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Abstract We extend recent results of Assaf and McNamara on a skew Pieri rule
and a skew Murnaghan–Nakayama rule to a more general identity, which gives an
elegant expansion of the product of a skew Schur function with a quantum power
sum function in terms of skew Schur functions. We give two proofs, one completely
bijective in the spirit of Assaf–McNamara’s original proof, and one via Lam–Lauve–
Sotille’s skew Littlewood–Richardson rule. We end with some conjectures for skew
rules for Hall–Littlewood polynomials.

Keywords Pieri rule · Murnaghan–Nakayama rule · Schur functions ·
Hall–Littlewood polynomials

1 Introduction

Schur functions {sλ:λ a partition} form the most important basis of the algebra of
symmetric functions. They are not only interesting in their own right, but they appear
in many areas of mathematics, such as the representation theory of the symmetric
group and general linear groups, the cohomology ring of the Grassmanian etc. It is
only natural that the formula for the product of two Schur functions, the celebrated
Littlewood–Richardson rule, is of paramount importance in the theory. The rule says
that the coefficient of sλ in the product sμsν is the number of certain (easily de-
scribed) objects; in particular, all these coefficients are non-negative integers. For
general λ,μ, ν the exact enumeration of these objects is still a difficult task.

The rule, however, becomes very simple if one of the Schur functions in the prod-
uct is of a special form, namely, if ν a partition with either one row or one column.
The (conjugate) Pieri rule states that in this case, all coefficients are either 0 or 1,
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and the coefficient is 1 only if we can obtain λ from μ in a certain way. The Pieri
rule has many generalizations. Surprisingly, a generalization to skew Schur functions
was proved only very recently by Assaf and McNamara in [1] (see Sect. 1 in that
paper for a sample of other generalizations of the Pieri rule and references). Assaf
and McNamara also proved a skew version of another important special case of the
Littlewood–Richardson rule, the Murnaghan–Nakayama rule, which gives an expan-
sion of the product of a Schur function with a power sum function.

The authors provide a beautiful combinatorial proof of the skew Pieri rule (and
Thomas Lam gives an algebraic proof in the appendix), but they were unable to find
a combinatorial proof for the skew Murnaghan–Nakayama rule, and they challenged
their readers to find one. Our paper does more than that; it gives an involutive proof
of the following generalization of both the skew Pieri rule and the skew Murnaghan–
Nakayama rule.

Main Theorem (Skew Quantum Murnaghan–Nakayama Rule) For partitions λ,μ,
μ ⊆ λ, and r ≥ 0, we have

sλ/μ · p̃r =
r

∑

j=0

(−1)r+1−j
∑

λ+,μ−
(−1)wt(λ+/λ)+ht(μ/μ−)qht(λ+/λ)+wt(μ/μ−)

× (q − 1)rib(λ+/λ)+rib(μ/μ−)−1sλ+/μ−,

where the internal sum on the right is over λ+,μ− such that λ+/λ is a broken ribbon
of size r − j , and μ/μ− is a broken ribbon of size j .

Here p̃r are certain symmetric functions with the parameter q that specialize to
the power sum functions for q = 1 and to the Schur function sr for q = 0. See the
next section for a precise definition of all terms.

The paper is structured as follows. In Sect. 2, we give all necessary definitions and
background, and state all our results. In Sect. 3, we describe the sign-reversing invo-
lution of Assaf and McNamara that was used to prove their skew Pieri rule. Further-
more, we show a variant of this involution that proves the conjugate skew Pieri rule.
Note that this involution is actually much simpler than the one in [1]. In Sect. 4, we
present an extension of these involutions that proves the skew quantum Murnaghan–
Nakayama rule. There is quite some work involved to interpret the right-hand side of
SQMNR in an appropriate way, but once this is done the involution is just a natural
combination of the two involutions in Sect. 3. In Sect. 5, we present another proof of
SQMNR, via the skew Littlewood–Richardson rule of Lam–Lauve–Sotille [4]; since
their result (at the moment) only has an algebraic proof, this proof of SQMNR is not
completely combinatorial. In Sect. 6, we give some conjectured skew Pieri-type rules
for Hall–Littlewood polynomials, for which our combinatorial methods seem to fail.
We finish with some concluding remarks in Sect. 7.

2 Preliminaries and results

A partition λ of n is a sequence of integers (λ1, λ2, . . . , λ�) satisfying λ1 ≥ λ2 ≥
· · · ≥ λ� > 0 and λ1 + λ2 + · · · + λ� = n; we use the notation λ � n, � = �(λ) (length
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Fig. 1 A horizontal strip, a vertical strip, a ribbon and a broken ribbon

of λ), n = |λ| (size of λ), λi = 0 if i > �(λ). We sometimes write (λ
k1
1 , λ

k2
2 , . . .) if λ1

is repeated k1 times, λ2 < λ1 is repeated k2 times etc. We write mj(λ) for the number
of parts of λ equal to j . The conjugate partition of λ, denoted λc, is the partition
μ = (μ1,μ2, . . . ,μλ1) defined by μi = max{j :λj ≥ i}. The Young diagram [λ] of a
partition λ is the set {(i, j): 1 ≤ i ≤ �(λ),1 ≤ j ≤ λi}. For partitions λ,μ we say that
μ ⊆ λ if μi ≤ λi for all i. If μ ⊆ λ, the skew Young diagram [λ/μ] of λ/μ is the set
{(i, j): 1 ≤ i ≤ �(λ),μi < j ≤ λi}. We denote |λ| − |μ| by |λ/μ|. The elements of
[λ/μ] are called cells. We treat λ and λ/∅ as identical.

