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Abstract The geometric and algebraic theory of valuations on cones is applied to
understand identities involving summing certain rational functions over the set of
linear extensions of a poset.
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1 Introduction

This paper presents a different viewpoint on the following two classes of rational
function summations, which are both summations over the set L(P ) of all linear
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extensions of a partial order P on the set {1,2, . . . , n}:

ΨP (x) :=
∑

w∈L(P )

w

(
1

(x1 − x2)(x2 − x3) · · · (xn−1 − xn)

)
;

ΦP (x) :=
∑

w∈L(P )

w

(
1

x1(x1 + x2)(x1 + x2 + x3) · · · (x1 + · · · + xn)

)
.

Recall that a linear extension is a permutation w = (w(1), . . . ,w(n)) in the sym-
metric group Sn for which the linear order Pw defined by w(1) <Pw · · · <Pw w(n)

satisfies i <Pw j whenever i <P j .
Several known results express these sums explicitly for particular posets P as ra-

tional functions in lowest terms. In the past, these results have most often been proven
by induction, sometimes in combination with techniques such as divided differences
and more general operators on multivariate polynomials. We first explain three of
these results that motivated us.

1.1 Strongly planar posets

The rational function ΨP (x) was introduced by Greene [15] in his work on the
Murnaghan–Nakayama formula. There he evaluated ΨP (x) when P is a strongly pla-
nar poset in the sense that the poset P � {0̂, 1̂} with an extra bottom and top element
has a planar embedding for its Hasse diagram, with all edges directed upward in the
plane. To state his evaluation, note that in this situation, the edges of the Hasse di-
agram for P dissect the plane into bounded regions ρ, and the set of vertices lying
on the boundary of ρ will consist of two chains having a common minimum element
min(ρ) and maximum element max(ρ) in the partial order P .

Theorem A (Greene [15, Theorem 3.3]) For any strongly planar poset P ,

ΨP (x) =
∏

ρ(xmin(ρ) − xmax(ρ))∏
i�P j (xi − xj )

,

where the product in the denominator runs over all covering relations i �P j or over
the edges of the Hasse diagram for P , while the product in the numerator runs over
all bounded regions ρ for the Hasse diagram for ρ.

1.2 Skew diagram posets

Further work on ΨP (x) appeared in [7–9, 16]. For example, we will prove in Sect. 4
the following generalization of a result of the first author. Consider a skew (Ferrers)
diagrams D = λ/μ, in English notation as a collection of points (i, j) in the plane,
where rows are numbered 1,2, . . . , r from top to bottom (the usual English conven-
tion), and the columns numbered 1,2, . . . , c from right to left (not the usual English
convention). Thus the northeasternmost and southwesternmost points of D are la-
belled (1,1) and (r, c), respectively; see Example 4.3. Define the bipartite poset PD

on the set {x1, . . . , xr , y1, . . . , yc} having an order relation xi <PD
yj whenever (i, j)

is a point of D.
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Theorem B For any skew diagram D,

ΨPD
(x) =

∑
π

∏
(i,j)∈D\π(xi − yj )∏

(i,j)∈D(xi − yj )
,

where the product in the numerator runs over all lattice paths π from (1,1) to (r, c)

inside D that take steps either one unit south or west.
In particular (Boussicault [8, Prop. 4.7.2]), when μ = ∅, so that D is the Ferrers

diagram for a partition1 λ, this can be rewritten

ΨPD
(x) = Sŵ(x,y)

Sw(x,y)
,

where Sw(x,y),Sŵ(x,y) are the double Schubert polynomials for the dominant per-
mutation w having Lehmer code λ = (λ1, . . . , λr ), and the vexillary permutation ŵ

having Lehmer code λ̂ := (0, λ2 − 1, . . . , λr − 1).

1.3 Forests

In his treatment of the character table for the symmetric group Sn, Littlewood [20,
p. 85] used the fact that the antichain poset P = ∅, having no order relations on
{1,2, . . . , n} and whose set of linear extensions L(∅) is equal to all of Sn, satisfies

Φ∅(x) = 1

x1x2 · · ·xn

. (1.1)

The following generalization appeared more recently in [11]. Say that a poset P is a
forest if every element is covered by at most one other element.

Theorem C (Chapoton, Hivert, Novelli, and Thibon [11, Lemma 5.3]) For any forest
poset P ,

ΦP (x) = 1∏n
i=1(

∑
j≤P i xj )

.

1.4 The geometric perspective of cones

Our first new perspective on these results views ΨP (x),ΦP (x) as instances of a well-
known valuation on convex polyhedral cones K in a Euclidean space V with inner
product 〈·, ·〉:

s(K;x) :=
∫

K

e−〈x,v〉dv.

1Such bipartite graphs were called λ-complete in [8] and sometimes appear in the literature under the name
Ferrers graphs.
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One can think of s(K;x) as the multivariable Laplace transform applied to the {0,1}-
valued characteristic function of the cone K . After reviewing the properties of this
valuation in Sect. 2, we use these to establish that

ΨP (x) = s
(
K root

P ;x
)
,

ΦP (x) = s
(
Kwt

P ;x
)
,

where K root
P ,Kwt

P are two cones naturally associated to the poset P as follows:

K root
P = R+{ei − ej : i <P j},
Kwt

P = {
x ∈ R

n+ : xi ≥ xj for i <P j
}
,

R+ denotes the nonnegative real numbers. In Sects. 4 and 5, this identification is
used, together with the properties of s(K;x) from Sect. 2, to give simple geometric
proofs underlying Theorems B and C above.

1.5 The algebraic perspective of Hilbert series

One gains another useful perspective when the cone K is rational with respect to
some lattice L inside V , which holds for both K root

P ,Kwt
P . This allows one to compute

a more refined valuation, the multigraded Hilbert series

Hilb(K ∩ L;x) :=
∑

v∈K∩L

e〈x,v〉

for the affine semigroup ring k[K ∩ L] with coefficients in any field k. As discussed
in Sect. 2.4 below, it turns out that Hilb(K ∩ L;x) is a meromorphic function of
x1, . . . , xn, whose Laurent expansion begins in total degree −d , where d is the di-
mension of the cone K , with this lowest term of total degree −d equal to s(K;x),
up to a predictable sign. This allows one to algebraically analyze the ring k[K ∩ L],
compute its Hilbert series, and thereby recover s(K;x).

For example, in Sect. 8.3, it will be shown that Theorem A by Greene is the re-
flection of a complete intersection presentation for the affine semigroup ring of K root

P

when P is a strongly planar poset, having generators indexed by the edges in the
Hasse diagram of P , and relations among the generators indexed by the bounded
regions ρ.

As another example, in Sect. 6, it will be shown that Theorem C, along with the
“maj” hook formula for forests due to Björner and Wachs [5, Theorem 1.2] are both
consequences of an easy Hilbert series formula (Proposition 6.2 below) related to
Kwt

P when P is a forest.

2 Cones and valuations

2.1 A review of cones

We review some facts and terminology about polyhedral cones; see, e.g., [21, Chap.7],
[23, §4.6] for background.
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Let V be an n-dimensional vector space over R. A linear function � in V ∗ has
as zero set a hyperplane H containing the origin and defines a closed halfspace
H+ consisting of the points v in V with �(v) ≥ 0. A polyhedral cone K (contain-
ing the origin 0) in V is the intersection K = ⋂

i H
+
i of finitely many linear half-

spaces H+
i , or alternatively the nonnegative span K = R+{u1, . . . , uN } of finitely

many generating vectors ui in V . Its dimension, denoted dimR K , is the dimension
of the smallest linear subspace that contains it. One says that K is full-dimensional if
dimR K = n = dimR V .

Say that K is pointed if it contains no lines. In this case, if {u1, . . . , uN } is a
minimal set of vectors for which K = R+{u1, . . . , uN }, then the ui are said to span
the extreme rays R+ui of K ; these rays are unique, although the choice of vectors ui

is unique only up to positive scalings.
Say that K is simplicial if its extreme rays are spanned by a linearly independent

set of vectors {u1, . . . , uN }, so that N = dimR K ≤ n.
In the dual space V ∗ one has the dual or polar cone

K∗ := {
x ∈ V ∗ : 〈x, v〉 ≥ 0 for all v ∈ K

}
.

The following facts about duality of cones are well known:

• Under the identification (V ∗)∗ = V , one has (K∗)∗ = K .
• A cone K is pointed (resp. full-dimensional) if and only if its dual cone K∗ is

full-dimensional (resp. pointed).
• A cone K is simplicial if and only if its dual cone K∗ is simplicial.

2.2 The Laplace transform valuation

Choose a basis v1, . . . , vn for V and dual basis x1, . . . , xn for V ∗. Then the poly-
nomial functions Q[V ] on V are identified with the symmetric/polynomial algebras
Sym(V ∗) ∼= R[x1, . . . , xn] and the rational functions Q(V ) on V with the field of
fractions Q(x1, . . . , xn).

In order to consider integrals on V , let dv = dv1 · · ·dvn denote Lebesgue measure
on R

n ∼= V using the basis v1, . . . , vn for this identification.
The following proposition defining our first valuation is well known; see, e.g.,

[1, Proposition 2.4], [3, Proposition 5].

Proposition 2.1 There exists a unique assignment of a rational function s(K;x) lying
in Q(V ) = Q(x1, . . . , xn) to each polyhedral cone K , having the following proper-
ties:

(i) s(K;x) = 0 when K is not pointed.
(ii) s(K;x) = 0 when K is not full-dimensional.

(iii) When K is pointed and full-dimensional, for each x in the dual cone K∗, the im-
proper integral

∫
K

e−〈x,v〉dv converges to the value given by the rational func-
tion s(K;x).

(iv) When K is pointed and full-dimensional, with extreme rays spanned by
{u1, . . . , uN }, the rational function s(K;x) can be written with smallest de-
nominator

∏N
i=1〈x, ui〉.
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(v) In particular, when K is full-dimensional and simplicial, with extreme rays
spanned by {u1, . . . , un}, then

s(K;x) = |det[u1, . . . , un]|∏n
i=1〈x, ui〉 .

