

If α ∈ Ef and f ′ = f α then f ′ ∈ b(f ). By Corollary 1, there exists β ∈ B− such that
f ′ = f β , so (f α)inv(β) = f . Since α = (α ◦ inv(β)) ◦ β = β ◦ (inv(β) ◦ α), it follows
that

Ef = Ff ′ ◦ B− = B− ◦ Ff . (31)

We introduce a new equivalence relation, canonical equivalence, defined by
C1(α).

Definition 3 Two functions f,f ′ ∈ C1(G,N) are canonically equivalent (written
f ∼c f ′) if there exist α ∈ Aut(N ×G) and e ∈ N ×G such that α(Tf ) = eTf ′ . They
are canonically isomorphic (written f 
c f ′) if there exists α ∈ Aut(N × G) such
that α(Tf ) = Tf ′ , i.e. e = (1,1). The set of all functions in the canonical equivalence
class of f is denoted c(f ). We call it the canonical bundle of f .

Equivalently, by Theorem 3 (proved in Sect. 4 below), we have:
f 
c f ′ ⇔ ∃ α ∈ B+

f :f ′ = f α ⇔ ∃ α ∈ Aut(N × G) : C1(α) holds.
Set

Cf = {
α ∈ Af :f α ∈ c(f )

}
. (32)

We can mimic the argument giving (31) (with Cf replacing Ef , c(f ) replacing b(f )

and Theorem 3 in Sect. 4 replacing Corollary 1) to show that, for any f ′ = f α ,
α ∈ Cf

Cf = Ff ′ ◦ B+
f = B+

f ◦ Ff . (33)
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As Ef = B− ◦ Ff ⊆ B+
f ◦ Ff = Cf we have

Ef ⊆ Cf , so α ∈ Cf ⇒ α ∈ Ef . (34)

Lemma 2 c(f ) = b(f ) ⇔ Cf = Ef ⇔ B+
f = B− ◦ (B+

f ∩ Ff ).

Proof Straightforward from the definitions, (31) and (33). �

Since Ff is a group under composition, Af , Cf and Ef are all disjoint unions of
cosets of Ff . We derive the following simple condition for testing non-membership
of Cf , and thus of Ef . Whether or not this is a practical condition in application
depends on how difficult it is to determine Ff .

Corollary 2 Let α ∈ Af . If α mod Ff ∈ B+
f then α ∈ Cf and α ∈ Ef . Furthermore,

B+
f ∩ Ff is a subgroup of Ff , so that |Cf | = |B+

f |[Ff : B+
f ∩ Ff ].

3.2 RDSs, transversals and graphs

In this subsection we apply Galati’s work in [9] to relate RDSs, transversals and
graphs.

A relative (v,w, k,λ)-difference set ((v,w, k,λ)-RDS) (Elliot and Butson [8]) in
a finite group E of order vw relative to a normal subgroup K of order w, is a k-
element subset R of E such that the multiset of quotients r1r

−1
2 of distinct elements

r1, r2 of R contains each element of E\K exactly λ times, and contains no elements
of K . Necessarily, k(k − 1) = λw(v − 1). If k = v and v = wλ, the RDS is called
semiregular; otherwise it is regular. The RDS is splitting if E is isomorphic to a
semidirect product of K by E/K , and normalised if R ∩ K = 1.

Here we work with the simplest case, that of splitting RDSs relative to N × {1} in
the direct product E = N ×G, where |N | = w and |G| = v. If R is a normalised RDS
relative to N × {1} and |R| = k, then distinct elements of R belong to distinct cosets
of N × {1} and take distinct values on their second component, so R has the form
{(ax, x), x ∈ D} for some k-subset D of G. Because κ in (26) is an epimorphism,
D is an ordinary (v, k,wλ) difference set in G, and, following Galati [9] we say R

lifts D.
Thus, for each of the wv−k functions f satisfying f (x) = ax, x ∈ D, the RDS

R = {(f (x), x), x ∈ D} is a k-element subset of the graph Sf , and therefore of the
canonical transversal Tf .