We say that λ/μ is a horizontal strip (respectively vertical strip) if [λ/μ] is non-
empty, contains no 2 × 1 (respectively 1 × 2) block, equivalently, if λc

i ≤ μc
i + 1

(respectively λi ≤ μi +1) for all i. We say that λ/μ is a ribbon if [λ/μ] is non-empty,
connected and if it contains no 2 × 2 block, and that λ/μ is a broken ribbon if [λ/μ]
contains no 2 × 2 block, equivalently, if λi ≤ μi−1 + 1 for i ≥ 2. The Young diagram
of a broken ribbon is a disjoint union of rib(λ/μ) number of ribbons. The height
ht(λ/μ) (respectively width wt(λ/μ)) of a ribbon is the number of non-empty rows
(respectively columns) of [λ/μ], minus 1. The height (respectively width) of a broken
ribbon is the sum of heights (respectively widths) of the components. Clearly, λ/μ is
a horizontal (respectively vertical) strip if and only if it is a broken ribbon of height
(respectively width) 0. Figure 1 shows examples of a horizontal strip, vertical strip,
ribbon (with ht(λ/μ) = 8 and wt(λ/μ) = 7) and broken ribbon (with ht(λ/μ) = 6,
wt(λ/μ) = 6 and rib(λ/μ) = 3).

A map T : [λ/μ] → N is called a skew semistandard Young tableau of shape λ/μ

if, for all i and j , T (i, j1) ≤ T (i, j2) for j1 < j2, and T (i1, j) < T (i2, j) for i1 < i2.
If T is a skew semistandard Young tableau, we denote by ti (T ) the number of cells
that map to i. If T is a bijection into [n], we call T a standard Young tableau. Define
the skew Schur function

sλ/μ =
∑

T

x
t1(T )
1 x

t2(T )
2 · · · , (1)

where the sum is over all semistandard Young tableaux of shape λ/μ. A skew Schur
function is a formal power series in x1, x2, . . . , and it is not hard to see that it is a
symmetric function. Moreover, the set of Schur functions {sλ:λ partition} is a basis
of the space of symmetric functions. For more details, and for some of the amazing
properties of Schur functions, see [8, Chap. 7].

There are several other bases of the space of symmetric functions. For the purposes
of this paper, the most important one is the power sum basis {pλ:λ partition}, defined



522 J Algebr Comb (2012) 35:519–545

by

pr = xr
1 + xr

2 + · · · ,
pλ = pλ1pλ2 · · ·pλ�

.

Let us also mention the monomial basis {mλ:λ partition}, defined by

mλ =
∑

x
λ1
π(1) · · ·xλ�

π(�),

where the sum is over all injective maps π : {1, . . . , �} → N.
The product of Schur functions can be (uniquely) expressed as a linear combina-

tion of Schur functions:

sλsμ =
∑

cν
λ,μsν.

The coefficients cν
λ,μ are called Littlewood–Richardson coefficients and can be com-

puted using the celebrated Littlewood–Richardson rule, see [8, Appendix A1.3]. This
rule is quite complicated, but it is very simple if μ has only one row or column.
Namely, we have the Pieri rule:

sλsr =
∑

sλ+ , (2)

where the sum on the right is over all λ+ such that λ+/λ is a horizontal strip of size
r . Similarly, the conjugate Pieri rule says that

sλs1r =
∑

sλ+ , (3)

where the sum on the right is over all λ+ such that λ+/λ is a vertical strip of size r .
We also have a rule for the product of a Schur function with a power sum symmet-

ric function, the Murnaghan–Nakayama rule:

sλpr =
∑

(−1)ht(λ+/λ)sλ+ , (4)

where the sum on the right is over all λ+ such that λ+/λ is a ribbon of size r . See [8,
Theorems 7.15.7 and 7.17.1].

In [1] and [2], Assaf and McNamara found a beautiful extension of both the Pieri
rule and the Murnaghan–Nakayama rule.

Theorem 1 (Skew Pieri Rule—SPR) For any partitions λ,μ, μ ⊆ λ, we have

sλ/μ · sr =
∑

j

(−1)j
∑

sλ+/μ− ,

where the inner sum on the right is over all λ+,μ− such that λ+/λ is a horizontal
strip of size r − j , and μ/μ− is a vertical strip of size j .

The skew Pieri rule has an equivalent conjugate form.
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Corollary 2 (Conjugate skew Pieri rule—CSPR) For any partitions λ,μ, μ ⊆ λ, we
have

sλ/μ · s1r =
∑

j

(−1)j
∑

sλ+/μ− ,

where the inner sum on the right is over all λ+,μ− such that λ+/λ is a vertical strip
of size r − j , and μ/μ− is a horizontal strip of size j .

CSPR can be proved from SPR via the involution ω on the algebra of symmet-
ric functions, which maps sλ/μ to sλc/μc and is an algebra homomorphism. See [8,
Sects. 7.6 and 7.14] for details.