(vi) The map s(−;x) is a solid valuation, that is, if there is a linear relation∑t
i=1 ciχKi

= 0 among the characteristic functions χKi
of the cones Ki , there

will be a linear relation
∑

i:dimR Ki=n

cis(Ki;x) = 0.

2.3 The semigroup ring and its Hilbert series

Now endow the n-dimensional real vector space V with a distinguished lattice L of
rank n and assume that the chosen basis v1, . . . , vn for V is also a Z-basis for L.

Say that the polyhedral cone K is rational with respect to L if one can express
K = R+{u1, . . . , uN } for some elements ui in L. The subset K ∩ L together with
its additive structure inherited from addition of vectors in V is then called an affine
semigroup. Our goal here is to describe how one can approach the computation of the
previous valuation s(K;x) for pointed cones K through the calculation of the finely
graded Hilbert series for this affine semigroup:

Hilb(K ∩ L;x) :=
∑

v∈K∩L

e〈x,v〉.

One should clarify how to interpret this infinite series, as it lives in several ambient
algebraic objects. Firstly, it lies in the abelian group Z{{L}} of all formal combina-
tions

∑

v∈L

cv e〈x,v〉

with cv in Z, in which there are no restrictions on vanishing of the coefficients cv .
This set Z{{L}} forms an abelian group under addition but is not a ring. However, it
contains the Laurent polynomial ring

Z[L] ∼= Z

[
X±1

1 , . . . ,X±n
n

]

as the subgroup where only finitely many of the cv are allowed to be nonzero, using
the identification via the exponential change of variables

Xi = e〈x,vi 〉, so that X
c1
1 · · ·Xcn

n = Xv = e〈x,v〉 if v :=
n∑

i=1

civi . (2.1)

Furthermore, Z{{L}} forms a module over this subring Z[L]. One can also define the
Z[L]-submodule of summable elements (see [21, Definition 8.3.9]), namely those
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f in Z{{L}} for which there exists p,q in Z[L] with q �= 0 and q · f = p. In this
situation, say that f sums to p

q
as an element of the fraction field

Q(L) ∼= Q(X1, . . . ,Xn).

General theory of affine semigroups (see, e.g., [21, Chap. 8]) says that for a rational
polyhedral cone K and the semigroup K ∩ L, the Hilbert series Hilb(K ∩ L;x) is
always summable. More precisely,

• when K is not pointed, Hilb(K ∩ L;x) sums to zero. This is because K will not
only contain a line, but also an L-rational line, and then any nonzero vector v of L

lying on this line will have (1 − e〈x,v〉) · Hilb(K ∩ L;x) = 0.
• when K is pointed and {u1, . . . , uN } are vectors in L that span its extreme rays,

then one can show that
(

N∏

i=1

(
1 − e〈x,ui 〉)

)
· Hilb(K ∩ L;x)

always lies in Z[L].
In fact, one has the following analogue of Proposition 2.1; see, e.g., [1, Proposi-

tion 4.4], [2, Theorem 3.1], [3, Proposition 7].

Proposition 2.2 Let V be an n-dimensional vector space V . Let L be the sublattice
in V with Z-basis v1, . . . , vn, and V ∗ the dual space, with dual basis x1, . . . , xn.

Then there exists a well-defined and unique assignment of a rational function
H(K;X) lying in Q(X1, . . . ,Xn) to each L-rational polyhedral cone K , having the
following properties:

(i) H(K;X) = 0 when K is not pointed.
(ii) When K is pointed, the Hilbert series Hilb(K ∩ L;x) sums to the element p

q
=

H(K;X), considered as a rational function lying in Q(L).
(iii) When K is pointed and full-dimensional, for each x in the dual cone K∗, the

infinite sum
∑

v∈K∩L e〈x,v〉 converges, to the value given by the exponential
substitution (2.1) into the rational function H(K;X).

(iv) When K is pointed and full-dimensional, with u = {u1, . . . , uN } the unique
primitive vectors (that is, those lying in L nearest the origin) that span its ex-
treme rays, the rational function H(K;X) can be written with smallest denomi-
nator

∏N
i=1(1 − Xui ).

(v) In particular, if K is simplicial and u := {u1, . . . , ud} its set of primitive vectors
that span its extreme rays, define the semiopen parallelepiped

	u :=
{

n∑

i=1

ciui : 0 ≤ ci < 1

}
⊂ V.

Then one has

H(K;X) =
∑

u∈	u∩L Xu

∏d
i=1(1 − Xui )

. (2.2)
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(vi) The map H(−;X) is a valuation: if there is a linear relation
∑t

i=1 ciχKi
= 0

among the characteristic functions χKi
of a collection of (L-rational) cones Ki ,

there will be a linear relation

t∑

i=1

ciH(Ki;X) = 0.

2.4 Why H(K;X) is finer than s(K;x)

When K is an L-rational cone, there is a well-known way (see, e.g., [10]) to compute
the Laplace transform valuation s(K;x) from the Hilbert series valuation H(K;X)

by a certain linear residue operation, which we now explain.

Proposition 2.3 Let K be an L-rational pointed cone, with {u1, . . . , uN } vectors in
L that span its extreme rays. Regard H(K;X) as a function of the variables x =
(x1, . . . , xn) via the exponential substitution (2.1).

Then H(K;X) is meromorphic in x, of the form

H(K;X) = h(K;x)
∏N

i=1〈x, ui〉
where h(K;x) is analytic in x.

Furthermore, if d := dimR K , then the multivariate Taylor expansion for h(K;x)

starts in degree N − d , that is,

h(K;x) = hN−d(K;x) + hN−d+1(K;x) + · · · ,

where hi(K;x) are homogeneous polynomials of degree i, and the multivariate Lau-
rent expansion for H(K;X) starts in degree −d , that is,

H(K;X) = H−d(x) + H−d+1(x) + H−d+2(x) + · · · .

Lastly, when K is full-dimensional (so d = n), then

s(K;x) = (−1)n
hN−n(K;x)
∏N

i=1〈x, ui〉
) = (−1)nH−n(x),

so that hN−n(K;x) is (−1)n times the numerator for s(K;x) accompanying the
smallest denominator described in Proposition 2.1(iv).

Proof We first check all of the assertions when K is simplicial, say with extreme
rays spanned by the vectors u1, . . . , ud in L. In this case, N = d , and the exponential
substitution of variables (2.1) into (2.2) gives

H(K;X) =
∑

u∈	u
e〈x,u〉

∏d
i=1(1 − e〈x,ui 〉)

= (−1)d

∑
u∈	u

e〈x,u〉
∏d

i=1〈x, ui〉
d∏

i=1

〈x, ui〉
e〈x,ui 〉 − 1

. (2.3)
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We wish to be somewhat explicit about the Taylor expansion of each factor in the last
product within (2.3). To this end, recall that the function

x

ex − 1
=

∑

n≥0

Bn

xn

n! = 1 − 1

2
x + 1

12
x2 − 1

720
x4 + · · ·

is analytic in the variable x, having power series coefficients described by the
Bernoulli numbers Bn. Consequently, for each i = 1,2, . . . , d , the factor 〈x,ui 〉

e〈x,ui 〉−1
appearing in (2.3) is analytic in the variables x = (x1, . . . , xn) and has power series
expansion that begins with constant term +1. Note that the sum

∑

u∈	u

e〈x,u〉 ∑

u∈	u

(
1 + 〈x, u〉 + 1

2
〈x, u〉2 + · · ·

)

is also analytic in x, having power series expansion that begins with the constant term
|	u|. Thus the expansion in (2.3) begins in degree −d with

(−1)d
|	u|

∏d
i=1〈x, ui〉

.

Whenever K is full-dimensional, so that d = n, expressing the ui in coordinates with
respect to a Z-basis e1, . . . , en for L, one has |	u| = |det(u1, . . . , un)|. Comparison
with Proposition 2.1(v) then shows that the proposition is correct when K is simpli-
cial.

When K is pointed but not simplicial, it is well known (see, e.g., [23, Lem-
ma 4.6.1]) that one can triangulate K as a complex of simplicial subcones K1, . . . ,Kt

whose extreme rays are all among the extreme rays u1, . . . , uN for K . This tri-
angulation lets one express the characteristic function χK in the form (cf. [23,
Lemma 4.6.4]) χK = ∑

j cjχKj
where the cj are integers, and cj = +1 whenever

the cone Kj has the same dimension as K . Thus by Proposition 2.1(vi), one has

H(K;X) =
∑

j

ciH(Kj ;X),

which shows that h(K;x) := (
∏N

i=1〈x, ui〉)H(K;X) is analytic in x. Furthermore,
after clearing denominators, it gives the expansion

h(K;x) =
∑

j

cj

(
∏

i:ui a ray of K,
but not of Kj

〈x, ui〉
)

h(Kj ;x).

Since the simplicial cones Kj have at most n extreme rays, this shows that
hi(K;x) = 0 for i < N − n and that

hN−n(K;x) =
∑

j :dimR Kj =n

(
∏

i:ui a ray of K,
but not of Kj

〈x, ui〉
)

h0(Kj ;x),
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using the fact that cj = +1 whenever dimR Kj = dimR K . Dividing through by∏N
i=1〈x, ui〉 and multiplying by (−1)n give

(−1)n
hN−n(K;x)
∏N

i=1〈x, ui〉
=

∑

j :dimR Kj =n

s(Kj ;x) = s(K;x),

where the first equality uses the simplicial case already proven, and the last equality
uses Proposition 2.1(v). �

The linear operator passing from the meromorphic function H(K;X) of x to the
rational function H−n(K;x) = (−1)ns(K;x) has been called taking the total residue
in [10], where other methods for computing it are also developed.

2.5 Complete intersections

For a pointed L-rational polyhedral cone K , one approach to computing H(K;x)

(and hence s(K;x)) is through an algebraic analysis of the affine semigroup K ∩ L

and its affine semigroup ring

R := k[K ∩ L] = k
{
eu

}
u∈(K∩L)

over some coefficient field k. We discuss this here, with the case where R is a com-
plete intersection being particularly simple.