Lemma 3 Let G have order v, N have order w, let f ∈ C1(G,N) and let D be a
k-element subset of G. The following are equivalent:

1. R = {(f (x), x), x ∈ D} is a normalised (v,w, k,λ)-RDS in N × G relative to
N × {1}, lifting D.

2. For each x = 1 ∈ G, the sequence {∂f (x, y), y ∈ D ∩ x−1D} lists each element
of N exactly λ times.
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Proof (Compare with [9, p. 287], noting that Galati’s equation (19) should not in-
clude the term ε(x).) By (7) and (8) in [9], we have (∂f,f ) ∼f (1,1), so (1,1) ∼f −1

(∂f,f ). By [9, Proposition 3.5, Corollary 5.1], Part 1 holds ⇔ R(∂f,f ) = {(1, x),
x ∈ D} is a (v,w, k,λ)-RDS in E(∂f,f )

∼= N × G, relative to N × {1}, lifting D. By
[9, Definition 4.1, Theorem 5.1], this holds if and only if Part 2 holds. �

Two such normalised (v,w, k,λ)-RDSs R and R′ are equivalent (written R ∼ R′)
if there exists α ∈ Aut(N × G) and e ∈ N × G such that α(R) = eR′ and C2(α)

holds, and isomorphic (written R 
 R′) if e = (1,1).

Corollary 3 Suppose R and R′ are (v,w, k,λ)-RDSs in N × G relative to N × {1},
and let R ⊆ Tf for some f ∈ C1(G,N). Then

R 
 R′ ⇔ ∃α ∈ B−, f ′ ∈ b(f ) : α(R) = R′ ⊆ Tf ′ .

Proof If R 
 R′, suppose α ∈ Aut(N × G) such that α(R) = R′ and C2(α) holds.
Then α(Tf ) is a normalised set of coset representatives of N ×{1} containing α(R) =
R′, so has the form Tf ′ for some f ′. Therefore, α(Tf ) = Tf ′ , so C1(α) holds and by
Corollary 1, f 
b f ′. By definition, α ∈ B−. Conversely, any such α has ı2 = 1 and
thus α(N × {1}) = N × {1}. �

If the graph Sf of f does contain an RDS relative to N ×{1}, it is straightforward
to show that B+

f = B−, and thus that c(f ) = b(f ).

Theorem 2 Suppose f ∈ C1(G,N) and Sf contains a normalised (v,w, k,λ)-RDS
relative to N × {1}. Then

1. im(∂f ) = N ;
2. Sf generates N × G;
3. If α ∈ B+

f then α ∈ B−, that is, b(f α) = b(f ) = c(f ).

Proof Part 1 follows from Lemma 3. If Sf lifts D, for each x = 1 ∈ G the sequence
{(∂f (x, y),1), y ∈ D ∩ x−1D} lists each element of N × {1} exactly λ times, and
(∂f (x, y),1) = (f (x), x)(f (y), y)(f (xy), xy)−1 is generated by Sf . Thus for each
a ∈ N and each b = 1 ∈ G, there exist λ values y such that f (b)−1a = ∂f (x, y) and
(a, b) = (f (b)∂f (x, y), b) is generated by Sf , giving Part 2. By Part 1 and Lemma 1,
ker(ı2) = N , so ı2 = 1, giving the first part of Part 3. The second part follows by (31)
and (33). �

4 When graph isomorphism determines bundle isomorphism

By Corollary 1, f 
b f ′ if and only if there exists α ∈ Aut(N × G) such that C1(α)

and C2(α) both hold, in which case WeakC1(α) also holds.
For which α is the converse “WeakC1(α) ⇒ C1(α) and C2(α)” true? In this

section, we use transversals and group extensions to solve this question. Specifically,
we identify the conditions on α under which the formula for f α in terms of f defined
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in (14) (with r = 1) can be rewritten as the formula for f α in terms of f defined in
(9) (with r = 1).