Theorem 3 (Skew Murnaghan–Nakayama Rule—SMNR) For any partitions λ,μ,
μ ⊆ λ, we have

sλ/μ · pr =
∑

(−1)ht(λ+/λ)sλ+/μ −
∑

(−1)ht(μ/μ−)sλ/μ− ,

where the first (respectively second) sum on the right is over all λ+ (respectively μ−)
such that λ+/λ (respectively μ/μ−) is a ribbon of size r .

Example By SPR, we have

s322/11 · s2 = s522/11 + s432/11 + s4221/11 + s3321/11 + s3222/11 − s422/1

− s332/1 − s3221/1 + s322,

as shown by Fig. 2.
By CSPR, we have

s322/11 · s11 = s432/11 + s4221/11 + s333/11 + s3321/11 + s32211/11 − s422/1

− s332/1 − s3221/1,

as shown by Fig. 3.

Fig. 2 Terms in the product s322/11 · s2

Fig. 3 Terms in the product s322/11 · s11
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Fig. 4 Terms in the product s433/22 · p3

By SMNR, we have

s433/22 · p3 = s733/22 − s553/22 + s4333/22 − s43321/22 + s433111/22 + s433/1,

as shown by Fig. 4.

Note that while the Pieri rule and the Murnaghan–Nakayama rule expand products
in terms of a basis, their skew versions give only one possible (but obviously special)
expansion in terms of skew Schur functions, which are not a basis of the space of
symmetric functions.

Assaf and McNamara provide an elegant bijective proof of their skew Pieri rule
(but not of the skew Murnaghan–Nakayama rule; see Sect. 7). We describe this rule
in detail in Sect. 3 since an extension of it proves our main result.

Define quantum power sum symmetric functions by

p̃r =
∑

τ�r

(−1)�(τ)−1(q − 1)�(τ)−1mτ ,

p̃μ = p̃μ1 p̃μ2 · · · .

For example,

p̃4 = m4 − (q − 1)m31 − (q − 1)m22 + (q − 1)2m211 − (q − 1)3m1111

and

p̃22 = m4 − 2(q − 1)m31 + (

q2 − 2q + 3
)

m22 + 2(q − 1)(q − 2)m211

+ 6(q − 1)2m1111.

The functions p̃μ have connections with representation theory (more precisely,
characters of the Hecke algebra of type A; see for example [3, Theorem 6.5.3]). See
also [6] and [5, Chap. III.2].

We have

p̃r |q=1 = mr = pr, p̃r |q=0 =
∑

τ�r

mτ = sr ,

lim
q→∞

p̃r

qr−1
= (−1)r−1m1r = (−1)r−1s1r .
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There exists a natural generalization of the Murnaghan–Nakayama rule, the quan-
tum Murnaghan–Nakayama rule (QMNR):

sλ · p̃r = (−1)r+1
∑

λ+
(−1)wt(λ+/λ)qht(λ+/λ)(q − 1)rib(λ+/λ)−1sλ+ ,

where the internal sum on the right is over λ+ such that λ+/λ is a broken ribbon of
size r . See for example [3, Theorem 6.5.2] for a slightly different version.

The following is our main result, the skew quantum Murnaghan–Nakayama rule.

Theorem 4 (SQMNR) For partitions λ,μ, μ ⊆ λ, and r ≥ 0, we have

sλ/μ · p̃r =
r

∑

j=0

(−1)r+1−j
∑

λ+,μ−
(−1)wt(λ+/λ)+ht(μ/μ−)qht(λ+/λ)+wt(μ/μ−)

× (q − 1)rib(λ+/λ)+rib(μ/μ−)−1sλ+/μ−,

where the internal sum on the right is over λ+,μ− such that λ+/λ is a broken ribbon
of size r − j , and μ/μ− is a broken ribbon of size j .

There is another version of the statement that will be slightly more useful for our
purposes.

Theorem 5 (SQMNR′) For partitions λ,μ, μ ⊆ λ, and r ≥ 0, we have

sλ/μ · p̃r =
∑

λ+,μ−
(−1)|μ/μ−|(−q)ht(λ+/λ)+wt(μ/μ−)

× (1 − q)rib(λ+/λ)+rib(μ/μ−)−1sλ+/μ− ,

where the sum on the right is over λ+,μ− such that λ+/λ and μ/μ− are broken
ribbons with |λ+/λ| + |μ/μ−| = r .

To see that these two versions are equivalent, note that

qht(λ+/λ)+wt(μ/μ−)(q − 1)rib(λ+/λ)+rib(μ/μ−)−1

= (−1)ht(λ+/λ)+wt(μ/μ−)+rib(λ+/λ)+rib(μ/μ−)−1(−q)ht(λ+/λ)+wt(μ/μ−)

× (1 − q)rib(λ+/λ)+rib(μ/μ−)−1,

which means that the sign of (−q)ht(λ+/λ)+wt(μ/μ−)(1 − q)rib(λ+/λ)+rib(μ/μ−)−1 of a
term on the right-hand side of SQMNR is

(−1)r+1−j+wt(λ+/λ)+ht(μ/μ−)+ht(λ+/λ)+wt(μ/μ−)+rib(λ+/λ)+rib(μ/μ−)−1.