For any semigroup elements u1, . . . , um in K ∩L, one can introduce a polynomial
ring S := k[U1, . . . ,Um] and a ring homomorphism S → R sending Ui �→ eui . This
map makes R into an S-module. One also has a fine L-multigrading on R and S

for which deg(Ui) = deg(eui ) = ui . This makes R an L-graded module over the L-
graded ring S. It is not hard to see that R is a finitely-generated S-module if and only
if {u1, . . . , um} contain at least one vector spanning each extreme ray of K .

When u1, . . . , um generate (not necessarily minimally) the semigroup K ∩ L, the
map S → R is surjective, and its kernel I is often called the toric ideal for u1, . . . , um.

Proposition 2.4 ([21, Theorem 7.3], [25, Lemma 4.1]) One can generate the toric
ideal I = ker(S → R) by finitely many L-homogeneous elements chosen among the
binomials Uα − Uβ for which α,β ∈ N

m and
∑m

i=1 αiui = ∑m
j=1 βjuj .

As R = S/I , and because S has Krull dimension m while R has Krull dimension
d := dimR K , the number of generators for the ideal I is at least m−d . The theory of
Cohen–Macaulay rings says that, since the polynomial algebra S is Cohen–Macaulay,
whenever the ideal I in S can be generated by exactly m − d elements f1, . . . , fm−d ,
then these elements must form an S-regular sequence: for each i ≥ 1, the image of
fi forms a nonzero divisor in the quotient S/(f1, . . . , fi−1). In this case, the presen-
tation R = S/I = S/(f1, . . . , fm−d) is said to present R as a complete intersection.
A simple particular case of this occurs when the toric ideal I is principal, as in Ex-
ample 2.6 and in Corollary 8.2. By a standard calculation using the nonzero divisor
condition (see, e.g., [21, §13.4, p. 264]) one concludes the following factorization for
H(K;X) and s(K;x).
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Proposition 2.5 Let K be a pointed L-rational cone for which the associated affine
semigroup ring R = k[K ∩ L] can be presented as a complete intersection

R = S/I = k[U1, . . . ,Um]/(f1, . . . , fm−d)

where Ui = eui for some generators u1, . . . , um of K ∩ L, and where f1, . . . , fm−d

are L-homogeneous elements of S with degrees δ1, . . . , δm−d . Then

H(K;X) =
∏m−d

i=1 (1 − Xδi )∏m
j=1(1 − Xuj )

,

and if d = n, then

s(K;x) =
∏m−n

i=1 〈x, δi〉∏m
j=1〈x, uj 〉 .

Example 2.6 Let V = R
3 with standard basis e1, e2, e3, and let K be the full-

dimensional, pointed cone whose extreme rays are generated by the four vectors

u1 = e1,

u2 = e1 + e2,

u3 = e1 + e3,

u4 = e1 + e2 + e3.

Note that K is not simplicial, but it can be expressed as K = K1 ∪ K2 where K1,K2
are the full-dimensional unimodular simplicial cones generated by the two bases for
the lattice L = Z

3 given by {u1, u2, u4}, {u1, u3, u4}, respectively. Their intersection
K1 ∩ K2 is the two-dimensional simplicial cone generated by {u1, u4}.

Therefore, applying properties (vi) and then (v) from Proposition 2.1, one can
compute

s(K;x)
(vi)= s(K1;x) + s(K2;x)

(v)= 1

x1(x1 + x2)(x1 + x2 + x3)
+ 1

x1(x1 + x3)(x1 + x2 + x3)

= 2x1 + x2 + x3

x1(x1 + x2)(x1 + x3)(x1 + x2 + x3)
.
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Alternatively, one could first compute H(K,X) via Proposition 2.2(vi) and (v):

H(K;X)
(vi)= H(K1;X) + H(K2;X) − H(K1 ∩ K2;X)

(v)= 1

(1 − X1)(1 − X1X2)(1 − X1X2X3)

+ 1

(1 − X1)(1 − X1X3)(1 − X1X2X3)
− 1

(1 − X1)(1 − X1X2X3)

= 1 − X2
1X2X3

(1 − X1)(1 − X1X2)(1 − X1X3)(1 − X1X2X3)
. (2.4)

Then one could recover s(K;x) by first making the exponential substitution (2.1),
then expanding the analytic part H(K;X) as a power series in x, and using this to
extract the homogeneous component H−3(x) of degree −3 = −n:

H(K;X)

= 1 − e2x1+x2+x3

(1 − ex1)(1 − ex1+x2)(1 − ex1+x3)(1 − ex1+x2+x3)

= 1

x1(x1 + x2)(x1 + x3)(x1 + x2 + x3)

· (1 − e2x1+x2+x3
)( x1

1 − ex1

)(
x1 + x2

1 − ex1+x2

)(
x1 + x3

1 − ex1+x3

)(
x1 + x2 + x3

1 − ex1+x2+x3

)

= −(2x1 + x2 + x3) + (terms of degree at least 2)

x1(x1 + x2)(x1 + x3)(x1 + x2 + x3)

· (1 + o(x1)
)(

1 + o(x1 + x2)
)(

1 + o(x1 + x3)
)(

1 + o(x1 + x2 + x3)
)

= (−1)3
(

2x1 + x2 + x3

x1(x1 + x2)(x1 + x3)(x1 + x2 + x3)

)

︸ ︷︷ ︸
s(K;x)

+ (terms of degree at least − 2)

in agreement with our previous computation.
Alternatively, one can obtain H(K;X) and s(K;x) from Proposition 2.5, since we

claim that R = k[K ∩ L] has this complete intersection presentation:

R ∼= S/I = k[U1,U2,U3,U4]/(U1U4 − U2U3).

To see this, start by observing that the map

S = k[U1,U2,U3,U4] ϕ−→ R

Ui �−→ eui

is surjective, since K was covered by the two unimodular cones K1 and K2. Note
that there is a unique (up to scaling) linear dependence

u1 + u4 = u2 + u3 (= 2e1 + e2 + e3) (2.5)
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among {u1, u2, u3, u4}. Hence, I = kerϕ contains the principal ideal (U1U4 −U2U3).
Furthermore, Proposition 2.4 implies that I is generated by binomials of the form
Uα − Uβ where

∑4
i=1 αiui = ∑4

j=1 βjuj . Due to the uniqueness of the depen-
dence (2.5), one must have

α1 = α4 = β2 = β3 > 0 and α2 = α3 = β1 = β4 = 0.

Thus, Uα − Uβ = (U1U4)
α1 − (U2U3)

α1 , which lies in the ideal (U1U4 − U2U3).
Thus, I = kerϕ = (U1U4 − U2U3).

3 Identifying ΨP and ΦP

Recall from the introduction that for a poset P on {1,2, . . . , n}, we wish to associate
two polyhedral cones. The first is

Kwt
P := {

x ∈ R
n+ : xi ≥ xj for i <P j

}

inside the vector space R
n with standard basis e1, . . . , en spanning the appropriate

lattice Lwt = Z
n. The second is

K root
P = R+{ei − ej : i <P j}

inside the codimension one subspace V root ∼= R
n−1 of R

n where the sum of coordi-
nates x1 + · · · + xn = 0. We consider this subspace to have Lebesgue measure nor-
malized to make the basis {e1 − e2, e2 − e3, . . . , en−1 − en} for the appropriate lattice
Lroot ∼= Z

n−1 span a parallelepiped of volume 1.

Proposition 3.1 For any poset P on {1,2, . . . , n}, one has

ΨP (x) :=
∑

w∈L(P )

w

(
1

(x1 − x2)(x2 − x3) · · · (xn−1 − xn)

)
= s

(
K root

P ;x
)
,

ΦP (x) :=
∑

w∈L(P )

w

(
1

x1(x1 + x2)(x1 + x2 + x3) · · · (x1 + · · · + xn)

)
= s

(
Kwt

P ;x
)
.

Proof (Cf. Gessel [14, proof of Theorem 1]) Proceed by induction on the number of
pairs {i, j} in [n] that are incomparable in P . In the base case where there are no such
pairs, P is a linear order, of the form Pw for some w in Sn, with L(Pw) = {w}, and
the cones Kwt

Pw
,K root

Pw
are simplicial and unimodular, having extreme rays spanned by,

respectively,

(ew(1) − ew(2), ew(2) − ew(3), . . . , ew(n−1) − ew(n)) and

(ew(1), ew(1) + ew(2), . . . , ew(1) + ew(2) + · · · + ew(n)).

Thus, Proposition 2.1(v) gives the desired equalities in this case.
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In the inductive step, if i, j are incomparable in P , then either order relation i < j

or the reverse j < i may be added to P (followed by taking the transitive closure), to
obtain two posets Pi<j ,Pj<i . Note that

L(P ) = L(Pi<j ) � L(Pj<i),

and hence,

ΨP (x) = ΨPi<j
(x) + ΨPj<i

(x),

ΦP (x) = ΦPi<j
(x) + ΦPj<i

(x).
(3.1)

It only remains to show that s(K root
P ;x) and s(Kwt

P ;x) satisfy this same recurrence.
If one introduces into the binary relation P both relations i ≤ j and j ≤ i before
taking the transitive closure, then one obtains a quasiorder or preorder that we denote
Pi=j . It is natural to also introduce the (non-full-dimensional) cone Kwt

Pi=j
lying inside

the hyperplane where xi = xj , and the (non-pointed) cone K root
Pi=j

containing the line
R(ei − ej ). One then has these decompositions

Kwt
P = Kwt

Pi<j
∪ Kwt

Pj<i
with Kwt

Pi<j
∩ Kwt

Pj<i
= Kwt

Pi=j
,

K root
Pi=j

= K root
Pi<j

∪ K root
Pj<i

with K root
Pi<j

∩ K root
Pj<i

= K root
P

leading to these relations among characteristic functions of cones:

χKwt
P

+ χKwt
Pi=j

= χKwt
Pi<j

+ χKwt
Pj<i

,

χK root
P

+ χK root
Pi=j

= χK root
Pi<j

+ χK root
Pj<i

.
(3.2)

From this one concludes using Proposition 2.1(vi) that

s
(
Kwt

P ;x
) = s

(
Kwt

Pi<j
;x

) + s
(
Kwt

Pj<i
;x

)
,

s
(
K root

P ;x
) = s

(
K root

Pi<j
;x

) + s
(
K root

Pj<i
;x

)

since Proposition 2.1(i) implies s(Kwt
Pi=j

;x) = s(K root
Pi=j

;x) = 0. Comparing with (3.1),
the result follows by induction. �

Remark 3.2 The parallel between the relations in (3.2) is not a coincidence. It reflects
a general duality [2, Corollary 2.8] relating identities among characteristic functions
of cones Ki and their polar dual cones K∗

i :

∑

i

ciχKi
= 0 if and only if

∑

i

ciχK∗
i

= 0. (3.3)

While it is not true that the cones Kwt
P and K root

P are polar dual to each other, this is
almost true, as we now explain.

