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Abstract Combinatorial spiders are a model for the invariant space of the tensor
product of representations. The basic objects, webs, are certain directed planar graphs
with boundary; algebraic operations on representations correspond to graph-theoretic
operations on webs. Kuperberg developed spiders for rank 2 Lie algebras and sl2.
Building on a result of Kuperberg, Khovanov–Kuperberg found a recursive algorithm
giving a bijection between standard Young tableaux of shape 3 × n and irreducible
webs for sl3 whose boundary vertices are all sources.

In this paper, we give a simple and explicit map from standard Young tableaux of
shape 3 × n to irreducible webs for sl3 whose boundary vertices are all sources and
show that it is the same as Khovanov–Kuperberg’s map. Our construction generalizes
to some webs with both sources and sinks on the boundary. Moreover, it allows us
to extend the correspondence between webs and tableaux in two ways. First, we pro-
vide a short, geometric proof of Petersen–Pylyavskyy–Rhoades’s recent result that
rotation of webs corresponds to jeu-de-taquin promotion on 3 × n tableaux. Second,
we define another natural operation on tableaux called a shuffle and show that it cor-
responds to the join of two webs. Our main tool is an intermediary object between
tableaux and webs that we call an m-diagram. The construction of m-diagrams, like
many of our results, applies to shapes of tableaux other than 3 × n.

Keywords Spider · Representations of Lie algebras · Young tableau · Jeu de taquin ·
Promotion

1 Introduction

Spiders are categories that describe representations of Lie algebras, particularly the
invariant space of a tensor product of irreducible representations. Kuperberg intro-
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duced a combinatorial description of spiders for all rank 2 Lie algebras, as well as for
sl2, in which representations correspond to combinatorial graphs (called webs) and
algebraic operations (like permutation of the tensor factors) correspond to combina-
torial operations on the graphs [6].

A web for the sl3-spider is a planar directed graph embedded in a disk so that
(1) internal vertices are trivalent and boundary vertices have degree one, and (2)
each vertex is either a source (all edges directed out of the vertex) or a sink (all
edges directed in). (We use the streamlined presentation of Petersen, Pylyavskyy, and
Rhoades [8].) Boundary vertices correspond to copies of either the fundamental rep-
resentation V of sl3 or its dual V ∗, depending on whether the vertex is a source or a
sink. In many results in this paper, we restrict the boundary to all sources or all sinks,
which corresponds to considering sl3-invariants of either V ⊗n or (V ∗)⊗n. Edges in
the web correspond to imposing certain linear conditions on the invariant tensor.

An important open problem asks for combinatorial spiders for all slk , or even all
Lie algebras g. Surprisingly, combinatorial spiders are still only known in the cases
Kuperberg originally identified, though researchers have recently and independently
made suggestive inroads into this question, including Kim [5], Morrison [7], and
Jeong and Kim [3]. Our work suggests another direction to approach this problem;
see the end of this introduction for more.

Young tableaux are another classical construction, ubiquitous in the representation
theory and geometry associated to the symmetric group SN and the Lie algebra slN

[1, Part II]. The Young diagram corresponding to the partition λ1 ≤ λ2 ≤ · · · of N is
a left-justified array with λ1 boxes in the top row, λ2 boxes in the second row, and
so on. A standard Young tableau corresponding to the partition λ1 ≤ λ2 ≤ · · · of N is
a filling of the Young diagram by the numbers 1,2, . . . ,N without repetition so that
numbers increase left-to-right along rows and bottom-to-top along columns.

Our paper deepens the connections between Young tableaux and spiders, placing
webs more fully in their combinatorial context. We give a simple and direct map from
standard Young tableaux of shape (n,n,n) to irreducible webs for sl3 whose bound-
ary vertices are all sources. This introduction has a quick example and colloquial
description; the reader interested in details can read Sects. 2.1, 3.1, and 4.1 immedi-
ately, together with Sects. 2.2, 3.2, and 4.2 for examples. In previous work, Fung con-
structed an analogous bijection between standard Young tableaux of shape (n,n) and
irreducible webs for sl2 using the geometry of an object called the (n,n) Springer va-
riety [2]. Khovanov and Kuperberg constructed a bijection between Young tableaux
of shape (n,n,n) and irreducible webs for sl3 for which each boundary vertex is
a source [4]. However, unlike our direct map, Khovanov–Kuperberg’s proof uses a
complicated set of growth rules which, when recursively applied, eventually generate
all irreducible webs for sl3.

Our work is motivated by the geometry of the (n,n,n) Springer variety and gen-
eralizes earlier work on the (n,n) Springer variety of Fung [2] and of the author with
Russell [10]. In that context, a web’s boundary vertices correspond to the nested vec-
tor spaces of an element in the full flag variety, and edges correspond to lines in the
vector space C

2n. Webs for the (n,n) Springer variety encode some important ge-
ometric properties of the variety that were obscured by Young tableaux, which are
traditionally used to describe Springer varieties.
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Our map from tableaux to webs uses an intermediate object called an m-diagram.
The m-diagram for a standard tableau with N boxes consists of a boundary line num-
bered 1,2, . . . ,N , with a collection of arcs above it. To draw the arcs, read from the
bottom to the top row, and then from left to right along each row, connecting the
number i with an arc to the (1) largest number (2) on the row below i that (3) is not
yet connected to a number on i’s row. (Section 2 has more.)

To construct a web from this m-diagram, do three things. First, each boundary vertex
on two arcs looks locally like a V ; replace this neighborhood with a small Y . Second,
each arc now has exactly one endpoint on the boundary; direct each arc away from the
boundary vertex, continuing with the same direction across any intersections. Third,
anywhere two arcs cross is a four-valent vertex with two edges directed in and two
directed out; replace this vertex with two vertices joined by a directed edge. We will
confirm that there is a unique way to do this so that one of the new vertices is a source
and the other is a sink. (Section 3 has more detail and precise definitions.)