We observe that if α(Sf ) = Sf ′ , then α(Tf ) = Sf ′ , and α(Tf ) is a transversal in

the split extension N
α◦ι
� N × G

κ◦inv(α)
� G. Clearly, α(Tf ) = Sf ′ does not always

imply α(Tf ) = Tf ′ . The next result shows exactly when WeakC1(α) ⇒ C1(α) for
the canonical transversals Tf and Tf ′ .

Theorem 3 Suppose f 
g f ′, α ∈ Aut(N × G) and α(Tf ) = Sf ′ , so the transversal

α(Tf ) = {t∗x , x ∈ G} of α(ι(N)) in N
α◦ι
� N × G

κ◦inv(α)
� G has the form

t∗x = α(tx) = (
f ′(ρ(x)

)
, ρ(x)

)
, tx ∈ Tf , (35)

with ρ ∈ Sym1(G) as in (13). Then α(Tf ) = Tf ′ if and only if ρ ∈ Aut(G).
That is, if WeakC1(α) holds, C1(α) holds if and only if α ∈ B+

f .

Proof Set t ′x = (f ′(x), x) ∈ Tf ′ for x ∈ G (i.e. with the same ordering of G as for
Tf ) and let τ ∈ Sym1(G). Thus t ′τ(x) = (f ′(τ (x)), τ (x)) and t ′τ(x) = t∗σ(x), where
σ = inv(ρ) ◦ τ ∈ Sym1(G).

Then t ′τ : x �→ t∗σ(x) is a section of π ′ in an extension N
ı′
� E

π ′
� G in which

ı′(N) = α ◦ ι(N) if and only if σ ∈ Aut(G) and π ′ = inv(σ ) ◦ κ ◦ inv(α). So, without
loss of generality, we may take ı′ = α ◦ ι.

Similarly, t ′τ : x �→ t ′τ(x) is a section of π ′ in an extension N
ı′
� E

π ′
� G in which

ı′(N) = ι(N) = N × {1} if and only if τ ∈ Aut(G) and π ′ = inv(τ ) ◦ κ . We may take
ı′ = ι.

Therefore, if there exists a permutation τ for which t ′τ is simultaneously a section
of inv(σ ) ◦ κ ◦ inv(α) and inv(τ ) ◦ κ then ρ ∈ Aut(G). Conversely, if ρ ∈ Aut(G) we
may take ρ = τ and σ = id, and then t ′ρ is simultaneously a section of κ ◦ inv(α) and
of inv(ρ) ◦ κ . �

In Theorem 3, we are interested only in the way α maps Tf onto Tf ′ , and not
in where it maps ι(N). Any α′ ∈ Aut(N × G) which coincides with α on Tf will
determine the same automorphism ρ in (35) as α, and be indistinguishable from α in
Theorem 3. We next find all such α′ for which C2(α′) holds.

The identity mapping on α(Tf ) always extends in many ways to a permutation
of N × G which is an isomorphism from α(ι(N)) to ι(N). First, any δ ∈ Aut(N)

determines an isomorphism δ′ = ι ◦ δ ◦ inv(α ◦ ι) : α(ι(N)) → ι(N). Conversely, any
isomorphism δ′ : α(ι(N)) → ι(N) determines δ = inv(ι) ◦ δ′ ◦ (α ◦ ι) ∈ Aut(N). Sec-
ond, δ extends to the permutation δ̂ ∈ Sym1(N × G) defined by

δ̂ ◦ α
(
ι(a)tx

) = ι
(
δ(a)

)
α(tx), a ∈ N,x ∈ G. (36)

Consideration of the proof of Theorem 3 when ρ ∈ Aut(G) shows that the fol-
lowing diagram commutes for any δ ∈ Aut(N). The corresponding transversals are
listed on the right of each extension, with T

ρ

f ′ the transversal defined by t ′ρ : x �→
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(f ′(ρ(x)), ρ(x)) = α(tx).