If π/σ is a ribbon, we have wt(π/σ) + ht(π/σ) + 1 = |π/σ |. Therefore if π/σ is a
broken ribbon,

wt(π/σ) + ht(π/σ) + rib(π/σ) = |π/σ |. (5)
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That means that the sign above is equal to

(−1)r+1−j+|λ+/λ|+|μ/μ−|−1 = (−1)2r+j = (−1)|μ/μ−|.

The main theorem is a generalization of several statements. The following is a
sample:

• q = 0: a term on the right-hand side of SQMNR′ is non-zero if and only if
ht(λ+/λ) + wt(μ/μ−) = 0. In this case, λ+/λ has height 0 (and is a horizontal
strip) and μ/μ− has width 0 (and is a vertical strip). As noted above, p̃r |q=0 = sr .
SQMNR′ specializes to the skew Pieri rule due to Assaf–McNamara [1].

• q = 1: a term on the right-hand side of SQMNR′ is non-zero if and only if
rib(λ+/λ) + rib(μ/μ−) − 1 = 0. In this case, one of λ+/λ and μ/μ− is empty,
and the other one is a ribbon. As noted above, p̃r |q=1 = pr . SQMNR′ therefore
states

sλ/μ · pr =
∑

λ+
(−1)ht(λ+/λ)sλ+/μ +

∑

μ−
(−1)k(−1)wt(μ/μ−)sλ/μ−

=
∑

λ+
(−1)ht(λ+/λ)sλ+/μ −

∑

μ−
(−1)ht(μ/μ−)sλ/μ− ,

where the first sum is over λ+ so that λ+/λ is a ribbon, and the second sum is over
μ− so that μ/μ− is a ribbon. This is the skew Murnaghan–Nakayama rule due to
Assaf–McNamara [2].

• q → ∞: divide SQMNR by qr−1 and send q → ∞. The limit of the left-hand side
is (−1)r−1sλ/μs1r . The coefficient of sλ+/μ− on the right is

lim
q→∞(−1)r+1−j (−1)wt(λ+/λ)+ht(μ/μ−)

× qht(λ+/λ)+wt(μ/μ−)(q − 1)rib(λ+/λ)+rib(μ/μ−)−1

qr−1

= (−1)r+1−j (−1)wt(λ+/λ)+ht(μ/μ−) lim
q→∞q−(wt(λ+/λ)+ht(μ/μ−)),

where we used (5). This is non-zero if and only if wt(λ+/λ) + ht(μ/μ−) = 0,
i.e. if λ+/λ is a vertical strip and μ/μ− is a horizontal strip, and the limit is
(−1)r−1(−1)j . SQMNR therefore implies the conjugate skew Pieri rule.

• μ = ∅: SQMNR is obviously the quantum Murnaghan–Nakayama rule.
• μ = ∅, q = 0: this is the classical Pieri rule.
• μ = ∅, q = 1: this is the classical Murnaghan–Nakayama rule.
• μ = ∅, q → ∞: this implies the classical conjugate Pieri rule.
• λ = μ = ∅: this gives the expansion of quantum power sum functions in the basis

of Schur functions. The only Young diagrams of size r that are also broken ribbons
are hooks, i.e. diagrams of partitions of the type (k,1r−k) for 1 ≤ k ≤ r . Therefore
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(as we verify independently in Lemma 10),

p̃r =
r

∑

k=1

(−q)r−ksk,1r−k .

Define a broken ribbon tableau of shape λ/μ and type τ (respectively, reverse
broken ribbon tableau of shape λ/μ and type τ ) as an assignment of positive integers
to the cells of [λ/μ] satisfying the following:

• every row and column is weakly increasing (respectively, weakly decreasing);
• the integer i appear τi times;
• the set Ti of cells occupied by i forms a broken ribbon.

For a (reverse) broken ribbon tableau T we define ht(T ) = ∑

ht(Ti), wt(T ) =
∑

wt(Ti), rib(T ) = ∑

rib(Ti).
The main theorem implies the following corollary; compare to [8, Theorem 7.17.3].

Corollary 6 We have

sλ/μ · p̃τ =
∑

λ+⊇λ
μ−⊆μ

(−1)|μ/μ−|χ
(

λ+, λ,μ,μ−; τ)

sλ+/μ−,

where

χ
(

λ+, λ,μ,μ−; τ) =
∑

(−q)ht(T ′)+wt(T ′′)(1 − q)rib(T ′)+rib(T ′′)−1

with the sum over all pairs (T ′, T ′′) of a broken ribbon tableau and a reverse bro-
ken ribbon tableau of shapes λ+/λ and μ/μ−, respectively, and types τ ′ and τ ′′,
respectively, so that τ ′ + τ ′′ = τ .

3 Proofs of the skew Pieri rule and its conjugate

One of the most important algorithms on semistandard Young tableaux is the
Robinson–Schensted row insertion. Given a semistandard Young tableau T of shape
λ and an integer k, we can insert k into T as follows. Define k1 = k. Find the smallest
j so that T1j > k1, replace T1j by k1, and define k2 to be the previous value of T1j .
Then find the smallest j so that T2j > k2, replace T2j by k2, and define k3 to be the
previous value of T2j . Continue until, for some i′, all elements of row i′ are ≤ ki′ .
Then define Ti′,λ′

i+1 = ki′ , and finish the algorithm. The result is again a semistandard
Young tableau. We say that the insertion of k into T exits in row i′. See [8, Sect. 7.11]
for details.