The dual space to the hyperplane x1 +· · ·+xn = 0, which is the ambient space for
K root

P is the quotient space R
n/� where � is the line R(e1 + · · ·+ en). Thus, identities
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among characteristic functions of cones K root
P give rise via (3.3) to identities among

the characteristic functions of their dual cones (K root
P )∗ inside this quotient space.

The cone Kwt
P maps via the quotient mapping R

n → R
n/� to the dual cone (K root

P )∗.
Moreover, one can check that the intersection Kwt

P ∩ � is exactly the half-line/ray

�+ := R+(e1 + · · · + en).

Therefore, identities among characteristic functions of the cones (K root
P )∗ “lift” to the

same identity among characteristic functions of the cones Kwt
P .

We are still lying slightly here, since just as in (3.2), one must not only consider
the cones Kwt

P ,K root
P for posets on {1,2, . . . , n}, but also for preposets. See [22, §3.3]

for more on this preposet-cone dictionary for the cones Kwt
P .

We remark also that this duality is the source of our terminology K root,Kwt for
these cones, as the hyperplane x1 + · · · + xn = 0 is the ambient space for the root
lattice of type An−1, while the dual space R

n/� is the ambient space for its dual
lattice, the weight lattice of type An−1.

4 Application: skew diagram posets and Theorem B

Recall from the introduction that to a skew (Ferrers) diagrams D = λ/μ, thought of
as a collection of points (i, j) in the plane occupying rows 1,2, . . . , r numbered top to
bottom, and columns 1,2, . . . , c numbered right to left, we associate a bipartite poset
PD on the set {x1, . . . , xr , y1, . . . , yc} having an order relation xi <PD

yj whenever
(i, j) is a point of D.

We wish to prove Theorem B from the introduction, evaluating ΨPD
(x) for every

skew diagram D. Without loss of generality, we will assume for the remainder of this
section that the skew diagram D is connected in the sense that its poset PD is con-
nected; otherwise both sides of Theorem B vanish (for the left side, via Corollary 5.2,
and for the right side because the sum is empty).

We exhibit a known triangulation for the cone K root
PD

. The cone K root
PD

lives in the
codimension one subspace V root of the product space R

r+c = R
r × R

c with stan-
dard basis vectors e1, . . . , er and f1, . . . , fc, and dual coordinates x1, . . . , xr and
y1, . . . , yc. Here K root

PD
is the nonnegative span of the vectors {ei − fj : (i, j) ∈ D}.

Note that each of these vectors lies in the following affine hyperplane H of V root:

H := {
(x,y) ∈ R

r × R
c : x1 + · · · + xr = 1 and y1 + · · · + yc = −1

}
. (4.1)

Thus, it suffices to triangulate the polytope PD , which is the convex hull of these
vectors inside this affine hyperplane H .

Consider the skew diagram D as the componentwise partial order on its elements
(i, j). One finds that D is a distributive lattice, in which the meet ∧ and join ∨ of
two elements (i, j), (i′, j ′) are their componentwise minimums and maximums:

(i, j) ∧ (
i′, j ′) = (

min
(
i, i′

)
,min

(
j, j ′)),

(i, j) ∨ (
i′, j ′) = (

max
(
i, i′

)
,max

(
j, j ′)).
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Consequently, by Birkhoff’s theorem on the structure of finite distributive lattices
[23, Theorem 3.4.1], the lattice D is isomorphic to the lattice of order ideals for the
subposet Irr(D) of join-irreducible elements of D.

For any finite poset Q, Stanley [24] and before that, Geissinger [13] considered
a convex polytope called the order polytope of O(Q), which one can think of as the
convex hull within R

Q of the characteristic vectors of order ideals of Q; see [24,
Corollary 1.3].

Proposition 4.1 The convex hull PD of the vectors {ei − fj : (i, j) ∈ D} is affinely
isomorphic to the order polytope O(Irr(D)) for the poset Irr(D).

Proof Identify the join-irreducibles (i, j) in Irr(D) with basis vectors

ε1, . . . , εr−1, φ1, . . . , φc−1

in R
r−1 × R

c−1 as follows:

• if (i, j) covers (i − 1, j), identify (i, j) with εi−1,
• if (i, j) covers (i, j − 1), identify (i, j) with φj−1.

One can then check that a general element (i, j) of D corresponds to an order ideal
in Irr(D) whose elements are identified with {ε1, . . . , εi−1, φ1, . . . , φj−1}. Thus, the
order polytope O(Irr(D)) is simply the convex hull of vectors

{
ε1 + · · · + εi−1 + φ1 + · · · + φj−1 : (i, j) ∈ D

}
.

The linear morphism

ψ :
R

r × R
c −→ R

r−1 × R
c−1,

ei �−→ ε1 + · · · + εi−1,

fj �−→ φ1 + · · · + φj−1,

restricts to an affine isomorphism H → R
r−1 × R

c−1 sending ei − fj to

ε1 + · · · + εi−1 + φ1 + · · · + φj−1.

Therefore, ψ restricts further to an isomorphism between PD and O(Irr(D)). �

Corollary 4.2 For any skew diagram D, the cone K root
PD

has a triangulation into
unimodular cones Kπ indexed by lattice paths π from (1,1) to (r, c). Furthermore,
the extreme rays of Kπ are spanned by the vectors {ei − fj }(i,j)∈π .

Consequently, as asserted in Theorem B, one has

ΨPD
(x) =

∑

π

1∏
(i,j)∈π (xi − yj )

=
∑

π

∏
(i,j)∈D\π(xi − yj )∏

(i,j)∈D(xi − yj )
.

In particular, when D is the Ferrers diagram D of a partition λ, one has

ΨPD
(x) = Sŵ(x,y)

Sw(x,y)
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where Sw(x,y),Sŵ(x,y) are the double Schubert polynomials for the dominant per-
mutation w having Lehmer code λ = (λ1, . . . , λr ), and the vexillary permutation ŵ

having Lehmer code λ̂ := (0, λ2 − 1, . . . , λr − 1).

Proof Stanley [24, §5] describes a triangulation of the order polytope O(Q) whose
maximal simplices correspond to linear extensions π of Q or to maximal chains π in
the distributive lattice of order ideals J (Q). For Q = Irr(D), so that J (Q) = D, these
linear extensions π correspond to lattice paths from (1,1) to (r, c) in the diagram D.
Here the vertices spanning the maximal simplex in the triangulation corresponding to
π are the characteristic vectors of the order ideals on the chain π .

Thus, one obtains a corresponding triangulation for the polytope, which is the
intersection of K root

PD
with the affine hyperplane in (4.1), in which the vertices of the

maximal simplex corresponding to π are {ei −fj : (i, j) ∈ π}. Looking instead at the
positive cone Kπ := {ei − fj : (i, j) ∈ π} spanned by these vectors therefore gives a
triangulation of the cone K root

PD
.

The cones Kπ are unimodular: one can easily check, via induction on r +c, that for
any lattice path π from (1,1) to (r, c), the Z-linear span of the vectors {ei −fj }(i,j)∈π

contains all vectors of the form

ei − ej for 1 ≤ i �= j ≤ r,

fi − fj for 1 ≤ i �= j ≤ c,

ei − fj for 1 ≤ i ≤ r and 1 ≤ j ≤ c.

Therefore by Proposition 3.1 and Proposition 2.1(vi), one has

ΨPD
= s

(
K root

PD
;x

) =
∑

π

s(Kπ ;x)

=
∑

π

1∏
(i,j)∈π (xi − yj )

=
∑

π

∏
(i,j)∈D\π(xi − yj )∏

(i,j)∈D(xi − yj )
.

When D is the Ferrers diagram of a partition λ, this denominator product∏
(i,j)∈D(xi − yj ) is the double Schubert polynomial Sw(x,y) for the dominant per-

mutation w that has Lehmer code λ; see, e.g., [18, §9.4], [19, (6.14)], or one can
argue similarly to the argument for the numerator sum given in the next paragraph.

There are various ways to identify the numerator sum
∑

π

∏
(i,j)∈D\π(xi − yj ) as

Sŵ(x,y). One way is to check that each lattice path π in D gives rise as follows to
a reduced pipe dream for ŵ in the terminology of Knutson and Miller [17] (see also
[21, §16.1]): the +’s occur with the (row, column) indices (i, j) given by the lattice
points not visited by π . Thus, the numerator sum is the expansion of Sŵ(x,y) as a
sum over reduced pipe dreams for ŵ; see Fomin and Kirillov [12, Proposition 6.2],
or Miller and Sturmfels [21, Corollary 16.30]. �

Example 4.3 Consider the skew diagram

D = (4,4,2)/(1,1,0) =
· • • •
· • • •
• •
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whose rows and columns we index as follows:

y4 y3 y2 y1
x1 · (1,3) (1,2) (1,1)

x2 · (2,3) (2,2) (2,1)

x3 (3,4) (3,3)

Thinking of D as a distributive lattice via the componentwise order on the la-
bels (i, j), one can label its five join-irreducibles Irr(D) by the basis vectors
ε1, ε2, ε3, φ1, φ2 as in the above proof:

· ε2 ε1 •
· • • φ1
ε3 φ2

The poset Q of join-irreducible elements of D has the following Hasse diagram:

In this way, the elements of D correspond to the order ideals of Q and to the vertices
of the order polytope O(Irr(D)) as follows:

· ε1+ε2 ε1 0

· ε1+ε2+φ1

ε1+φ1
φ1

ε1+ε2+ε3+φ1+φ2

ε1+ε2+φ1+φ2

There are three paths π from (1,1) to (r, c) = (4,3), giving rise to the three terms in
ΨPD

(x):

· (1,3) (1,2) (1,1)

· (2,3)

(3,4) (3,3)

1
(x1−y1)(x1−y2)(x1−y3)(x2−y3)(x3−y3)(x3−y4)

· · (1,2) (1,1)

· (2,3) (2,2)

(3,4) (3,3)

+ 1
(x1−y1)(x1−y2)(x2−y2)(x2−y3)(x3−y3)(x3−y4)

· · · (1,1)

· (2,3) (2,2) (2,1)

(3,4) (3,3)

+ 1
(x1−y1)(x2−y1)(x2−y2)(x2−y3)(x3−y3)(x3−y4)
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5 Extreme rays and Theorem C

Our goal here is to identify the extreme rays of the cones Kwt
P ,K root

P . Once achieved,
this gives the denominators of ΨP (x),ΦP (x) and allows one to decide when the cones
are simplicial, leading to Theorem C.