N
ι−−−−→ N × G

κ−−−−→ G Tf

id

⏐⏐
 α

⏐⏐
 id

⏐⏐


N
α◦ι−−−−→ N × G

κ◦inv(α)−−−−→ G α(Tf )

δ

⏐⏐

⏐⏐
δ̂ id

⏐⏐


N
ι−−−−→ N × G

inv(ρ)◦κ−−−−→ G T
ρ

f ′

id

⏐⏐
 id

⏐⏐
 ρ

⏐⏐


N
ι−−−−→ N × G

κ−−−−→ G Tf ′

(37)

Diagram (37) simplifies to

N
ι−−−−→ N × G

κ−−−−→ G Tf

δ

⏐⏐
 δ̂◦α
⏐⏐
 ρ

⏐⏐


N
ι−−−−→ N × G

κ−−−−→ G Tf ′

(38)

By Theorem 1, any α′ ∈ Aut(N × G) which is identical to α on Tf , and for which
C2(α′) holds, will have the form α′ = δ̂ ◦ α for some δ ∈ Aut(N) with δ̂ an au-
tomorphism which stabilises Sf α pointwise. We want to find all δ for which the
permutation δ̂ in (36) stabilising Sf α pointwise, is an automorphism.

Definition 4 Denote the pointwise stabiliser of Sf by

F̂f = {
α ∈ Aut(G × N) : α((

f (x), x
)) = (

f (x), x
)
, x ∈ G

} ⊆ B+
f ∩ Ff . (39)

For α ∈ Aut(N × G) and δ ∈ Aut(N), define the condition

C3(α, δ) : δ̂ ∈ F̂f α .

C3(α, δ) holds if and only if diagram (38) is an instance of diagram (28) for Tf and
Tf ′ . The next theorem identifies those δ for which C3(α, δ) holds.

To state it, we need a little more notation. Let ι be as in (26) and α ∈ Aut(N ×G).
Set J = α(ι(N)) ∩ ι(N), M = inv(α ◦ ι)(J ) ≤ N and M ′ = inv(ι)(J ) ≤ N , and let
ᾰ : M → M ′ be the isomorphism induced by α, i.e.

ᾰ(a) = inv(ι) ◦ α ◦ ι(a), a ∈ M. (40)

Theorem 4 Suppose f 
c f ′, α ∈ Aut(N × G), f ′ = f α and C1(α) holds. Let ᾰ be
as in (40). For each δ ∈ Aut(N), define χδ := (δ ◦ f )−1(f ′ ◦ ρ). The following are
equivalent:
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1. C3(α, δ) holds;
2. δ = ᾰ on im∂f and χδ ∈ Hom(G, ζ(N));
3. δ̂ ◦ α ∈ B−.

Proof Calculation using (23) shows im∂f ⊆ M and ᾰ(∂f ) = ∂(f ′ ◦ ρ). Calculation
using (36) shows δ̂ ◦ α((a, x)) = (δ(a)χδ(x), ρ(x)).

Part 2 ⇔ Part 1. Direct computation shows that the two conditions imply δ̂ is an
automorphism. Conversely, if δ̂ is an automorphism, ∂(f ′ ◦ ρ) = ∂(δ ◦ f ) = δ(∂f ) =
ᾰ(∂f ), so δ = ᾰ on im∂f . Then ∂((δ ◦f )−1(f ′ ◦ρ)) = 1, so χδ = (δ ◦f )−1(f ′ ◦ρ) ∈
Hom(G,N). Application of Theorem 1 to the middle diagram in (37) shows χδ must
actually be in Hom(G, ζ(N)).