From one perspective, the fundamental objects in a diagrammatic description of
the invariant space of tensors of sl3 are “tripods”, graphs with a single trivalent vertex
and three edges to the boundary. Tripods correspond to invariant tensors within the
representation and appear naturally as the ms in our construction. Kuperberg identi-
fied conditions for a web to be irreducible [6]; these conditions correspond to restrict-
ing intersections between tripods, akin to pattern avoidance in the theory of permuta-
tions.

A series of lemmas in Sect. 3.3 prove that the planar graphs obtained by our
map from standard Young tableaux of shape (n ≤ k ≤ k) are in fact irreducible
webs for sl3. (This partially generalizes Khovanov–Kuperberg’s work.) Moreover, we
prove in Theorem 4.9 that this map is a bijection between standard Young tableaux of
shape (n,n,n) and irreducible webs for sl3 whose boundary vertices are all sources.
In fact, we will show that our bijection coincides with Khovanov–Kuperberg’s bijec-
tion; we also show that it can be extended to some irreducible webs for sl3 with both
sources and sinks as boundary vertices.

Theorem 4.9 actually proves that Khovanov–Kuperberg’s map from webs to
tableaux inverts our map from tableaux to webs. Our proof uses two notions of depth:
circle depth in an m-diagram, which is the number of arcs above each face of the m-
diagram, and Khovanov–Kuperberg’s path depth in a web, which is the minimum
number of edges crossed by paths from a given face to the unbounded face of the
web. (Path depth is distance in the dual graph to a planar graph.)

In Lemma 4.5, we prove that these two depths coincide in an appropriate sense.
Khovanov–Kuperberg’s map from webs to tableaux puts i on the bottom row of the
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tableau if the depth increases at the boundary vertex i, the middle row if depth stays
the same at i, and the top row if depth decreases at i. The reader can see in our
example that this recovers the original tableau.

We provide two applications of our construction. Proposition 5.2 radically simpli-
fies Petersen–Pylyavskyy–Rhoades’s recent result for (n,n,n) tableaux that an op-
eration on tableaux called jeu-de-taquin promotion corresponds to an operation on
webs called rotation [8]. Proposition 5.4 gives the new result that an operation called
the join of two webs corresponds to an operation on Young tableaux called a shuf-
fle. (The proposition applies to more general shapes than three-row Young tableaux,
though the corresponding planar graphs are not webs in that case.)

Our results use nothing from algebraic geometry or representation theory, so the
exposition is nontechnical throughout most of this paper. However, we close this
introduction with two broad questions for future research:

(1) Can this method be used to obtain a basis of the invariant space of tensors of sl4?
Can this method be used to obtain webs for slk from standard Young tableaux of
shape k × n?

(2) What does the correspondence between tableaux and webs (particularly depth)
imply about the geometry of the irreducible components of the (n,n,n) Springer
variety?

2 From Young tableaux to m-diagrams

Our path from Young tableaux to webs goes through an object which we call an m-
diagram. The m-diagrams are read directly from the Young tableaux; they are almost
webs, except that they have 4-valent vertices that we will turn into trivalent vertices.
In this section, we describe how to construct m-diagrams, give several examples, and
then prove fundamental properties of m-diagrams.

2.1 Defining m-diagrams

Let λ be a Young diagram with N boxes, and let T be a standard tableau of shape λ.
Construct the m-diagram corresponding to T as follows:

(1) Draw a line with the numbers 1,2, . . . ,N in increasing order. This is the bound-
ary line at the base of the m-diagram; all arcs are drawn above this line.

(2) For each i = 1,2, . . . ,N not on the bottom row, find j < i such that j is

• the largest number
• that lies on the row immediately below the row with i and
• that is not already on an arc with another number from the same row as i.

In other words,

j = max{k on the row below i : k < i, k not on an arc to a number on the same

row as i}.
Then
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• join i to j with a semicircular arc.

For instance, if i is on the bottom row of T , then there is no such j , and no arc is
created at the ith iteration of Step (2). For readers who prefer visual descriptions, the
number j is the first number to the left of i on the boundary line such that j is on the
row below i and j is not joined by an arc to any number on the same row as i.

Definition 2.1 Arcs between the kth row from the bottom and (k +1)st row from the
bottom are called kth arcs. A boundary vertex is a point lying on both an arc and the
boundary line.

We use three-row tableaux extensively. The following terminology is useful in this
special case.

Definition 2.2 Suppose that i < j < k are boundary vertices. If the only arc incident
to either i or j is (i, j), then (i, j) is called an isolated arc. If the only arcs incident
to any of i, j , or k are (i, j) and (j, k), then (i, j, k) is called an m.

2.2 Examples

This paper focuses on Young diagrams with three rows, usually rectangular. An m-
diagram for a 3 × n Young tableau contains n figures, each of which resembles an
m (and is called an m). The ms can be nested, unnested, or cross in various ways.
In this section we give the m-diagrams for each of the five possible 3 × 2 tableaux,
with second arcs drawn in boldface. (Corollary 2.5 will prove that any two ms in any
m-diagram for a three-row tableau are in one of these relative positions.)

The simplest kind of web corresponds to the tableau filled with {1,2, . . .} in nu-
merical order, bottom to top and left to right. The arcs in these webs neither cross nor
nest each other.

The next two examples demonstrate nesting: no arcs cross, but one m sits inside
another. This can happen in more than one way: either a first or second arc may
enclose an m.
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Finally, two arcs may cross, as in the last two examples. This can also happen in two
different ways: the second arc crosses the first arc either from above or from below.

With larger tableaux, we will often see combinations of crossing and nesting
within one m-diagram. However, any two ms will be in the same relative position
as one of these five examples.

2.3 Properties of ms

We now prove several key properties about how ms can cross in an m-diagram. First
we confirm that m-diagrams are well defined.

Lemma 2.3 The map from the standard tableau T of shape λ to an m-diagram is
well defined.