Example Inserting 1 into the tableau on the left of Fig. 5 produces the tableau on the
right.
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Fig. 5 Insertion of 1 into a
tableau

Fig. 6 Insertion of 1 into a (skew) tableau, and insertion from row 2 in a tableau

Now assume we have a skew semistandard Young tableau T of some shape λ/μ.
We can insert k into T for some integer k in almost exactly the same way. Define
k1 = k. Find the smallest j , μ1 < j ≤ λ1, so that T1j > k1, replace T1j by k1, and
define k2 to be the previous value of T1j . Then find the smallest j , μ2 < j ≤ λ2,
so that T2j > k2, replace T2j by k2, and define k3 to be the previous value of T2j .
Continue until, for some i′, all elements of row i′ are ≤ ki′ . Then define Ti′,λi′+1 = ki′ ,
and finish the algorithm. The result is again a semistandard Young tableau. We say
that the insertion of k into T exits in row i′.

There is, however, another natural kind of insertion. Take i0 so that either i0 =
1 or μi0−1 > μi0 , and take ki0+1 = Ti0,μi0 +1. We can insert from row i0 in T as
follows. Erase the entry Ti0,μi0+1. Find the smallest j , μi0+1 < j ≤ λi0+1, so that
Ti0+1,j > ki0+1, replace Ti0+1,j by ki0+1, and define ki0+2 to be the previous value of
Ti0+1,j . Then find the smallest j , μi0+2 < j ≤ λi0+2, so that Ti0+2,j > ki0+2, replace
Ti0+2,j by ki0+2, and define ki0+3 to be the previous value of Ti0+2,j . Continue until,
for some i′, all elements of row i′ are ≤ ki′ . Then define Ti′,λi′+1 = ki′ , and finish the
algorithm. The result is again a semistandard Young tableau. We say that the insertion
from row i0 in T exits in row i′.

Example In Fig. 6, we have an insertion of 1 into a tableau, and insertion from row
2 in a tableau.

Note that insertion into T is in a way a special case of insertion from a row in T .
Indeed, take μ0 = λ1, λ0 = λ1 + 1, and define T0,λ1 = k. Then insertion from row 0
in the new tableau gives the same result as insertion of k into the original tableau.

Insertion has an inverse operation, reverse insertion. Say we are given a semi-
standard Young tableau T of shape λ/μ. Take i′ so that λi′+1 < λi′ . We reverse
insert from row i′ in T as follows. Define ki′−1 = Ti′,λi′ . Erase the entry Ti′,λi′ .
Find the largest j , μi′−1 < j ≤ λi′−1, so that Ti′−1,j < ki′−1, replace Ti′−1,j by
ki′−1, and define ki′−2 to be the previous value of Ti′−1,j . Then find the largest j ,
μi′−2 < j ≤ λi′−2, so that Ti′−2,j < ki′−2, replace Ti′−2,j by ki′−2, and define ki′−3
to be the previous value of Ti′−2,j . Continue until we have ki0 , where either i0 = 0
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Fig. 7 Reverse insertion from row 2 and 4

or all elements of row i0 are ≥ ki0 . If i0 = 0, the result is a pair (S, k), where S is a
semistandard Young tableau and k = k0. We call k the exiting integer. If i0 ≥ 1 and all
elements of row i0 are ≥ ki0 , define Ti0,μi0

= ki0 . The result is a semistandard Young
tableau S. We say that the reverse insertion from row i′ in T exits in row i0.

Example In Fig. 7, we have reverse insertion from rows 2 (which exits in row 0 with
exiting integer 2) and 4 (which exits in row 1).

In [1], the operations of insertion and reverse insertion are proved to be inverses
of one another in the following sense. If the insertion of an integer k into a semistan-
dard Young tableau T exits in row i′ and the resulting tableau is S, then the reverse
insertion from row i′ in S exits in row 0 and the result is (T , k). If the insertion from
row i0 into T exits in row i′ and the resulting tableau is S, then the reverse insertion
from row i′ in S exits in row i0 and the result is T . Similarly, if the reverse insertion
from row i′ in T exits in row 0 and the result is (S, k), then the insertion of k into S

exits in row i′ and the result is T . And if the reverse insertion from row i′ in T exits
in row i0 ≥ 1 and the result is S, then the insertion from row i0 into S exits in row i′
and the result is T .

We will also need the following property of insertion and reverse insertion. The
lemma essentially states that insertion paths never cross.

Lemma 7 Say we are given a semistandard Young tableau T .

(a) If S is obtained by reverse insertion from row i′ in T that exits in row i0 > 0, and
R is obtained by reverse insertion from row i′′ < i′ in S that exits in row i′0, then
i′0 < i0.

(b) If S is obtained by reverse insertion from row i′ in T that exits in row 0 with
exiting integer k′, and R is obtained by reverse insertion from row i′′ < i′ in S

that exits in row i′0, then i′0 = 0 and the reverse insertion exits with exiting integer
k′′ > k′.

(c) If reverse insertion from row i′ in T exits in i0 and insertion from row i′0 > i0 in
T exits in i′′, then i′′ > i′.