Part 3 ⇔ Part 1. If δ̂◦α ∈ B− it is an automorphism so C3(α, δ) holds. Conversely,
if C3(α, δ) holds, δ̂ ◦ α is an automorphism. With δ̂ ◦ α = ı′ × η′ in (11) we derive
ı′1 = δ, η′

1 = χδ , ı′2 = 1 and η′
2 = ρ ∈ Aut(G). Thus δ̂ ◦ α ∈ B−. �

As a consequence, we can identify precisely when (14) may be rewritten as (9),
that is, when f α ∈ b(f ). First, we know from Theorem 3 that C1(α) must hold. If
C2(α) also holds, α ∈ B− and (14) is already in the required form (9) defining bundle
isomorphism. Second, if C2(α) doesn’t hold, we know from Theorem 4 the condi-
tions under which we may replace α by a suitable δ̂ ◦ α to obtain (9). In particular, if
ı1 ∈ Aut(N) we may set δ = ı1.

Corollary 4 Suppose f 
c f ′, α ∈ Aut(N × G), f ′ = f α and C1(α) holds, so

f ′ = f α = (
ı1 ◦ f ◦ inv(ρ)

)(
η1 ◦ inv(ρ)

) ∈ c(f ), (41)

with ρ ∈ Aut(G) defined by α as in (35). For δ ∈ Aut(N), set α′ = δ̂ ◦ α. Then
C3(α, δ) holds if and only if

f ′ = f α′ = (
δ ◦ f ◦ inv(ρ)

)(
χδ ◦ inv(ρ)

) ∈ b(f ). (42)

Proof By Theorem 4, C3(α, δ) holds if and only if α′(ι(N))= ι(N) and α′((f (x), x))

= (δ(f (x))χδ(x), ρ(x)) = (f ′(ρ(x)), ρ(x)), x ∈ G, where χδ ∈ Hom(G, ζ(N)), if
and only if (9) holds, with γ = δ, θ = inv(ρ) and χ = χδ ◦ inv(ρ). �

We can derive new techniques for identifying bundle-inequivalent functions in-
side canonical bundles, and thus inside graph bundles. Note, however, that if N is
elementary abelian, each canonical bundle is a single bundle.

Corollary 5 Suppose f 
c f ′, α ∈ B+
f and f ′ = f α .

1. If N is elementary abelian, then f 
b f ′, that is, c(f ) = b(f ).
2. If N is not elementary abelian, suppose there is no δ ∈ Aut(N) such that δ = ᾰ on

im∂f and χδ ∈ Hom(G, ζ(N)).
Then f 
b f ′, that is, b(f α) = b(f ).

3. If N is not elementary abelian, suppose Sf generates N × G and C2(α) does not
hold. Then f 
b f ′, that is, b(f α) = b(f ).
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Proof Part 1. If N is elementary abelian, the isomorphism ᾰ between subgroups of
N always extends to at least one automorphism δ of N (by basis arguments), and
ζ(N) = N . By Theorem 4, C3(α, δ) holds, and by Corollary 4, f ′ ∈ b(f ). Part 2
follows conversely.

Part 3. Suppose C3(α, δ) holds for some δ ∈ Aut(N). By assumption, any
(a, b) ∈ N × G can be written (a, b) = ∏j

i=1(f (xi), xi)
mi for some xi ∈ G, so

δ̂ ◦ α((a, b)) = ∏j

i=1[δ̂ ◦ α((f (xi), xi))]mi = α((a, b)) by (36). That is, δ̂ = id, so
α((a,1)) = (δ(a),1) and C2(α) holds. �

The following example generalises the seminal case over Z
n
2 and shows that the

inverse of a permutation is in the same graph bundle as the permutation, but need not
be in the same bundle (an instance is the Gold power function over Z

n
2).