Proof Suppose that i is the kth box in its row. Columns increase in a standard Young
tableau, so i is greater than the kth box in the row below i. Rows increase, so i is
greater than all of the first k boxes in the row below i. By construction, each number
in the row containing i is joined to at most one number in the row below, so there is
at least one number j < i in the row below i and to the left of i which is not part of
an arc. �

Proposition 2.4 The m-diagram of a standard Young tableau of shape λ satisfies the
following:

(1) Two arcs intersect in at most one point. In particular, locally the m-diagram is an
X near each crossing; the arcs share no point other than the intersection point.

(2) The set of kth arcs is pairwise noncrossing.

Proof Each arc is a semicircle whose center and endpoints are on the boundary line,
and whose diameter is the distance between the endpoints.

Two distinct circles intersect in at most two points. If we treat the boundary line as
the x-axis, then the two points of intersection have coordinates (x0, y0) and (x0,−y0).
At most one of these points lies above the boundary line, namely on the arc. So
any two arcs intersect in at most one point, and locally near the intersection, the m-
diagram is an X.

Suppose that (i, j) and (i′, j ′) are the endpoints of two intersecting arcs, with
i < j and i′ < j ′. Without loss of generality assume that i < i′ ≤ j < j ′. If i′ = j ,
then (i, j) is a kth arc, and (i′, j ′) is a (k + 1)th arc for some k. If not, then j and
j ′ are not both on the (k + 1)th row, since by construction of m-diagrams, j must be
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joined to the largest possible i′ from the kth row. This proves the second part of the
claim. �

These conditions seem similar to those that arise in recent work of Petersen,
Pylyavskyy, and Speyer [9]. The next corollary specializes to Young diagrams with
three rows.

Corollary 2.5 The m-diagram of a standard three-row Young tableau satisfies the
following:

(1) At most two arcs intersect at a given point.
(2) Two arcs that cross consist of a first arc (of an m or an isolated arc) and the

second arc of a different m.
(3) Any two ms cross at most once.
(4) Any two ms will be in one of the five relative positions described by the m-

diagrams of 3 × 2 tableaux.

Proof The only kinds of arcs in m-diagrams from three-row Young tableaux are first
arcs (including isolated arcs) and second arcs. By Proposition 2.4, if two arcs cross,
then they must be a first arc (of an m or an isolated arc) and the second arc of an-
other m. In particular, no more than two arcs intersect in the same point, since each
arc is either a first arc or a second arc. This proves the first two parts of the theorem.

Suppose that two arcs cross as sketched below. By the above, one arc is the first
arc of an m, and the other arc is the second arc of another m.

Suppose that (i, j) is the second arc of the m with vertices (k, i, j) and (i′, j ′) is
the first arc of the m with vertices (i′, j ′, k′). Then k < i < i′ and j < j ′ < k′, so
these ms cross only once.

Suppose that (i, j) is the first arc of the m with boundary points (i, j, k) and (i′, j ′)
is the second arc of the m with boundary points (k′, i′, j ′). Since second arcs cannot
intersect, the endpoints satisfy k < j ′. Similarly, since first arcs do not cross, the
initial points satisfy i < k′. Hence these ms cross only once.

In no case can two ms cross twice, proving the next part of the claim. Moreover,
the m-diagrams that we obtained are precisely the two crossing m-diagrams from
3 × 2 tableaux.

Suppose that two ms (i, j, k) and (i′, j ′, k′) do not cross. Assume without loss
of generality that i < i′. Then these m-diagrams must be in one of three relative
positions:

• k < i′,
• j < i′ < k′ < k, or
• i < i′ < k′ < j .

These are the three noncrossing m-diagrams from 3 × 2 tableaux. This completes the
proof. �
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3 From m-diagrams to webs

In this section, we restrict to the case of Young diagrams with three rows. We describe
how to transform an m-diagram for a three-row Young tableau into a web for sl3. We
then prove that the webs we obtain are irreducible.

Recall from the introduction that a web for sl3 is a planar directed graph with
boundary so that (1) internal vertices are trivalent and boundary vertices have degree
one, and (2) each vertex is either a source or a sink. Webs were originally defined
to be embedded in a disk. However, for convenience, we cut the disk to create a
boundary line.

3.1 Constructing webs from m-diagrams

The m-diagrams obtained in the previous section are almost, but not quite, webs
for sl3. There are three problems:

(1) the boundary vertex j on an m given by (i, j, k) has degree two;
(2) the edges are undirected; and
(3) there are degree-four vertices where two arcs cross.

Each problem is easily addressed, so easily that in practice we often assume that an
m-diagram has already had the next steps performed.

(1) Each degree-two boundary vertex should be replaced with the shape Y . Hence
each m has a unique trivalent vertex, which we think of as the intersection of its
two arcs. (One might say that these are m-diagrams rather than nn-diagrams.)

(2) Edges should be directed so that:
(a) The edges in each m are directed away from the boundary and toward the

trivalent vertex on the m. (The direction of each edge remains the same across
any intersections with other ms.)

(b) The edges in an isolated arc should be directed from the boundary vertex on
the bottom row of the Young tableau to the boundary vertex on the middle
row of the tableau.

Given these conventions, there is a unique way to make the degree-four vertex at
the intersection of two arcs trivalent. We call this process resolving the diagram and
describe it in the next lemma.

Lemma 3.1 Let v be a four-valent interior vertex in an m-diagram. There is a unique
way to replace v with a pair of trivalent vertices so that the m-diagram is unchanged
outside of a small neighborhood of v.

Proof A four-valent vertex v in an m-diagram occurs when two directed arcs cross,
which looks locally like Fig. 1(a). Each arc is directed, so there are two edges incident

Fig. 1 Trivalizing vertices
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to v that are directed in and two that are directed out. Vertices in the web must be
trivalent with incident edges all directed in or all directed out. There is one way to
partition the edges incident to v into in-edges and out-edges. Create a new vertex
v1 incident to the in-edges and a new vertex v2 incident to the out-edges. An edge
between v1 and v2 makes both vertices trivalent and must be directed v2 �→ v1 to
satisfy the conditions of the web. Locally this creates the diagram in Fig. 1(b). �

3.2 Examples

Extending Sect. 2.2, we give the web corresponding to each m-diagram for the stan-
dard tableaux of shape 3 × 2. (Each web is a planar graph; each graph here is a
reasonably symmetric example from its isomorphism class.)