Recall that an order ideal of a poset P is a subset J of its elements such that, for
any pair i, j of comparable elements (i ≤P j ), if j ∈ J , then i ∈ J .

Proposition 5.1 Let P be a poset on {1,2, . . . , n}.
(i) The cone K root

P has extreme rays spanned by {ei − ej }i�P j .

(ii) The cone Kwt
P has extreme rays spanned by the characteristic vectors

eJ := χJ =
∑

j∈J

ej

for the connected nonempty order ideals J in P .

Proof For (i), note that K root
P is the cone nonnegatively spanned by {ei −ej : i <P j},

and since i <P j <P k implies

ei − ek = (ei − ej ) + (ej − ek) ∈ R+{ei − ej , ej − k},
its extreme rays must be spanned by some subset of {ei − ej : i �P j}. On the other
hand, for each covering relation i �P j , one can exhibit a linear functional f that
vanishes on ei − ej and is strictly negative on the rest of the vectors spanning K root

P

as follows. Choose a linear extension w = (w(1), . . . ,w(n)) in L(P ) such that i, j

appear adjacent in the linear order, say w(k) = i and w(k + 1) = j , and define the
functional f : R

n → R by the values

f (ew(m)) = m for m = 1,2, . . . , k − 1;
f (ew(k)) = f (ei) = k = f (ej ) = f (ew(k+1));

f (ew(m)) = m − 1 for m = k + 2, k + 3, . . . , n.

For (ii), note that Kwt
P is described by the system of inequalities

{
xi ≥ 0 for all i;
xi ≥ xj for i <P j.

We first claim that Kwt
P is the nonnegative span of characteristic vectors eJ for order

ideals J of P : if x = (x1, . . . , xn) lies in Kwt
P , and its coordinates xi take on the

distinct positive values c1 < c2 < · · · < ct , then (setting c0 := 0), one has

x =
t∑

r=1

(cr − cr−1)eJr

where Jr is the order ideal of P defined by

Jr := {
j ∈ {1,2, . . . , n} : xj ≥ cr

}
.
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Furthermore, if an order ideal J of P decomposes into connected components as
J = �iJ

(i), then each J (i) is itself a (connected) order ideal, and eJ = ∑
i eJ (i) .

Therefore, the extreme rays of the cone must be spanned by some subset of the
vectors eJ for connected order ideals J . On the other hand, for any connected order
ideal J , one can exhibit the line ReJ spanned by eJ as the intersection of n − 1 lin-
early independent hyperplanes that come from inequalities valid on Kwt

P as follows.
Consider the Hasse diagram for J as a connected graph and pick a spanning tree T

among its edges. Then the line ReJ is the set of solutions to the system

{
xi = 0 for i /∈ J ;
xi = xj for i �P j or i �P j with {i, j} ∈ T . �

Proposition 2.1 then immediately implies the following:

Corollary 5.2 Let P be a poset on {1,2, . . . , n}.
(i) If P is disconnected, then the cone K root

P is not full-dimensional, and ΨP (x) = 0.
If P is connected, the cone K root

P is full-dimensional, and the smallest denomi-
nator for ΨP (x) is

∏
i�P j (xi − xj ).

(ii) The cone Kwt
P is always full-dimensional, and the smallest denominator for

ΦP (x) is
∏

J (
∑

j∈J xj ) where the product runs over all connected order ide-
als J in P .

Theorem C is now simply a consequence of the analysis of the simplicial cases.

Corollary 5.3 The cone K root
P is simplicial if and only if the Hasse diagram for P

contains no cycles. In this case it is also unimodular. Hence, the Hasse diagram for P

is a spanning tree on {1,2, . . . , n} if and only if

ΨP (x) = 1∏
i�P j (xi − xj )

.

The cone Kwt
P is simplicial if and only if P is a forest in the sense that every

element is covered by at most one other element. In this case it is also unimodular.
Hence, P is a forest if and only if

ΦP (x) = 1∏n
i=1(

∑
j≤P i xj )

.

Proof According to Proposition 5.1, the extreme rays of the cone K root
P are the vec-

tors {ei −ej : i �P j}, which are linearly independent if and only if there are no cycles
in the Hasse diagram for P . Furthermore, when there are no such cycles, an easy leaf
induction shows that the cone is unimodular. The rest of the assertions follow.

To analyze Kwt
P , first note that when P is a forest, the connected order ideals of P

are exactly the principal order ideals P≤i := {j : j ≤P i} for i = 1,2, . . . , n. Not only
are their characteristic vectors eP≤i

linearly independent, but if one orders the labels i
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according to any linear extension of P , one finds that these vectors eP≤i
form the

columns of a unitriangular matrix, which is therefore unimodular.
When P is not a forest, it remains to show that the cone Kwt

P cannot be simplicial.
There must exist two elements i, j incomparable in P whose principal order ideals
have nonempty intersection P≤i ∩ P≤j . Decompose P≤i ∩ P≤j = �t

�=1J
(�) into its

connected components J (�). Then each of these components J (�) will be a nonempty
connected ideal, as will be P≤i , P≤j and their union P≤i ∪ P≤j . This leads to the
following linear relation:

eP≤i
+ eP≤j

= eP≤i∪P≤j
+

t∑

i=1

eJ (�) .

Since Proposition 5.1 implies the vectors involved in this relation all span extreme
rays of the cone Kwt

P , the cone is not simplicial in this case. �

An interesting special case of the preceding result leads to a special role played by
dominant or 132-avoiding permutations when considering posets of order dimension
two, that is, the subposets of the componentwise order on R

2. Björner and Wachs [5,
Theorems 6.8, 6.9] showed that P has order dimension two if and only if one can
relabel the elements i in [n] so that L(P ) forms a principal order ideal [e,w] in the
weak Bruhat order on Sn.

Corollary 5.4 When L(P ) = [e,w] for some permutation w, the cone Kwt
P is sim-

plicial if and only if w is 132-avoiding.

Proof When L(P ) = [e,w], one can check that P has the following order rela-
tions: i <P j exactly when i <Z j and (i, j) are noninversion values for w, that is,
w−1(i) < w−1(j), or i appears earlier than j in the list notation (w(1), . . . ,w(n)).

By Corollary 5.3, the cone P is not simplicial if and only if P is not a forest, that
is, if and only if there exist i, j which are incomparable in P and have a common
lower bound h <P i, j . Hence, by the previous paragraph, one must have h <Z i and
h <Z j , with h appearing earlier than both i, j in the list notation for w. Without loss
of generality, i <Z j by reindexing, and then the incomparability of i, j in P forces
j to appear earlier than i in the list notation. That is, h <Z i <Z j occur in the order
(h, j, i) within w, forming an occurrence of the pattern (1,3,2). �

Example 5.5 Among the permutations w in S3, five out of the six are dominant or
132-avoiding; only w = (1,3,2) is not. It has [e,w] = L(P ) = {(1,2,3), (1,3,2)},
and Kwt

P is the nonsimplicial cone considered in Example 2.6, having extreme rays
spanned by {e1, e1 + e2, e1 + e3, e1 + e2 + e3}, and

s(K;x) = 2x1 + x2 + x3

x1(x1 + x2)(x1 + x3)(x1 + x2 + x3)
.
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6 P -partitions, forests, and the Hilbert series for Kwt
P

We digress here to discuss the Hilbert series for the affine semigroup K ∩ L for the
cone K = Kwt

P inside the lattice L = Lwt. Analyzing this when P is a forest leads to
a common generalization of both Theorem C and the “maj” hook formula for forests
of Björner and Wachs.

One can think of K ∩L as the semigroup of weak P -partitions in the sense of Stan-
ley [23, §4.5], namely functions f : P → N which are order-reversing: f (i) ≥ f (j)

for i <P j. Within this semigroup K ∩ L, Stanley also considers the semigroup ideal
A(P ) of P -partitions (in the strong sense), that is, those order-reversing functions
f : P → N which in addition satisfy the strict inequality f (i) > f (j) whenever (i, j)

is in the descent set

Des(P ) := {
(i, j) : i �P j and i >Z j

}
.

The main lemma of P -partition theory [23, Theorem 7.19.4] asserts the disjoint de-
composition2

A(P ) =
⊔

w∈L(P )

A(w).

Equivalently, in terms of the Hilbert series of the semigroup ideal A(P ) defined by

H
(

A(P );X
) :=

∑

f ∈A(P )

Xf

where Xf := ∏n
i=1 X

f (i)
i , this says that

H
(

A(P );X
) =

∑

w∈L(P )

H
(

A(Pw),X
)
. (6.1)

This simple equation is more powerful than it looks at first glance. Define the notation
XA := ∏

j∈A Xj for subsets A ⊂ {1,2, . . . , n}.