Example 1 Let G = N and let f ∈ Sym1(G). The component swap mapping
β(x, y) = (y, x) is an automorphism of G × G. Then

1. f 
g inv(f ) and inv(f ) = f β ;
2. f 
b inv(f ) and C1(β) and C2(β) hold ⇔ f ∈ Aut(G) and G is abelian.

Proof Sinv(f ) = {(inv(f )(x), x), x ∈ G} = {(x, f (x)), x ∈ G} and β(Tf ) = Sinv(f ),
so Part 1 follows by definition. Note that β(ι(a)tx) = β((af (x), x)) = (x, af (x)).

Since β(tx) = (x, f (x)) = (inv(f )(f (x)), f (x)), ρ = f in Theorem 3 and
β(Tf ) = Tinv(f ) ⇔ f ∈ Aut(G). Since J = {(1,1)}, for each δ ∈ Aut(G), χδ =
(δ ◦ f )−1 and δ ◦ f ∈ Aut(G). Therefore, (δ ◦ f )−1 ∈ Hom(G, ζ(G)) if and only
if ζ(G) = G. In this case, we may set δ = id. �

5 Nonlinearity, equivalence class invariants and RDSs

For groups G and N of orders v and w, respectively, several notions of nonlinearity
for functions f : G → N coexist. These measure how different f is from any linear
function, which in our general context is any element of Hom(G, ζ(N)). Example 13
of [11] shows that for linear functions,

f ∈ Hom
(
G,ζ(N)

) ⇒ b(f ) = Hom
(
G,ζ(N)

); c(f ) = g(f ) ⊆ Hom(G,N).

For abelian groups Nyberg [14, p. 58] defines f to be differentially m-uniform
when

m = max
x =1∈G,c∈N

∣∣{y ∈ G : f (xy)f (y)−1 = c
}∣∣,

and her definition clearly extends to any finite groups. We write m = Δ(f ). By inver-
sion of each term f (xy)f (y)−1 and premultiplication by the fixed value f (x), x = 1,
this is the same (see (23)) as

Δ(f ) = max
x =1∈G,c∈N

∣∣{y ∈ G : ∂f (x, y) = c
}∣∣. (43)
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If w divides v and Δ(f ) = v/w we say f is perfect nonlinear (PN). If G = N = Z
n
p

and Δ(f ) = 2 we say f is almost perfect nonlinear (APN).
If Sf contains an RDS it determines a lower bound for Δ(f ), as we show next.

The bound is met by semiregular RDSs.

Lemma 4 Suppose R = {(f (x), x), x ∈ D} ⊆ Sf is a normalised (v,w, k,λ)-RDS
in N × G relative to N × {1}, lifting D. Then Δ(f ) ≥ λ.

Furthermore, Δ(f ) = λ iff R is semiregular iff D = G.

Proof By Lemma 3, for each x = 1 ∈ G, the sequence {∂f (x, y), y ∈ D ∩ x−1D}
lists each element of N exactly λ times.

If D = G then D ∩ x−1D = G, so there exists y∗ ∈ G \ D ∩ x−1D and |{y ∈ G :
∂f (x, y) = ∂f (x, y∗)}| ≥ λ + 1, so Δ(f ) > λ. Since k < v, R is not semiregular.

If D = G then D∩x−1D = G, Δ(f ) = λ, k = v, λ = v/w and R = Sf is semireg-
ular. �

Differential uniformity is preserved by graph isomorphism, and consequently by
bundle and canonical isomorphism.

Lemma 5 Suppose f ∈ C1(G,N) and α ∈ Af . Then Δ(f ) = Δ(f α).