3.3 Webs obtained from m-diagrams are reduced

Resolved m-diagrams are webs by construction: they are planar directed graphs; each
internal vertex is trivalent, and each vertex on the boundary line has degree one; and
each vertex is a source or a sink (since each trivalent vertex was constructed to have
either all incident edges directed in or all incident edges directed out). In fact, a
stronger condition holds.

Definition 3.2 A web in the sl3-spider is reduced if it is nonelliptic, namely each
(interior) face has at least six edges on its boundary.

The following series of small lemmas proves that the webs obtained from m-
diagrams are reduced.

Lemma 3.3 Let T be a Young tableau of arbitrary shape. The web obtained by re-
solving the m-diagram for T has no face with two edges on its boundary.
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Proof A face with two edges is bounded by two arcs which cross each other twice.
This does not happen in m-diagrams, by Proposition 2.4. �

Lemma 3.4 Let T be a Young tableau of arbitrary shape. The web obtained by re-
solving the m-diagram for T has no face with an odd number of edges on its bound-
ary.

Proof Each edge is directed, and each vertex is either a sink (all edges are oriented
in) or a source (all edges are oriented out). Hence the edges in any (undirected) cycle
alternate orientations, and so every cycle in the graph must have an even number of
edges. �

Lemma 3.5 The web obtained by resolving the m-diagram for a three-row Young
tableau T has no interior face with exactly four edges on its boundary.

Proof All m-diagrams in this proof correspond to three-row Young tableaux. The
proof is by contradiction: we locally reconstruct arcs that could produce a face with
four edges and then prove that m-diagrams contain no such arrangement of arcs.
The previous lemma showed that the edges in each cycle in an m-diagram alternate
orientation, as in Fig. 2.

We first show that none of the edges of the square were added while resolving the
m-diagram. Assume otherwise. After resolving a vertex as in Lemma 3.1, the edges
associated to a single arc are on different faces. Hence an arc that enters the square at
v2 cannot leave from either v1 or v3 (and similarly for arcs entering at v4). Without
loss of generality we conclude that an arc that enters at v2 must proceed along the
edge v3v4, as in Fig. 3. Arcs in an m-diagram cross at most once by Proposition 2.4.
We conclude that the arc v3v4 cannot cross the arc v1v2, and so leaves the face at v4
rather than v1. Hence there is a third arc that must be incident to both v1 and v4. Each
pair of these three arcs cross (at v1, v2, or v4, respectively). Each arc in the m-diagram
of a three-row tableau is a first or second arc. First arcs can only cross second arcs by
Proposition 2.4, so this configuration of arcs does not come from an m-diagram.

All edges incident to the original trivalent vertex on an m are oriented inwards, so
at most two of the vertices in the four-cycle are the original trivalent vertex on an m.

Fig. 2 Face with four edges

Fig. 3 Face with edge added
while resolving vertices
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Fig. 4 Arcs from original
m-diagram

If both v2 and v4 are vertices from the m-diagram, then two ms cross twice (namely
at v1 and v3), contradicting Corollary 2.5.

Suppose that at most one of the vertices is a vertex from the original m-diagram,
without loss of generality v4. Two edges from the same arc cannot bound the same
face after resolving as in Lemma 3.1, so the four arcs bounding the square must have
the relative positions shown in Fig. 4. We mark these arcs with one, two, three, and
four arrows and call them 1, 2, 3, 4, respectively. (If v4 is a vertex from the original
m-diagram, then arcs 1 and 3 do not continue out of the square in the bottom right of
Fig. 4.)

First arcs and second arcs do not cross, so we conclude from the interior square
that either 3, 4 are both first arcs and 1, 2 are both second arcs, or vice versa. Two
arcs can cross at most once, and ith arcs are noncrossing, so the boundary vertices of
arcs 1, 2, 3, 4 are in the same relative position as in the perimeter of Fig. 4. (If v4 is
a vertex from the original m-diagram, then in addition neither arc 1 nor arc 3 is the
edge in the middle of the m, since the second edge of an m in a resolved m-diagram
crosses nothing.)

By construction, the second arcs in an m-diagram are directed from right to left,
and first arcs are directed from left to right, regardless of whether the first arc is
isolated or not. Consider just the arcs 1, 2, 3, 4. Regardless of which endpoint is
leftmost on the boundary line, two of the leftmost three of these arcs cross and are
directed the same way. This contradicts the fact that arcs of the same type (either first
or second) are noncrossing. (If v4 is a vertex from the original m-diagram, we may
also use the fact that arc 1 cannot be the edge in the middle of the m containing v4 to
obtain a contradiction.)

We conclude that the resolution of an m-diagram for a three-row Young tableau
has no interior face whose boundary has four edges. �

4 The map from irreducible webs to three-row Young tableaux

Together, the previous two sections give a map from three-row Young tableaux to
irreducible webs for sl3. In this section, we prove that the map is injective. To do this,
we modify a map of Khovanov–Kuperberg that we call the depth map. They defined
the depth of a face to be the distance from the unbounded face in the planar graph
dual to the web; in other words, it is the minimal number of edges crossed by paths
between a given face and the unbounded face. We show that their depth is the same as
the depth measured by the number of semicircles in an m-diagram that contain a face.
We then use this to give an elementary proof that depth inverts the map that sends a
standard three-row Young tableau to its resolved m-diagram.
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4.1 Circle and path depth

Fix a horizontal line �. Generalizing m-diagrams simplifies proofs in this section.

Definition 4.1 A sequence of upper semicircles C is a set of upper semicircles, each
centered on a different point along the line �.

The intersections of the semicircles in C naturally define a planar graph.

Definition 4.2 The sequence of upper semicircles C determines a planar graph GC
as follows:

• each point of intersection between two semicircles or between a semicircle and the
line � is a vertex, and

• each arc between vertices is an edge.

Colloquially, the circle depth of a point on a face of this graph is the number of
semicircles containing the point.