Proposition 6.1 For any forest poset P on {1,2, . . . , n}, one has

H
(

A(P );X
) =

∏
(i,j)∈Des(P ) XP≤i

∏n
i=1(1 − XP≤i )

. (6.2)

In particular, (6.1) becomes

∏
i∈Des(P ) XP≤i

∏n
i=1(1 − XP≤i )

=
∑

w∈L(P )

∏
i:wi>wi+1

X{w1,w2,...,wi }
∏n

i=1(1 − X{w1,w2,...,wi })
. (6.3)

2This disjoint decomposition is closely related to the triangulation of Kwt
P

that appeared implicitly in the
proof of Proposition 3.1, modeled on Gessel’s proof of the main P -partition lemma in [14, Theorem 1]).
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Proof When P is a forest, we claim that A(P ) is actually a principal ideal within
K ∩ L, generated by the P -partition f0 for which f0(i) is the number of descent
edges encountered along the unique path in the Hasse diagram from i to a maximal
element of P . Alternatively f0 is the sum of characteristic functions of the subtrees
P≤i for which one has (i, j) in Des(P ) (here j is the unique element covering i in P ).
In other words, A(P ) = f0 + K ∩ L, and consequently,

H
(

A(P );X
) = Xf0 · H(K;X) =

(
∏

(i,j)∈Des(P )

XP≤i

)
· H(K;X).

But then Corollary 5.3 implies that K ∩ L is a unimodular cone having extreme rays
spanned by the characteristic vectors of the subtrees P≤i , and hence,

H(K;X) =
n∏

i=1

(
1 − XP≤i

)
. (6.4)

The rest follows from the observation that when one considers a permutation w as
a linearly ordered poset Pw having w(1) <Pw · · · <Pw w(n), it is an example of a
forest, in which P≤i = {w(1),w(2), . . . ,w(i)}. �

This has two interesting corollaries. The first is that by applying the total residue
operator discussed in Sect. 2.4 to (6.4), one obtains a second derivation of Theorem C.

The second is that by setting Xj = q for all j in (6.3), one immediately deduces
the major index q-hook formula for forests of Björner and Wachs [5, Theorem 1.2]:

Corollary 6.2 When P is a forest,

∑

w∈L(P )

qmaj(w) = qmaj(P ) [n]!q∏n
i=1[h(i)]q

where

maj(P ) :=
∑

(i,j)∈Des(P )

|P≤i |,

h(i) := |P≤i |,

[n]q := 1 − qn

1 − q
= 1 + q + q2 + · · · + qn−1,

[n]!q := [n]q [n − 1]q · · · [2]q [1]q .

7 Generators for the affine semigroups

The two families of cones K root
P ,Kwt

P share a pleasant property: the generating sets
for their affine semigroups are as small as possible. This will be used in Sect. 8.
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Proposition 7.1 For P any poset on {1,2, . . . , n}, both cones K = K root
P ,Kwt

P , and
the appropriate lattices L = Lroot,Lwt have the affine semigroup K ∩L generated by
the primitive lattice vectors (the vectors nearest the origin) lying on the extreme rays
of K .

Proof It suffices to produce a triangulation of K into unimodular cones, each of
whose extreme rays is a subset of these extreme rays of K .

For K root
P , this essentially follows from the fact that the root system of type An−1

is totally unimodular—every simplicial cone generated by a subset of roots ei − ej is
a unimodular cone. Thus, one can pick such a triangulation of K root

P into simplicial
subcones K introducing no new extreme rays arbitrarily, as in [23, Lemma 4.6.1].

For Kwt
P , one must be more careful in producing a triangulation of Kwt

P into uni-
modular cones introducing no new extreme rays.3

Proceed as in the proof of Proposition 3.1 via induction on the number |L(P )| of
linear extensions, but using as base cases the situation where P is a forest, so that
Kwt

P is a unimodular cone by Corollary 5.3.
In this inductive step, assuming that P is not a forest, there exist two elements i, j

which are incomparable in P with a common lower bound h <P i, j . As in the proof
of Proposition 3.1, one has

L(P ) = L(Pi<j ) � L(Pj<i)

and hence a decomposition

KL(P ) = KL(Pi<j ) ∪ KL(Pj<i ). (7.1)

Note that induction applies to both Pi<j and Pj>i since they have fewer linear ex-
tensions. By the symmetry between i and j , it only remains to show that the extreme
rays of KL(Pi<j ) are a subset of those for KL(P ), or equivalently, that any subset
J ⊆ [n] which induces a connected order ideal of Pi<j will also induce a connected
order ideal of P .

First note that J will also be an order ideal in P , since P has fewer order relations
than Pi<j . Given any two elements a, b in J , there will be a path

a = a0, a1, . . . , am = b (7.2)

in J where each pair a�, a�+1 are comparable in Pi<j . If any pair a�, a�+1 are incom-
parable in P , this means either a� ≤ i and j ≤ a�+1, or the same holds swapping the
indices �, �+ 1. In either case, j must also lie in the ideal J of Pi<j , and hence h and
i lie in J too. Thus, one can replace the single step (a�, a�+1) in the path (7.2) with
the longer sequence (a�, i, h, j, a�+1) of steps, or the same swapping the indices �,
� + 1. �

3It is not clear, a priori, that every simplicial cone spanned by a subset of the extreme rays of Kwt
P

is
unimodular, e.g. consider the cone spanned by these three rays: e1 + e2, e1 + e3, e2 + e3.
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8 Analysis of the semigroup for Kroot
P

In the following subsections, we focus on the cone K = K root
P with lattice L = Lroot

and attempt to analyze the structure of the affine semigroup K ∩ L and its semigroup
ring R = k[K ∩ L] over a field k. Ultimately this leads to Corollary 8.10, giving a
complete intersection presentation for R when the poset P is strongly planar, lifting
Greene’s Theorem A from the introduction to a statement about affine semigroup
structure.

8.1 Generating the toric ideal

The affine semigroup R = k[K ∩L] is naturally a subalgebra of a Laurent polynomial
algebra

R = k
[
ti t

−1
j

]
i<P j

⊂ k
[
t1, t

−1
1 , . . . , tn, t

−1
n

]
.

On the other hand, recall from Proposition 7.1 that the affine semigroup K ∩ L is
generated by the primitive vectors {ei − ej : i �P j} on its extreme rays. Therefore,
one can present R as a quotient via the surjection

S := k[Uij ]i�P j −→ R

Uij �−→ ti t
−1
j .

Defining as in Sect. 2.5 the toric ideal I := ker(S → R), one has R ∼= S/I .
It therefore helps to know generators for I in analyzing R and trying to compute

its Hilbert series. As in Proposition 2.4, I is always generated by certain binomials.
However, there is a smaller generating set of binomials available in this situation.

Say that a set of edges C in the (undirected) Hasse diagram for P forms a circuit4

if they can be directed to form a cycle, and they are minimal with respect to inclusion
having this property. Having fixed a circuit C and having fixed one of the two ways to
orient C as a directed cycle, say that an edge {i, j} of C having i �P j goes with C if
{i, j} is directed toward j in C and goes against C otherwise. Define two monomials

W(C) :=
∏

i�P j with C

Uij ,

A(C) :=
∏

i�P j against C

Uij

and define the circuit binomial

U(C) := W(C) − A(C).

Proposition 8.1 For any poset P on [n], the toric ideal I = ker(S → R) where
S = k[Uij ]i�P j is generated by the circuit binomials {U(C)} as C runs through all
circuits of the undirected Hasse diagram of P .

4Sometimes these are called simple cycles.
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Proof Proposition 2.4 says that I is generated by binomials of the form

∏

i�P j

U
aij

ij −
∏

i�P j

U
bij

ij (8.1)

where aij , bij are nonnegative integers such that

∑

i�P j

aij (ei − ej ) =
∑

i�Pj

bij (ej − ei)

or equivalently
∑

i�P j

aij (ei − ej ) − bij (ej − ei) = 0.

In looking for a smaller set of generators for I , note that one may assume that if
aij �= 0, then bij = 0, else one could cancel factors of Uij from the binomial in (8.1).
This means that the nonnegative integers aij , bi,j can be thought of as the multi-
plicities on a collection C of directed arcs that either go up or down along edges
in P , with the C -indegree equalling the C -outdegree at every vertex. Thus, C can be
decomposed into collections supported on various circuits C1, . . . ,Ct of edges (al-
lowing multiplicity among the Ci ). One then finds that the binomial (8.1) lies in the
ideal generated by the circuit binomials {U(Ci)}ti=1 using the following calculation
and induction on t :

∏

i�P j

U
aij

ij −
∏

i�P j

U
bij

ij =
t∏

i=1

W(Ci) −
t∏

i=1

A(Ci)

= (
W(C1) − A(C1)

)
︸ ︷︷ ︸

U(C1)

t∏

i=2

W(Ci)

+ A(C1)

(
t∏

i=2

W(Ci) −
t∏

i=2

A(Ci)

)
.

�

For example, using this (together with Proposition 2.5) allows one to immediately
compute H(K root

P ;X) and ΨP (x) = s(K root
P ;x) in the case where the Hasse diagram

of P has only one circuit, as done for ΨP by other means in [7, 9].

Corollary 8.2 Let P be a poset whose Hasse diagram has only one circuit C. Con-
sidering the elements on C as a subposet, let max(C) and min(C) denote its maximal
and minimal elements.

Then the complete intersection presentation R = k[K ∩ L] ∼= S/(U(C)) implies

H(KP ;X) =
(

1 −
∏

i∈min(C)

Xi ·
∏

j∈max(C)

X−1
j

)
1

∏
i�P j (1 − XiX

−1
j )

,
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ΨP (x) =
(

∑

i∈min(C)

xi −
∑

j∈max(C)

xj

)
1∏

i�P j (xi − xj )
,

assuming that P is connected for the latter formula.

8.2 The biconnected component reduction

Since the ideal I = ker(S → R) is generated by the circuits within the undirected
Hasse diagram for P , decomposing the Hasse diagram into its biconnected compo-
nents provides a reduction in understanding the structure of R, which we explain
next.

First we recall the notion of biconnected components in an undirected graph G =
(V ,E). Say that two edges are circuit-equivalent if there is a circuit C of edges that
passes through both. Consider the equivalence classes Ei of the transitive closure of
this relation.5 If Vi is the set of vertices which are at least the extremity of one edge
in Ei , let the biconnected components of G be the subgraphs Gi = (Vi,Ei).