Proof (a) If i0 ≥ i′′, then i′0 < i′′ ≤ i0 and the claim follows. Assume i0 < i′′. We
claim that if the reverse insertion from row i′ in T passes through (i, j ′) and the
reverse insertion from row i′′ in S passes through (i, j ′′), then j ′′ ≥ j ′; in other words,
reverse insertion from T lies weakly to the left of the reverse insertion from S. The
statement is true for i = i′′ because in this case, j ′′ = λi . If the statement holds for i

and j ′ < j ′′, the reverse insertion from row i′ in T bumps the entry T (i, j ′) into row
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i − 1; then the reverse insertion from row i′′ in S bumps the entry T (i, j ′′) ≥ T (i, j ′)
into a position which cannot be the left of the new position of T (i, j ′) in row i − 1.
If, on the other hand, j ′ = j ′′, the reverse insertion from row i′ in T again bumps the
entry T (i, j ′) into row i −1 and the entry T (i, j ′) is itself replaced by a strictly larger
entry. Then reverse insertion from row i′′ in S bumps this strictly larger entry into the
next row into a position which cannot be the left of the new position of T (i, j ′) in
row i − 1.

This means that the reverse insertion from row i′′ in S passes through row i0 and
so it exits in row < i0.

(b) By the reasoning in (a), the reverse insertion from S is weakly to the right of
the reverse insertion from T . In particular, reverse insertion from S reaches row 1,
and if the exiting integer k′ is bumped from position (1, j ′), then the exiting integer
k′′ is bumped from (1, j ′′) for j ′′ ≥ j ′. In particular, k′′ > k′.

(c) We claim that if reverse insertion from row i′ in T passes through (i, j ′),
where i′0 ≤ i ≤ i′, then insertion from i′0 in T passes through the cell (i, j ′′) for some
j ′′ ≤ j ′. The statement is true for i = i′0 because in that case, j ′′ = μi + 1 ≤ j ′. If it
holds for i, then the entry from row i + 1, say a, that was bumped into row i during
the reverse insertion from row i′ in T , must be < a, and lies in position (i, j ′) in T .
Therefore T (i, j ′′) < a and cannot be bumped into a position to the right of a in row
i + 1 in T .

In particular, insertion from row i′0 in T passes through row i′, and so the insertion
exits in row i′′ > i′. �

The involution by Assaf and McNamara that proves the skew Pieri rule works as
follows. Say we are given a skew shape λ/μ and a semistandard Young tableau T of
shape λ+/μ−, where λ+/λ is a horizontal strip and μ/μ− is a vertical strip. Let v be
the empty word. Let i = ∞ if μ = μ−, and let i be the top row of μ/μ− otherwise.

While λ+ �= λ and the reverse insertion from row i′, the top row of λ+/λ, in T

exits in row 0 and results in (S, k), attach k to the beginning of v, let T = S, and let
λ+/μ− be the shape of the new T (note that λ+

i′ is decreased by 1 and μ− remains
the same).

If the while loop stops when λ+ �= λ and the reverse insertion from row i′ in T

exits in row i0, 0 < i0 < i, and results in S, let T = S.
If the while loop stops when λ+ = λ, μ �= μ−, or when λ+ �= λ and the reverse

insertion from row i′ in T would exit in row i0, i0 ≥ i, insert from row i into T and
call the resulting tableau T .

Finish the algorithm by inserting the entries of v from left to right into T . The
final result is a semistandard Young tableau, we denote it Φλ,μ,λ+,μ−(T ).

Example (Consult Fig. 8) The left drawing shows a skew semistandard Young
tableau with λ+ = 8855432, λ = 855533, μ = 43222, μ− = 42111. The while loop
changes v to 2445 and it stops because after four reverse insertions, the next reverse
insertion (from row 7) exits in row 1 (see the second drawing). Since this is strictly
above the top row of μ/μ−, i.e. 2, we also perform this reverse insertion from row
7 (see the third drawing). Then we insert the integers 2, 4, 4, 5 and we get the skew
semistandard Young tableau pictured on the right, with λ+ = 8855431, λ = 855533,
μ = 43222, μ− = 32111.



J Algebr Comb (2012) 35:519–545 531

Fig. 8 Computation of Φ(T )

Fig. 9 Computation of Φ(T )

Fig. 10 A fixed point of Φ

(Consult Fig. 9) In the second example, we start with λ+ = 8855431, λ = 855533,
μ = 43222, μ− = 42111, see the left drawing. The while loop again changes v to
2445 and it stops because after four reverse insertions, the next reverse insertion (from
row 7) exits in row 5 (see the second drawing). Since this is not above the top row of
μ/μ−, we do not perform this reverse insertion. Instead, we insert from the top row of
μ/μ−, i.e. 2 (see the third drawing). Then we insert the integers 2, 4, 4 and 5 and we
get the skew semistandard Young tableau pictured on the right, with λ+ = 8855432,
λ = 855533, μ = 43222, μ− = 43111.

(Consult Fig. 10) In the third example, we start with λ+ = 9855331, λ = 855533,
μ = 43222, μ− = 43222, see the left drawing. The while loop changes v to 11245
and it stops because after five reverse insertions, λ+ = λ and μ = μ−. So we insert
the integers 1, 1, 2, 4 and 5 and we get the original skew semistandard Young tableau,
pictured on the right.