Definition 4.3 Let x be a point on a face of the planar graph GC determined by
the sequence of upper semicircles C . The circle depth of p, denoted dc(x, C), is the
number of semicircles above x.

Any planar graph that lies above a horizontal line has another natural definition of
depth, which we call path depth. In the context of spiders, it was defined by Khovanov
and Kuperberg [4].

Definition 4.4 Given a planar graph G that lies above a horizontal boundary line,
let f0 be the unbounded face above the line. Let x be any point on the interior of a
face of G. The path depth of x, denoted dp(x,G), is the minimal number of edges
crossed by any path from x to f0 that does not cross the boundary. (The path from x

to f0 must cross at the interior of edges and not at vertices.)

Equivalently, the path is an ordinary path in the dual graph to the planar graph G.
In particular, the path depth of x is independent of small deformations in the planar
representation of G, for instance, stretching, contracting, or rotating edges.

The planar graphs that we consider are resolutions of the planar graphs GC cor-
responding to a set of upper semicircles C . We abuse notation and write dp(x, C) in
this case.

Both circle depth and path depth are constant on each face of a planar graph,
since any two points in the same face can be connected by a path that does not cross
any edges of the graph. We will compare depth for different sets C , so it is more
convenient to consider depth as a function on points rather than faces.

4.2 Examples

The following examples show circle depth for each m-diagram and path depth for
each web for the standard tableaux of shape 3 × 2. In all cases, the unbounded face
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has depth zero. The reader may notice that circle depth for an m-diagram is quite
similar to path depth for the corresponding web; we prove that they are the same in
the next section.

Comparing the faces immediately to the left and right of a boundary vertex, the reader
may also notice that depth increases if the boundary vertex is the first vertex of an m,
stays the same if the vertex is the second vertex of an m, and decreases if the vertex
is the third vertex of an m. We prove this in the next section as well. The reverse of
this process constructs a three-row tableau from a web whose boundary vertices are
all sources: if depth increases at a boundary vertex i, put i on the bottom row of a
tableau; if depth stays the same at i, put i on the middle row; and if depth decreases,
put i on the top row of the tableau. We show at the end of this section that this is the
inverse of the map from Young tableaux to webs that we just defined.

4.3 Analyzing path depth and circle depth in m-diagrams

The number and relative position of faces are the same in a planar graph and its reso-
lution. Hence we may compare circle depth of a graph obtained from upper semicir-
cles and path depth of its resolution. When we do, we find that circle depth and path
depth agree. We will also see that depth is closely related to ms in the m-diagram.
The proofs in this section only use the undirected graph underlying each web.

Lemma 4.5 Let C be a sequence of upper semicircles such that at most two semicir-
cles intersect at each given point. Let GC be the planar graph determined by C , and
let Gr

C be the resolution of GC . If x is a point on a face of both GC and Gr
C , then

dc(x, C) = dp(x,Gr
C ).

Proof Path depth is well defined on planar graphs and in particular is independent of
the angle or (nonzero) length of its edges. We assume without loss of generality that
the resolution producing Gr

C adds a very small vertical edge at each arc crossing.
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We induct on the number of semicircles in C . The induction hypothesis is a slightly
stronger claim: any path that is a vertical line from x to f0, except for a very small
semicircle around any resolved arc crossing, crosses the minimum number of edges
possible between x and f0. (The semicircle is sufficiently small if it stays inside of
the local neighborhood depicted in Fig. 1.) We call these paths vertical paths from x

to f0.
When |C| is zero or one, the claim is trivially true. Assume that the claim holds

when |C| = n − 1. Choose an upper semicircle C �∈ C satisfying the hypothesis of the
lemma, and let C′ = C ∪ {C}.

For each point x on a face in GC′ , we know that dc(x, C′) = dc(x, C) if x is not
below C and dc(x, C′) = dc(x, C) + 1 if x is below C.

Consider any vertical path from the point x to f0 in Gr
C . If x is below C, then each

vertical path crosses C exactly once, so dp(x, C′) ≤ dc(x, C) + 1. At the same time,
any path from x to f0 crosses C at least once, since C together with the boundary
line form a closed curve. Hence dp(x, C′) ≥ dc(x, C) + 1. We conclude that if x is
below C, then dp(x, C′) = dc(x, C) + 1, and each vertical path from x to f0 is a
minimal-length path.

Similarly, if x is not below C, then any vertical path from x to f0 crosses only
edges obtained from C . So dp(x, C′) ≤ dp(x, C). No path from x to f0 in the
graph associated to C′ can cross fewer edges, else the same path can be considered
in the graph associated to C , where it contradicts the assumption on dp(x, C). So
dp(x, C′) = dp(x, C).

This proves the claim. �

Let (i, j, k) be the boundary vertices of an arbitrary m in an m-diagram. Colloqui-
ally, depth decreases at i, stays the same at j , and increases at k. The following result
makes this precise.

Corollary 4.6 Fix a resolved three-row m-diagram. For each boundary vertex i of a
web, let i − ε denote a point on the face to the left of i, and i + ε denote a point on
the face to the right of i.

• If i is the first boundary vertex of an m or an isolated arc, then
d(i + ε) − d(i − ε) = 1.

• If j is the second boundary vertex of an m, then d(j + ε) − d(j − ε) = 0.
• If k is the last boundary vertex of an m or an isolated arc, then

d(k + ε) − d(k − ε) = −1.

Proof Given a resolved m-diagram M , let FM be the set

FM = {
(i, j, k) is an m in the web

} ∪ {
(i, k) is an isolated arc

}
.