Corollary 8.3 If the Hasse diagram for P has biconnected components P1, . . . ,Pt

(regarding each as the Hasse diagram for a poset P�), then one can express the
semigroup ring RP for P as a tensor product of graded k-algebras:

RP
∼= RP1 ⊗k · · · ⊗k RPt ,

and therefore

H
(
K root

P ;X
) =

t∏

�=1

H(KP�
;X);

ΨP (x) =
t∏

�=1

ΨP�
(x).

Proof Express RP as S/I . Since every edge of the Hasse diagram lies in a unique bi-
connected component Pi (1 ≤ i ≤ t), one has S ∼= ⊗t

�=1SP�
with SP�

:= k[Uij ]i�P�
j .

Since each circuit C is supported on a set of edges that lies within a single bicon-
nected component P�, Proposition 8.1 implies I = ⊕t

�=1 IP�
where IP�

is the toric
ideal ker(SP�

→ RP�
). The first assertion follows, and the remaining assertions follow

from the first. �

Remark 8.4 The argument above works in a more general context. Namely, if the
ambient vector space V , lattice L, and cone K have compatible direct sum decom-
positions

V = V1 ⊕ · · · ⊕ V�,

5Actually, this relation is already transitive, although we will not need this here.
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L = L1 ⊕ · · · ⊕ L�,

K = K1 ⊕ · · · ⊕ K�,

then the semigroup ring R := k[K ∩ L] has a tensor product decomposition

R ∼= R1 ⊗k · · · ⊗k R�,

where Ri = k[Ki ∩ Li] for i = 1, . . . , �.

8.3 Notches and disconnecting chains

Note that Corollary 8.3 provides a somewhat trivial sufficient condition for ΨP (x) to
factor. Our goal here is a less trivial such condition on P , including a ring-theoretic
explanation of the factorization due to disconnecting chains from [9, Theorem 7.1].
This is provided by the following operation, which sometimes applies to the Hasse
diagram for P .

Definition 8.5 In a finite poset P , say that a triple of elements (a, b, c) forms a
notch of ∨-shape (dually, a notch of ∧-shape) if a �P b, c (dually, a �P b, c) and,
in addition, b, c lie in different connected components of the poset P \ P≤a (dually,
P \ P≥a).

When (a, b, c) forms a notch of either shape in a poset P , say that the quotient
poset P̄ := P/{b ≡ c}, having one fewer element and one fewer Hasse diagram edge,
is obtained from P by closing the notch, and that P is obtained from P̄ by opening a
notch.

It should be noted that when (a, b, c) forms a ∨-shaped notch, the two elements
b, c have no common upper bounds in P . This eliminates several pathologies which
could occur in the formation of the quotient poset P̄ = P/{b ≡ c}, e.g., double edges
other than the edge {a, b}, {a, c}, oriented cycles, and creation of a new edge in the
quotient that is the transitive closure of other edges.

For example, in Fig. 1, the poset P2 contains a notch of ∨-shape (3,5,5′), and the
poset P1 is obtained from P2 by closing this notch.

We state the following result relating K root
P̄

,K root
P in the case where the notch is

∨-shaped; the result for a ∧-shaped notch is analogous.

Theorem 8.6 When P̄ is obtained from P closing a ∨-shaped notch (a, b, c), the
affine semigroup ring RP̄ is obtained from the ring RP by modding out the nonzero
divisor tat

−1
b − tat

−1
c :

RP̄
∼= RP /(tat

−1
b − tat

−1
c ). (8.2)

In particular,

H
(
K root

P̄
;X

) = (
1 − XaX

−1
b

)[
H

(
K root

P ;X
)]

Xb=Xc
,

ΨP̄ (x) = (xa − xb)
[
ΨP (x)

]
xb=xc

,
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Fig. 1 Examples of opening
and closing notches

so that ΨP̄ (x) and [ΨP (x)]xb=xc
have exactly the same numerator polynomials when

written over the denominator
∏

i�P̄ j (xi − xj ), and a complete intersection presen-
tation for RP leads to such a presentation for RP̄ .

Example 8.7 Before delving into the proof, we illustrate how Theorem 8.6, together
with some of the foregoing results, helps to analyze the ring RP , as well as the Hilbert
series H(K root

P ;X) and hence ΨP (x).
Consider the posets shown in Fig. 1. As mentioned earlier, P1 is obtained from

P2 by closing the ∨-shaped notch 3 < 5,5′. In addition, P2 is obtained from P3 by
closing the ∨-shaped notch 1 < 3,3′. Lastly, note that P4,P5 are the two biconnected
components of P3.

In analyzing RP1 , therefore, one can start with P4,P5, which each have a unique
circuit, and apply Corollary 8.2 to write down these simple (complete intersection)
presentations:

RP4
∼= k[U12,U25,U13,U35]/(U12U25 − U13U35),

RP5
∼= k[U13′ ,U16,U3′5′ ,U45′ ,U46]/(U13′U3′5′U46 − U16U45′).

Applying Corollary 8.3 yields the following tensor product (complete intersection)
presentation for RP3 :

RP3
∼= RP4 ⊗ RP5

∼= k[U12,U25,U13,U35,U13′ ,U16,U3′5′ ,U45′ ,U46]
/(U12U25 − U13U35, U13′U3′5′U46 − U16U45′).

Applying Theorem 8.6 to close the notch at 1 < 3,3′ yields the following complete
intersection presentation for RP2 :

RP2
∼= k[U12,U25,U13,U35,U16,U35′ ,U45′ ,U46]

/(U12U25 − U13U35, U13U35′U46 − U16U45′).
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Applying Theorem 8.6 once more to close the notch at 3 < 5,5′ yields the following
complete intersection presentation for RP1 :

RP1
∼= k[U12,U25,U13,U35,U16,U45,U46]

/(U12U25 − U13U35, U13U35U46 − U16U45).

Consequently, from Theorem 2.5 one has

H
(
K root

P1
;X

) = (1 − X1X
−1
5 )(1 − X1X4X

−1
5 X−1

6 )
∏

i�P1j (1 − XiX
−1
j )

,

ΨP1(x) = (x1 − x5)(x1 + x4 − x5 − x6)∏
i�P1 j (xi − x−1

j )
.

Proof of Theorem 8.6 Define SP := k[Uij ]i�P j , so that

RP := k
[
K root

P ∩ Lroot] ∼= SP /IP

where IP is the kernel of the map SP → RP sending Uij to ti t
−1
j .

Define a map SP
φ→ RP̄ sending most variables Uij to ti t

−1
j , except that both

Uab,Uac get sent to tat
−1
b . We wish to describe the ideal J := ker(SP → RP̄ ) and in

particular to show that

J = IP + (Uab − Uac). (8.3)

This would imply (8.2): the map φ is surjective since it hits a set of generators for RP̄ ,
and hence

RP̄
∼= SP /J

= SP /
(
IP + (Uab − Uac)

)

∼= (SP /IP ) /
(
Ūab − Ūbc

)

∼= RP /
(
tat

−1
b − tat

−1
c

)
.

To prove the equality of ideals asserted in (8.3), one checks that the two ideals
are included in each other. The inclusion IP + (Uab − Uac) ⊆ J is not hard: both
Uab,Uac are sent by φ to tat

−1
b , so the binomial Uab −Uac is in the kernel J , and since

circuits C in the directed graph P remain circuits in the quotient directed graph P̄ ,
Proposition 8.1 implies the inclusion IP ⊆ J .

For the reverse inclusion J ⊆ IP + (Uab − Uac), first note that one can reinterpret
the ideal J : it is the toric ideal for the presentation of the semigroup RP̄ in which
the Hasse diagram edge a �P̄ bc has been “doubled” into two parallel directed edges
associated with the same monomial tat

−1
b , but hit by two variables Uab,Uac from SP .

Denote by P̄ + this directed graph obtained from the Hasse diagram for P̄ by doubling
this edge. The definition of P̄ + is illustrated on Fig. 2.
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Fig. 2 An example of P, P̄ , P̄+

The analysis from Proposition 8.1 then shows that J is generated by the circuit
binomials U(C) as C runs through the circuits of P̄ +.

It remains to show that for every circuit C in the directed graph P̄ +, the circuit
binomial U(C) lies in IP + (Uab − Uac).

If this circuit C in P̄ + does not pass through the collapsed vertex bc in P̄ +, then
C is also a circuit in P , and hence U(C) already lies in IP .

If this circuit C does pass through vertex bc, we distinguish two cases. Consider
the partition of the set Ebc = Eb � Ec of edges incident to bc in P̄ +, where Eb (resp.
Ec) is the subset of edges whose preimage in P is incident to b (resp. c). If the two
edges of C incident to bc lie in the same set of this partition, then, as before, C is
also a circuit in P , and hence U(C) already lies in IP .

Consider now the last case where C does pass through vertex bc, but the two edges
of C incident to bc lie respectively in Eb and Ec. Since b, c lie in different connected
components of P \ P≤a , the circuit C must pass through at least one vertex d ≤P a.
Use this to create two directed cycles Cb,Cc in P :

• Cb follows b to d along the same path πbd chosen by C, then follows d to a along
any saturated chain πda in P between them, and finally from a to b.

• Cc follows a to d reversing the same saturated chain πda , then follows d to c along
the same path πdc chosen by C, and finally goes from c to a.

One then has the following relation in SP :

U(C) = U(Cb) · W(πdc)

+ U(Cc) · A(πbd)

+ (Uab − Uac) · W(πdc) · A(πbd) · W(πda) (8.4)

where for a path π of edges in the Hasse diagram, one defines monomials

W(π) :=
∏

i�P j :
i→j appears in π

Uij ,A(π)

:=
∏

i�P j :
i←j appears in π

Uij .

Relation (8.4) shows that U(C) lies in IP + (Uab − Uac), as desired.
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For the remaining assertions, note that since RP is a subalgebra of the Laurent
polynomial ring, it is an integral domain, and therefore tat

−1
b − tat

−1
c is a nonzero

divisor of RP . After identifying the grading variables xb = xc , this element tat
−1
b −

tat
−1
c becomes homogeneous of degree ea − eb . �

Opening notches in a poset P provides a flexible way to understand some pre-
viously observed factorizations of the numerator of ΨP (x), while at the same time
giving information about the semigroup ring k[K root

P ∩ Lroot
P ] and its Hilbert series.