Proof Fix x = 1 ∈ G and c ∈ N , and suppose yi, i = 1, . . . , � satisfy ∂f (x, yi) = c

and α(c,1) = (a, b). Then, from (35),

α
(
∂f (x, yi),1

) = (a, b) = (
∂
(
f α ◦ ρ

)
(x, yi), ∂ρ(x, yi)

)

for yi , i = 1, . . . , �, with ρ ∈ Sym1(G). In particular, equating the first compo-
nent tells us Δ(f ) = Δ(f α ◦ ρ). Equating the second component tells us that
ρ(xyi) = (b−1ρ(x))ρ(yi), so x′ = b−1ρ(x) = 1 and f α(ρ(yi))f

α(x′ρ(yi))
−1 =

f α(ρ(yi))f
α(ρ(xyi))

−1 = f α(ρ(x))−1a, so is constant for i = 1, . . . , �. Thus
Δ(f α ◦ ρ) = Δ(f α). �

Pott [15] extends the definition of another measure of nonlinearity, maximum non-
linearity, from the vectorial Boolean case to the case of abelian groups G and N . This
is a character-theoretic definition, given in terms of the values of the characters of
N × G on the graph Sf . If N̂ × G is the character group of N × G, the maximum
nonlinearity of f is

L(f ) = max
{∣∣χ(Sf )

∣∣ : χ = χ0 ∈ N̂ × G
}
,

with L(f ) ≥ √
v. f is maximally nonlinear if it attains the minimum possible value

for L(f ) for functions from G to N . He suggests that Sf is the correct instrument for
measuring the nonlinear behaviour of functions f : G → N .

This property is also preserved by graph isomorphism, and consequently by bundle
and canonical isomorphism.

Lemma 6 Suppose N and G are abelian, f ∈ C1(G,N) and α ∈ Af . Then L(f ) =
L(f α).
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Proof Note χ ∈ N̂ × G ⇔ χ ◦α ∈ N̂ × G and χ0 = χ0 ◦α. Thus {|χ(Sf )| : χ = χ0 ∈
N̂ × G} = {|χ(α(Sf ))| : χ = χ0 ∈ N̂ × G} and its maximum value is the same. �

When w divides v, functions with maximum nonlinearity coincide with PN func-
tions since Sf , considered as the transversal Tf , is a splitting abelian semiregular
RDS relative to N × {1}. If G = Z

n
2 and N = Z

t
2, a PN function is also bent, that is,

it is maximally distant (in a specific sense) from all linear functions. The analogue of
this result holds for abelian PN functions f : G → N , using the definition of a bent
function due to Logachev et al. [12], in terms of the characters χc ∈ N̂ .

Theorem 5 Let G and N be abelian groups of orders v and w, respectively, where
w|v, and let f ∈ C1(G,N). Then the following are equivalent:

1. f is PN;
2. [10, Theorem 9.13] Tf is a splitting abelian (v,w,v, v/w)-RDS in N ×G relative

to N × {1};
3. [4, Theorem 16] For every c = 1 ∈ N the component fc = χc ◦ f is bent, that is,

its Fourier Transform f̂c has magnitude f̂c(x) = √
v for every x ∈ G;

4. [15, Theorem 8] f is maximally nonlinear with maximal nonlinearity
√

v.

In the elementary abelian case of most interest in applications, many other in-
variants of EA and CCZ classes have been discussed, see for example [2]. We close
by introducing a new algebraic invariant of bundles, which will in general not be
preserved by either canonical or graph isomorphism. Its existence becomes apparent
from observing the frequent appearance and significance of the coboundary function
∂f in the work so far.

Definition 5 For f ∈ C1(G,N), define N̂f to be the normaliser (in N ) of the image
of ∂f , that is, the smallest normal subgroup of N generated by im(∂f ):

N̂f = {
aba−1 : a ∈ N, b ∈ 〈

∂f (x, y), x, y ∈ G
〉}

. (44)

Define N(f ) to be the order |N̂f | of N̂f , so 1 ≤ N(f ) ≤ w and N(f )|w.

The following properties of N̂f and N(f ) are easy to prove.