We use induction on the cardinality of the set FM . When |FM | = 0, the claim is
vacuously true. Assume that it holds when |FM | = n − 1. Let M be an m-diagram
with |FM | = n. Suppose that either (i, j, k) are the boundary vertices of an m in M

or (i, k) are the boundary vertices of an isolated arc. Let M ′ be the m-diagram with
|FM ′ | = n− 1 obtained by erasing the m with boundary vertices (i, j, k), respectively



J Algebr Comb (2012) 35:611–632 625

the arc (i, k). The faces to the right and left of each boundary vertex i, j, k merge in
M ′, so points on these faces have the same circle depth in M ′. Comparing to M , we
see:

• the face to the left of i has depth one less than the face to the right of i, since the
face to the right of i is under an arc (either (i, j) or (i, k)) while the face to the left
is unchanged from M ′;

• the face to the left of j has the same depth as the face to the right of j , since the
former is under the arc (i, j) while the latter is under the arc (j, k); and

• the face to the left of k has depth one greater than the face to the right of k, since
the former is under an arc (either (j, k) or (i, k)) while the latter is unchanged
from M ′.

If i′ is any vertex with i′ < i or i′ > k, then the faces to the left and right of i′ are
under the same arcs in M ′ as in M . If i′ is any vertex with i < i′ < k and i′ �= j , then
the faces to the left and right of i′ are under exactly one more arc in M than in M ′. In
all cases, the claim holds. �

4.4 Khovanov–Kuperberg’s depth map

We now define a map from irreducible webs for sl3 whose boundary vertices are all
sources to standard Young tableaux of size 3 × n. The results described below were
originally proven by Khovanov and Kuperberg [4]. We use the exposition of Petersen,
Pylyavskyy, and Rhoades [8]. As before, i + ε is any point on the face immediately
to the right of the boundary vertex i, and i − ε is any point on the face to the left of i.

Definition 4.7 Given an irreducible web for sl3 whose boundary vertices are sources,
the depth map creates a corresponding Young tableau by inserting each boundary
vertex i as follows:

Put i on the
top
middle
bottom

row of the Young tableau if d(i + ε) − d(i − ε) =
−1

0
1

It is not a priori clear that this map is well defined, nor that the resulting Young
tableaux have shape 3 × n, but in fact both statements are true.

Proposition 4.8 (Khovanov–Kuperberg Lemmas 1–3 and Proposition 1, as described
in Petersen–Pylyavskyy–Rhoades Theorem 2.4) The depth map is a well-defined map
from irreducible webs for sl3 with all boundary vertices sources to standard Young
tableaux of size 3 × n.

We see immediately that the depth map is the inverse of the map that sends a
Young tableau of shape (n,n,n) to its resolved m-diagram.

Theorem 4.9 The depth map is the inverse of the map from standard Young tableaux
of size 3 × n to irreducible webs for sl3 with boundary vertices all sources obtained
by taking resolved m-diagrams. Both maps are bijections.
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Proof By Corollary 4.6, the depth map sends the first vertex of each m to the bottom
row of the Young tableau, the second vertex to the middle row, and the third vertex
to the top row. By construction of m-diagrams, this is the original Young tableau.
Kuperberg proved in [6, Theorem 6.1] that the set of irreducible webs for sl3 with 3n

boundary vertices (all sources) has the same cardinality as the set of standard Young
tableaux of shape 3 × n. So the claim holds. �

We can extend the depth map to include some irreducible webs for sl3 with bound-
ary vertices that are sinks.

Definition 4.10 Given an irreducible web for sl3, the extended depth map creates a
corresponding three-row Young tableau by inserting each boundary vertex i as fol-
lows:

Put i on the

top
middle
middle
bottom

row if d(i + ε) − d(i − ε) =
−1 and i is a source
−1 and i is a sink

0
1

The domain of the extended depth map includes irreducible webs whose bound-
ary vertices are both sources and sinks. The extended depth map coincides with the
ordinary depth map for an irreducible web with no sinks on its boundary. We can
generalize the previous corollary as well.

Proposition 4.11 Fix n ≤ k. The extended depth map is well defined on irreducible
webs for sl3 that are resolved m-diagrams for standard Young tableaux of shape
(n, k, k). For those webs, the extended depth map is the inverse of the map that takes
a three-row Young tableau to its resolved m-diagram.

The m-diagram for a tableau of shape (n, k, k) has k − n isolated arcs and n ms,
so its resolution has 3n + (k − n) sources and (k − n) sinks on the boundary line.
When k = n, the boundary has no sinks, and this proposition reduces to the previous
corollary.

Proof Corollary 4.6, together with our conventions for resolving an m-diagram,
shows that the extended depth map is well defined on resolved m-diagrams and that
it inverts the map from Young tableaux to resolved m-diagrams. �

Unlike standard Young tableaux of shape (n, k, k), arbitrary three-row standard
Young tableaux have isolated boundary vertices. Webs with isolated vertices are not
irreducible (though we could extend the depth map to these webs as well).

5 Applications

A combinatorial spider has several natural graph-theoretic operations that correspond
to essential algebraic operations on the corresponding representations: rotation of a
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web, join of two webs (which inserts one web into another), and stitch of a web
(which connects two strands of a web). In what follows, we show natural operations
on 3 × n Young tableaux that correspond to rotation and join of webs; the proofs use
resolved m-diagrams and are short and geometrically intuitive. The operations we
describe apply to all tableaux but only correspond to operations on webs for 3 × n

tableaux (as we will discuss).

5.1 Promotion and rotation

Jeu de taquin is a classical operation on Young tableaux in which an empty box
percolates to the boundary of a tableau. In a single step on the configuration

the number a slides down if a < b, and the number b slides left if b < a. (Num-
bers outside of the tableau are considered to be ∞.) Jeu-de-taquin promotion is the
operation on standard tableaux obtained by

• erasing 1,
• performing jeu-de-taquin slides until a new Young tableaux is obtained,
• and then adding n to the newly empty spot.

Petersen, Pylyavskyy, and Rhoades [8] recently proved that jeu-de-taquin promotion
on 3 × n standard tableaux corresponds to rotation of webs. This was a key step in
studying a cyclic sieving phenomenon, to analyze the orbits of the permutation action
on tableaux obtained by promotion.

Jeu de taquin has a natural interpretation in terms of arcs in an m-diagram.

Lemma 5.1 Fix a standard Young tableau of arbitrary shape. Choose bi from a row
whose entries are b1, b2, . . . and suppose that t1, t2, . . . are the entries in the row
above bi . After removing bi and performing jeu de taquin, the number tk slides down
if and only if tk is the largest number on its row that forms an arc with a number
bj0 ≤ bi and k ≥ i.