Example 8.8 One way to explain the factorization of the numerator of ΨP (x) for the
example from [9, Fig. 2] is to successively “open two notches,” as shown here

and then apply Corollary 8.3 to the poset on the right, which has two biconnected
components.

Example 8.9 In [9, §7] it was explained how a disconnecting chain

σ = (p1 �P p2 �P · · · �P pt−1 � pt )

in P , that is, one for which P \ σ has several connected components, leads to a
factorization of the numerator of ΨP (x) into factors indexed by each such compo-
nent. After fixing one of the connected components Q of P \ σ , one can use several
operations of opening notches, beginning with one that creates two elements pt ,p

′
t

covering pt−1, and continuing down the chain σ , to “peel off” a copy of Q � σ until
it is attached to P \Q only at the vertex p1. At this stage use Corollary 8.3, to recover
the factorization of [9, Theorem 7.1].

We omit a detailed discussion to avoid the use of heavy notation. However, Exam-
ple 8.7 illustrates the principle.

Lastly, one can use this to deduce a stronger form of Theorem A from the introduc-
tion. For a strongly planar poset P and a bounded region ρ of the plane enclosed by
its Hasse diagram, recall that min(ρ),max(ρ) denote the P -minimum, P -maximum
elements among the elements of P lying on ρ. Name the elements on the unique two
maximal chains from min(ρ) to max(ρ) that bound ρ as follows:

min(ρ) =: i0 �P i1 �P · · · �P ir−1 �P ir := max(ρ),

min(ρ) =: j0 �P j1 �P · · · �P js−1 �P js := max(ρ).
(8.5)
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Lastly, let fρ be the following binomial in the polynomial algebra S := k[Uij ]i�P j :

fρ :=
r∏

p=1

Uip−1ip −
s∏

q=1

Ujq−1jq .

In other words, fρ is the circuit binomial U(C) for the directed circuit C that goes
up and down the two maximal chains in (8.5) bounding ρ.

Corollary 8.10 For any strongly planar poset P on {1,2, . . . , n}, one has a complete
intersection presentation for its semigroup ring k[K root

P ∩ Lroot] as the quotient S/I

where S := k[Uij ]i�P j , and I is the ideal generated by the {fρ} as ρ runs through
all bounded regions for the Hasse diagram of P .

Consequently,

H
(
K root

P ;X
) =

∏
ρ(1 − Xmin(ρ)X

−1
max(ρ))∏

i�P j (1 − XiX
−1
j )

,

ΨP (x) =
∏

ρ (xmin(ρ)−xmax(ρ))∏
i�P j (xi−xj )

,

where the last equality assumes that P is connected.

Proof Use induction on the number of bounded regions ρ. In the base cases where
there are no such regions or one such region, apply Corollary 5.3 or 8.2, respectively.

In the inductive step, find a disconnecting chain for P that separates at least two
bounded regions, as in [9, Proposition 7.4]. Use Proposition 8.6 repeatedly to open
notches down this chain, until the resulting poset has two biconnected components
attached at one vertex of the chain, and apply Corollary 8.3, as in Example 8.9. �

9 Reinterpreting the main transformation

Our goal in this final section is to reinterpret geometrically a very flexible identity
that was used to deduce most of the results on ΨP (x) in [9] and called there the main
transformation:

Theorem [9, Theorem 4.1] Let C be one of the two possible orientations of a circuit
in the Hasse diagram for a poset P . Let W ⊂ C be the edges of C which are directed
upward in P . Then

∑

E⊂W

(−1)|E|ΨP \E(x) = 0 (9.1)

where P \E is the poset whose Hasse diagram is obtained from that of P by removing
the edges in E.
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Remark 9.1 In fact, (9.1) was deduced in [9, Theorem 4.1] from a geometric identity
equivalent to the following:

∑

E⊂W

(−1)|E|χKwt
P \E = 0. (9.2)

Using the duality discussed in Remark 3.2, identity (9.2) implies the following geo-
metric identity underlying (9.1):

∑

E⊂W

(−1)|E|χK root
P \E = 0. (9.3)

Remark 9.2 In [9], identity (9.1) was used to prove some statements on Ψ by in-
duction on the number of independent cycles (the cyclomatic number) in the Hasse
diagram for P : terms indexed by nonempty subsets E correspond to posets P \ E

with fewer independent cycles. In the base case for such inductive proofs, the Hasse
diagram is acyclic and possibly disconnected, so that either ΨP (x) = 0, or Corol-
lary 5.3 applies.

Furthermore, in [9, Sect. 6], it was shown how the choice of an embedding
of the Hasse diagram of P onto a surface, together with a rooting at one of its
half-edges, leads to a good choice of circuits C in the induction. This expresses
ΨP (x) = ∑

i ΨPi
(x) for various posets Pi with tree Hasse diagrams that can be de-

scribed explicitly in terms of the embedding and rooting. Using (9.3), one can show
that this corresponds to an explicit triangulation for the cone K root

P into subcones
K root

Pi
, in which each subcone uses no new extreme rays.

Unfortunately, iterating (9.2) does not in general lead to proofs for results on
ΦP (x) via induction on cyclomatic number, as the base cases with no cycles cor-
respond to cones Kwt

P which are not necessarily simplicial; see Corollary 5.3.

Remark 9.3 Unlike (3.1), this identity (9.3) involves only pointed cones.

Our goal here is to point out how the geometric statement (9.3) generalizes to other
families of cones and vectors. We begin with a geometric generalization of the notion
of a circuit C in the Hasse diagram for P and its subset of upward edges W ⊂ C.

Definition 9.4 Given two subsets of W,V of vectors in R
d , say that W is cyclic6

with respect to V if there exists a positive linear combination of W lying in R+V ,
that is,

∑
w∈W aww = ∑

v∈V bvv for some real numbers aw > 0, bv ≥ 0.

Example 9.5 Let C be one of the two possible orientations of a directed circuit in the
Hasse diagram for a poset P . Let W ⊂ C be the edges of C which are directed upward
in P . Then {ei − ej : (i, j) ∈ W } is cyclic with respect to the set V := {ei − ej :

6In the special case where V is empty, this is the notion of W being a totally cyclic collection of vectors
from oriented matroid theory; see [6, Definition 3.4.7].
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i �P j, (i, j) /∈ W }, due to the relation

∑

i�P j :
(i,j)∈W

ei − ej =
∑

i�P j :
(j,i)∈C\W

ei − ej .

Bearing this example in mind, the following proposition gives the desired generaliza-
tion of (9.1) and (9.3).

Proposition 9.6 For subsets W,V of vectors in R
d where W is cyclic with respect

to V , one has the identity among characteristic vectors of cones
∑

B⊂W

(−1)|B|χR+(V ∪B) = 0,

and therefore
∑

B⊂W

(−1)|B|s
(
R+(V ∪ B);x

) = 0.

Example 9.7 Consider the set of vectors W = {w1,w2,w3,w4} in R
2 shown below,

and let V be the empty set. The set W is easily seen to be cyclic with respect to V .

Consider the point p depicted. The subsets B ⊂ W for which p lies in the cone
R+(V ∪ B), so that χR+(V ∪B)(p) = 1, are

{w1,w4}, {w3,w4}, {w1,w2,w4}, {w1,w3,w4},
{w2,w3,w4}, {w1,w2,w3,w4}.

The sum of (−1)|B| over these sets B vanishes, as predicted by the proposition. How-
ever, note that this does not hold for trivial reasons, e.g., these sets B do not form an
interval in the boolean lattice.

Proof of Proposition 9.6. Up to a rescaling of the vectors in W , one can assume that
u := ∑

w∈W w lies in R+V .
One must show that for every point p ∈ R

d , one has
∑

B⊂W :
p∈R+(V ∪B)

(−1)|B| = 0. (9.4)
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If p does not lie in the cone R+(V ∪ W), this holds because the left side is an empty
sum. So without loss of generality p lies in R+(V ∪ W), meaning that the set

Xp :=
{

(a,b) ∈ R
W+ × R

V+ : p =
∑

w∈W

aww +
∑

v∈V

bvv

}

is a nonempty convex polyhedral cone inside R
W × R

V . Cover Xp by the family of
subsets {Xp(w0)}w0∈W defined by

Xp(w0) := {
(a,b) ∈ Xp : aw0 = min(a)

}
.

These sets Xp(w0) are also convex polyhedral subsets, although possibly empty. The
nerve of this covering of Xp is the abstract simplicial complex consisting of all sub-
sets A ⊂ W for which

⋂
w0∈A Xp(w0) is nonempty. A standard nerve lemma (e.g.,

[4, Theorem 10.7]) implies that the geometric realization of this nerve is homotopy
equivalent to the contractible space Xp , and hence its (reduced) Euler characteris-
tic

∑
A(−1)|A|−1 vanishes, where the sum runs over subsets A with

⋂
w0∈A Xp(w0)

nonempty. Thus, (9.4) will follow from this claim:

Claim The set
⋂

w0∈A Xp(w0) is nonempty if and only if p lies in R+(V ∪ (W \A)).

For the “if” assertion of the claim, note that if p lies in R+(V ∪ (W \ A)), then
any expression

p =
∑

w∈W\A
aww +

∑

v∈V

bvv

leads to a similar expression

p =
∑

w∈W

aww +
∑

v∈V

bvv

by defining aw0 := 0 for all w0 in A. Furthermore, the coefficients in the latter ex-
pression give an element (a,b) lying in

⋂
w0∈A Xp(w0).

For the “only if” assertion, assuming that
⋂

w0∈A Xp(w0) is nonempty, pick (a,b)

lying in this set. Thus, p = ∑
w∈W aww+∑

v∈V bvv, and one has μ := min(a) = aw0

for all w0 in A. Rewriting this as

p =
∑

w0∈A

μ · w0 +
∑

w∈W\A
aww +

∑

v∈V

bvv

and using the fact that u = ∑
w∈W w lies in R+V , one can rewrite

p =
∑

w∈W\A
(aw − μ)w

︸ ︷︷ ︸
∈R+(W\A)

+ μ · u +
∑

v∈V

bvv

︸ ︷︷ ︸
∈R+V

.

Therefore, p lies in R+(V ∪ (W \ A)). �
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