It turns out that Φ is an involution, and T is a fixed point if and only if μ = μ−
and the while loop stops when λ+ = λ. Such fixed points are in one-to-one corre-
spondence with pairs (S, v), where S is a semistandard Young tableau of shape λ/μ
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Fig. 11 Some semistandard Young tableaux of shape λ+/μ−

and v is a weakly increasing word. Indeed, if we stop the algorithm after the while
loop, we have exactly such a pair, and given a pair (S, v), we can insert the entries
of v from left to right into S to get the corresponding T . Furthermore, if T is not a
fixed point, then |μ−−| = |μ−| ± 1. It is easy to see that this shows the skew Pieri
rule. See [1] for details and a precise proof.

As mentioned in Sect. 2, the conjugate skew Pieri rule follows from SPR by ap-
plying the involution ω on the algebra of symmetric functions. There is, however, an
involution in the spirit of Assaf–McNamara that proves CSPR.

Fix λ,μ, r . A term on the right-hand side of CSPR is represented by a semi-
standard skew Young tableau of shape λ+/μ−, where λ+/λ is a vertical strip, μ/μ−
is a horizontal strip, and |λ+/λ| + |μ/μ−| = r . Such a tableau T is weighted by
(−1)|μ/μ−|. Let i denote the bottom row of μ/μ− (unless μ = μ−, in which case
take i = 0). Now reverse insert from row i′, the bottom row of λ+/λ, in T (unless
λ+ = λ). If the reverse insertion exits the diagram in row ≥ i (except in the case when
μ = μ− and the reverse insertion exits in row 0), call this new diagram Ψ (T ) =
Ψλ,μ,λ+,μ−(T ). See Fig. 11, left. If this reverse insertion exits the diagram in row
< i, or if λ+ = λ, insert from row i in T and call the result Ψ (T ) = Ψλ,μ,λ+,μ−(T ).
See Fig. 11, middle. When μ = μ− and the reverse insertion exits in row 0, take
Ψ (T ) = Ψλ,μ,λ+,μ−(T ) = T . See Fig. 11, right.

Example For the skew semistandard Young tableau on the left in Fig. 11, reverse
insertion from row 9 (the bottom row of λ+/λ) exits in row 5, which is weakly below
the bottom row of μ/μ−. Therefore we perform this reverse insertion, and the result
is the left picture of Fig. 12. For the skew semistandard Young tableau in the middle
of Fig. 11, reverse insertion from row 9 (the bottom row of λ+/λ) exits in row 4,
which is strictly above the bottom row of μ/μ−. Therefore we insert from row 5
(the bottom row of μ/μ−), the result is the middle picture of Fig. 12. For the skew
semistandard Young tableau on the right of Fig. 11, reverse insertion from row 9 (the
bottom row of λ+/λ) exits in row 0. This means that the tableau is a fixed point of Ψ .
The right picture in Fig. 12 shows the skew semistandard Young tableau that we get
if we repeatedly reverse insert from the bottom row of λ+/λ; the exiting integers are
1,2,3,4,5,6.
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Fig. 12 Computation of Ψ (T ) for the semistandard Young tableaux from Fig. 11

Proposition 8 The map Ψλ,μ,λ+,μ− is an involution that is sign-reversing except on
fixed points. Furthermore, the fixed points are in a natural bijective correspondence
with elements on the left-hand side of CSPR.

Proof Say that λ+ �= λ and the reverse insertion from row i′, the bottom row of λ+/λ,
exits in row i0, 0 �= i0 ≥ i, where i is the bottom row of μ/μ−, and results in S of
shape λ++/μ−−. Recall that in this case, Ψ (T ) = S. The partition μ−− differs from
μ− only in row i0, and μ−−

i0
= μ−

i0
− 1. Also, λ++ differs from λ+ only in row i′,

and λ++
i′ = λ+

i′ − 1. Note that the bottom row of μ/μ−− is i0. If λ++ = λ, then Ψ (S)

is obtained by inserting from row i0 in S, which is T (because insertion and reverse
insertion are inverse operations). If λ++ �= λ, then the bottom row of λ++/λ is strictly
above i′; furthermore, reverse insertion from this row exits in row < i0 by Lemma 7,
part (a). So we also obtain Ψ (S) by inserting from row i0 in S, and we get T .

Now assume that λ+ �= λ and the reverse insertion from row i′, the bottom row of
λ+/λ, exits in row < i. Then S = Ψ (T ) of shape λ++/μ−− is the result of inserting
from row i in T , assume that this insertion exits in row i′′. We know that μ−− differs
from μ− only in row i, μ−−

i = μ−
i + 1, and λ++ differs from λ+ only in row i′′,

λ++
i′′ = λ+

i′′ + 1. By Lemma 7, part (c), i′′ > i′. That means that when we perform Ψ

on S, we reverse insert from row i′′ in S. The reverse insertion results in T and exits
in row i, which is weakly below the bottom row of μ/μ−−, so Ψ (S) = T .

If λ+ = λ, we obtain S = Ψ (T ) of shape λ++/μ−− by inserting from row i in T ,
say that the insertion exits in row i′. In S, λ+/λ has only one cell, which is in row i′.
Furthermore, reverse insertion from row i′ in S exits in row i, which is weakly below
the bottom row of μ/μ−−. So the result of this reverse insertion, T , is also Ψ (S).