Proof This proof involves only the subtableau consisting of the row with bi and the
row above bi . For convenience, we refer to the row with t1, t2, . . . as the top row and
the row with b1, b2, . . . as the bottom row, though there may be other rows in the
entire Young tableau. We sketch a schematic below. Not all boxes are shown in the
sketch; the row with tk has length at least k, and the row originally containing bi has
length at least k + 1.

t1 · · · ti ti+1 · · · tk · · ·
b1 · · · bi bi+1 · · · bk bk+1 · · ·

The rules of jeu de taquin imply that at most one box in each row can slide down.
Let tk be the number that slides down from the top row. By definition tk slides down
if and only if tj > bj+1 for j = i, i + 1, . . . , k − 1 while tk < bk+1.
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We show that the inequality tk < bk+1 holds if and only if the arcs give a bi-
jection between {t1, t2, . . . , tk} and {b1, b2, . . . , bk}. If tk > bk+1, then at least one
of t1, t2, . . . , tk forms an arc with bk+1. Conversely, let tk < bk+1. The definition
of a standard tableau implies that each of t1, t2, . . . , tk−1 is less than bk+1 and less
than every number on the bottom row and to the right of bk+1. By construction
of m-diagrams, each of t1, t2, . . . , tk is joined by an arc to a number in the set
{b1, b2, . . . , bk}. At most one of the numbers b1, b2, . . . , bk is on each arc, so the
arcs give a bijection as claimed.

Consider the arc (bj0, tk). The numbers on the bottom row under (bj0 , tk) are in
bijection with the numbers on the top row under the arc (bj0 , tk) because arcs are non-
crossing. We know that bk < tk < bk+1, so {bj0, bj0+1, . . . , bk} are the numbers on the
bottom row under (bj0, tk). Comparing cardinalities, we see that {tj0, tj0+1, . . . , tk}
are the numbers on the top row under (bj0 , tk).

We conclude that (bj0, tk) is an arc if and only if the arcs are a bijection from
{bj0, bj0+1, . . . , bk} to {tj0, tj0+1, . . . , tk} that matches bj0 with tk . Since tk < bk+1,
the arcs match {b1, b2, . . . , bk} with {t1, t2, . . . , tk}, so in fact (bj0, tk) is an arc if and
only if the arcs form a bijection from {t1, t2, . . . , tj0−1} to {b1, b2, . . . , bj0−1}. The
arcs give a bijection between {b1, b2, . . . , bj0−1} and {t1, t2, . . . , tj0−1} if and only if
tj0−1 < bj0 by the earlier argument with j0 − 1 replacing k. In particular, j0 ≤ i, and
no number on the same row as tk and larger than tk forms an arc with any number on
the bottom row that is less than bi . �

We give a direct, short proof that promotion corresponds to rotation of webs, using
resolved m-diagrams.

Proposition 5.2 Jeu-de-taquin promotion on 3 × n standard Young tableaux corre-
sponds to rotation of webs for sl3.

Proof We begin by rotating an m-diagram. Suppose that (c, a, b) is an m with first
arc (c, a). Any arcs (x1, y1), (x2, y2), . . . , (xk, yk) that cross (c, a) are second arcs. If
we rotate c from the far left to the far right position on the number line, then a second
arc appears to cross second arcs. However, the two pieces of m-diagrams in Fig. 5
both have the same resolution. So the original m-diagram gives the same web as the
figure with (a, xk, c) as an m, and with arcs (b, y1), (x1, y2), . . . , (xk−1, yk) instead of
(x1, y1), (x2, y2), . . . , (xk, yk). (The arcs involving b, x1, x2, . . . , xk−1, y1, y2, . . . , yk

are second arcs in both m-diagrams, so only cross first arcs.)
The arc from xk used to be the beginning of a second arc and is now the re-

solved boundary vertex on two arcs. A resolved m-diagram should have no arcs
crossing the arc from its resolved boundary vertex, though there may currently be
some first arcs crossing xk . The two pieces of an m-diagram shown in Fig. 6 have
the same resolution. So the original m-diagram gives the same web as the fig-
ure with (u1, xk, c) as an m, and with arcs (a, vj ), (uj , vj−1), . . . , (u2, v1) instead
of (u1, v1), (u2, v2), . . . , (uj , vj ). The arcs involving a,u1, u2, . . . , uj , v1, v2, . . . , vj

are first arcs in both m-diagrams, so only cross second arcs.
Hence, rotating the original m-diagram so that c goes from first to last position

on the boundary gives the resolved m-diagram with (u1, xk, c) as an m, and with
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Fig. 5 Two pieces of m-diagrams with the same resolution

Fig. 6 Two pieces of m-diagrams with the same resolution

arcs (a, vj ), (uj , vj−1), . . . , (u2, v1) and (b, y1), (x1, y2), . . . , (xk−1, yk) that other-
wise agrees with the original m-diagram.

We now confirm that the tableau corresponding to this rotated m-diagram is the
promotion of the original Young tableau. It suffices to determine which numbers are
on which row of the Young tableau after promotion. After promoting the original
Young tableau, the number c = 1 is removed. The largest number on the middle row
with an arc to a number at most 1 on the bottom row is a, by definition. Lemma 5.1
says that jeu de taquin slides a down to the bottom row. Figure 5 shows that xk is
defined to be the largest number on the top row that is joined by an arc to a number yk

on the middle row with yk ≤ a. In other words, xk is the number that slides from the
top to middle row after jeu de taquin, also by Lemma 5.1. The original Young tableau
has three rows, so these two vertical slides determine each row of the promoted Young
tableau, which therefore corresponds to the m-diagram in Fig. 6. �

Rotation does not correspond to promotion of arbitrary three-row tableaux. For
instance, promotion gives
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Fig. 7 The shuffle of one
tableau into another

while rotating the web with arcs (1,2,3) and (4,5) gives the web with arcs (1,2,5)

and (3,4). The reader may notice an provocative connection between the rotated web
and the promoted tableau in this case. Perhaps our construction could be modified to
extend to the general three-row case.