Lemma 7 If f ∈ C1(G,N), α = ı × η ∈ B+
f and f α is given by (41), then

1. N̂f � ker(ı2);
2. N(f ) = 1 ⇔ N̂f = {1} ⇔ f ∈ Hom(G,N);
3. N(f ) = w ⇔ N̂f = N ⇒ B+

f = B− ⇒ c(f ) = b(f );
4. If Sf contains an RDS then N(f ) = w;
5. ∂f α(x, y) = ı1 ◦ ∂f (inv(ρ)(x), inv(ρ)(y));
6. ı1(N̂f ) ≤ N̂f α , so if ı1 ∈ Aut(N), N̂f α = ı1(N̂f ) and N(f α) = N(f );
7. If f ′ 
b f , then N̂f ′ ∼= N̂f and N(f ′) = N(f );
8. If N is abelian, N̂f = 〈∂f (x, y), x, y ∈ G〉;
9. If N ∼= Z

n
p is elementary abelian (written additively), N̂f is a p-ary linear

[n, logp(N(f ))] code.
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Proof Lemma 1 gives Property 1 since ker(ı2) is a normal subgroup of N , and Prop-
erty 2 is straightforward. For Property 3, N̂f = N ⇒ for each α ∈ B+

f , ker(ı2) =
N ⇒ ı2 = 1 ⇒ α ∈ B−. For Property 4, N̂f = N by Theorem 2. Direct computation
gives Property 5, since ı1 commutes with η1 (see (11)). Then

ı1
(
a ∂f (x, y)a−1) = ı1(a)∂f α

(
ρ(x), ρ(y)

)
ı1(a)−1,

and Property 6 follows. Property 7 follows by similar arguments. Properties 8 and 9
are obvious. �

Corollary 6 N(f ) is an invariant of b(f ), but not necessarily of c(f ) or g(f ). If
α ∈ Af and N(f α) = N(f ) then b(f α) = b(f ).

Proof Lemma 7.6 gives the first result. If there is an α ∈ B+
f with ı1 ∈ Aut(N) then

Lemma 7.4 implies a minimal generating set in im(∂f α) for N̂f α may be smaller than
a minimal generating set in im(∂f ) for N̂f , and the rest follows. �

6 Conclusion and future work

We have shown that the problem of partitioning a graph equivalence class g(f ) into
bundles splits naturally into two sequential parts: first, to partition g(f ) into canonical
bundles c(f = f1), c(f2), . . . , c(fk); and second, to partition canonical bundles into
bundles.

We have shown that any automorphism acting on f within g(f ) can map to an
element of b(f ) only under two very strict conditions, the first of which ensures it
maps to an element of c(f ) and the second of which ensures that within c(f ) it maps
to an element of b(f ). The first problem then translates to characterising the stabiliser
group of automorphisms Ff and in particular, its subgroup B+

f ∩ Ff (Corollary 2).
Much of the contribution of this paper applies to the second problem. We know

now that if c(f ) contains more than one bundle then Sf cannot contain a splitting
RDS (Theorem 2), whereas if Sf does contain a splitting RDS the differential uni-
formity of f is bounded below by the multiplicity λ of the RDS (Lemma 4). If Sf

is a semiregular RDS this lower bound is tight and f is PN. The precise relation-
ship between the differential uniformity Δ(f ) of f in less optimal cases (such as
the APN functions when N = G = Z

n
2), and the algebraic invariant N(f ) introduced

here, is still to be discovered. By (43) and (44), it is a close relationship, but N(f )

is able to discriminate between bundles within some canonical bundles while Δ(f )

and L(f ) cannot. For functions over GF(pn), some other bundle invariants, such as
the algebraic degree of f , are also known to discriminate within graph bundles (CCZ
classes), and their relationship to the more general invariant N(f ) is yet to be de-
termined. From the other direction, the dimension of the ideal generated by Sf in
the group algebra GF(2)(Zn

2 × Z
n
2) is an invariant of the CCZ class of f [2], and its

relationship to N(f ) has yet to be determined.
In conclusion, we have a rich research field for further mining.
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