5.2 Insertion and joins

The join of two webs is obtained by cutting the boundary line of one web and slipping
the second web into the gap. We define the join of two m-diagrams analogously. The
join operation commutes with resolving m-diagrams, in the sense that the join of two
resolved m-diagrams is the resolution of the join of the m-diagrams. For instance,
the join after 1 of the m-diagram with arc (1,2) into the m-diagram with m (1,2,3)

inserts (1,2) after the first boundary vertex of (1,2,3). This produces the following
m-diagram and (undirected) web, regardless of whether the join is taken before or
after resolving m-diagrams:

We show that join is equivalent to a natural operation on standard Young tableaux,
which we call a shuffle of tableaux.

Definition 5.3 Let T and T ′ be arbitrary Young tableaux with N and N ′ boxes,

respectively. Let i ≤ N . The shuffle of T ′ into T at i is a tableau denoted T ′ i�→ T

and defined by:

• For j = 1,2, . . . , i, put j in the same row of T ′ i�→ T as in T .

• For j = 1,2, . . . ,N ′, put i + j in the same row of T ′ i�→ T as j is in T ′.
• For j = i + 1, i + 2, . . . ,N , put N ′ + j in the same row of T ′ i�→ T as j is in T .

If T and T ′ are standard, then the shuffle is a standard tableau by construction. We
give an example in Fig 7; inserted numbers are in boldface, and the boundary of T ′
is highlighted. A shuffle splits T into two pieces which fit together perfectly, similar
to splitting a deck of cards.

We now prove that shuffle of tableaux corresponds to join of m-diagrams. We give
two versions of the claim: the first restricts the shape of the Young tableaux but uses
arbitrary shuffles; the second restricts the kind of shuffles but uses arbitrary shapes.
For three-row Young tableaux, the m-diagrams resolve to webs for sl3.

Proposition 5.4 Let T ′ be a Young tableau with N ′ boxes, and T be a Young tableau
with N boxes.
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(1) The shuffle T ′ N�→ T corresponds to the join after N of the resolved m-diagram
for T ′ of the resolved m-diagram for T .

(2) Suppose that T ′ has at least as many rows as T and that each row of T ′ has
the same length (i.e., T ′ is a rectangle). The resolved m-diagram of the shuffle

T ′ i�→ T is the join after i of the resolved m-diagram for T ′ into the resolved
m-diagram for T .

Proof If j = 1, . . . , i, then j is joined to k by an arc in T ′ i�→ T if and only if j is
joined to k by an arc in T by construction of m-diagrams.

We next show that if j = 1, . . . ,N ′, then i + j is joined to i + k by an arc in

T ′ i�→ T if and only if j is joined to k by an arc in T ′. The number i + k is on the

row below i + j in T ′ i�→ T if and only if k is on the row below j in T ′. Moreover,
i + k < i + j if and only if k < j . Assume that if j ≤ j ′, then i + j is joined to i + k

by an arc in T ′ i�→ T if and only if j is joined to k by an arc in T ′. (This is true for
j = 1 since in that case j is on the bottom row of T ′ and i + j is on the bottom row

of T ′ i�→ T , so neither has an arc to a lower row.) Let j = j ′ + 1 and say i + j is on
the (r + 1)th row. Suppose that the arcs from 1,2, . . . , i + j − 1 have been placed in

T ′ i�→ T according to the rules of m-diagrams. Then the set

{
k′ : k′ < i + j, k′ is on the rth row in T ′ i�→ T , k′ is not yet part of an rth arc in

T ′ i�→ T
}

contains the set

i + {
k : k < j, k is on the r th row in T ′, k is not yet part of an r th arc in T ′}

as well as perhaps some numbers that are at most i. Thus, the maximum of each set

is the same, so (j, k) is an arc in T ′ if and only if (i + j, i + k) is an arc in T ′ i�→ T .
By induction, this holds for all j = 1,2, . . . ,N ′.

When i = N , this proves Part (1) of the claim.
Otherwise, assume that T ′ has at least as many rows as T and that T ′ is rectangular.

Then each number i + 1, i + 2, . . . , i +N ′ is either on the top row of T ′ and hence of

T ′ i�→ T or is one vertex of an arc to the next higher row (because T ′ is rectangular).
This means that for each j = i + N ′ + 1, i + N ′ + 2, . . . ,N + N ′ with j on the
(r + 1)th row, we may inductively show that the set

{
k : k < j, k is on the r th row, k is not yet part of an r th arc in T ′ i�→ T

}

equals the set

{
k : k is on the r th row, k is not yet part of an r th arc in T ′ i�→ T , k < i or k > i+N ′}.
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The maximum of this set always corresponds to an entry from T , so the maximum
equals

⎧
⎪⎪⎨

⎪⎪⎩

max{k : k < j − N ′, k is on the rth row, k is not in an rth arc in T } if k ≤ i

and
N ′ + max{k : k < j − N ′, k is on the rth row, k is not in an rth arc in T }

if k > i + N ′.

In other words, the arcs in T ′ i�→ T either involve only vertices from T ′ in the same
relative positions as the arcs in T ′, or vertices from T in the same relative positions as

the arcs in T . So the m-diagram corresponding to T ′ i�→ T is the join of the resolved
m-diagrams for T ′ and T . �

Part (2) does not hold for arbitrary T ′. For instance, the shuffle

corresponds to the m-diagram with arc (1,2) and m (3,4,5). By contrast, joining the
m-diagrams (1,2) to (1,2,3) at 2 gives the m-diagram with m (1,2,5) and arc (3,4).

Together with rotation, Part (1) can be used to construct an arbitrary join of re-
solved m-diagrams. However this gives a weaker claim than Part (2) of Proposi-
tion 5.4: rotation of webs corresponds to jeu-de-taquin promotion only for tableaux

of shape (n,n,n), and the shuffle T ′ N�→ T is a rectangular tableau only if both T ′ and
T are rectangular of the same height.
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