Finally, assume that T is a fixed point, i.e. that μ = μ− and that the reverse inser-
tion from row i′, the bottom row of λ+/λ, exits in row 0. Call the resulting tableau
T1 (of shape λ++/μ) and the exiting integer k1. By Lemma 7, part (b), that means
that if we again reverse insert from the bottom row of λ+

1 /λ in T1, the reverse inser-
tion again exits in row 0, and the exiting integer k2 is strictly greater than k1. Call
the resulting tableau T2, and continue. After r steps, we have a semistandard Young
tableau S = Tr of shape λ/μ, and a strictly decreasing word w = krkr−1 · · ·k1. Such
pairs (S,w) are obviously enumerated by the left-hand side of CSPR. �
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Fig. 13 Some examples of
breaking up a broken ribbon into
a horizontal and a vertical strip

4 A bijective proof of the main theorem

The first step of our proof is to interpret the right-hand side of SQMNR′ as a weighted
sum over some combinatorial objects. The appropriate objects turn out to be skew
semistandard Young tableaux with some cells colored gray. To motivate these col-
orings, observe the following. If we “glue” together a vertical strip and a horizontal
strip in such a way that the result is a skew diagram, then this skew diagram cannot
have any 2×2 squares. In other words, it is a broken ribbon. This also holds the other
way around: if we are given a broken ribbon, we can break it up into a vertical strip
and a horizontal strip. See Fig. 13 for two examples. Note that the right example is
special: the white cells (i.e. the cells of μ and the cells of λ/μ we put in the horizontal
strip) form a partition. In other words, the cells of the horizontal strip never have cells
of the vertical strip to the left or above them.

Let us multiply both sides of SQMNR′ by 1−q and call this statement SQMNR′′:

sλ/μ ·
(

∑

τ�r

(1 − q)�(τ)mτ

)

=
∑

λ+,μ−
(−1)|μ/μ−|(−q)ht(λ+/λ)+wt(μ/μ−)

× (1 − q)rib(λ+/λ)+rib(μ/μ−)sλ+/μ− .

We have fixed λ,μ, r . Say that we are given λ+,μ− such that λ+/λ and μ/μ− are
broken ribbons with |λ+/λ| + |μ/μ−| = r , and a skew semistandard Young tableau
T of shape λ+/μ−. Our first goal is to break up each of the broken ribbons λ+/λ and
μ/μ− into a vertical strip and a horizontal strip. More precisely, we wish to choose
partitions λ′,μ′ such that λ′/λ and μ′/μ− are horizontal strips, and λ+/λ′ and μ/μ′
are vertical strips. We weight such a selection with

(−1)|μ/μ−|(−q)|λ+/λ′|+|μ′/μ−|.

We color the cells of λ+/λ′ and μ′/μ− gray and leave the other cells white. So
our requirements are saying that both the gray cells of λ+/λ and the white cells of
μ/μ− form a vertical strip, and both the white cells of λ+/λ and the gray cells of
μ/μ− form a horizontal strip; also, the white cells form a diagram of some shape
λ′/μ′ for λ ⊆ λ′ ⊆ λ+, μ− ⊆ μ′ ⊆ μ. Furthermore, the weight of such an object is
(−1)|μ/μ−|(−q)j , where j is the number of gray cells.
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Fig. 14 Computation of weights

Example Figure 14 shows four examples with weights q16, q14, −q13 and −q11.

We claim that these objects indeed enumerate the right-hand side of SQMNR′.

Lemma 9 For fixed λ,μ,λ+,μ−, we have
∑

λ′,μ′
(−1)|μ/μ−|(−q)|λ+/λ′|+|μ′/μ−| = (−1)|μ/μ−|(−q)ht(λ+/λ)+wt(μ/μ−)

× (1 − q)rib(λ+/λ)+rib(μ/μ−),

where the sum on the left runs over all λ′,μ′ such that λ′/λ and μ′/μ− are horizontal
strips, and λ+/λ′ and μ/μ′ are vertical strips.

Proof For each cell of λ+/λ, we have to decide whether or not to put it in λ′/λ or in
λ+/λ′ (i.e. whether to make it white or gray). If a cell in λ+/λ has a right neighbor in
λ+/λ, it cannot be in λ+/λ′, since its right neighbor would also have to be in λ+/λ′,
and this would contradict the requirement that λ+/λ′ is a vertical strip. Similarly, if
a cell in λ+/λ has an upper neighbor in λ+/λ, it cannot be in λ′/λ, since its upper
neighbor would also have to be in λ′/λ, and this would contradict the requirement
that λ′/λ is a horizontal strip.

This means that the colors of all the cells in λ+/λ are determined, except for the
top right cell of each ribbon of λ+/λ, which can be either white or gray.

If a cell in μ/μ− has a right neighbor in μ/μ−, it cannot be in μ/μ′, since its right
neighbor would also have to be in μ/μ′, and this would contradict the requirement
that μ/μ′ is a vertical strip. Similarly, if a cell in μ/μ− has an upper neighbor in
μ/μ−, it cannot be in μ′/μ−, since its upper neighbor would also have to be in
μ′/μ−, and this would contradict the requirement that μ′/μ− is a horizontal strip.

This means that the colors of all the cells in μ/μ− are determined, except for the
top right cell of each ribbon of μ/μ−, which can be either white or gray.

In other words, we have two choices for each upper right cell of each ribbon of
(λ+/λ)∪ (μ/μ−). This already means that there are 2rib(λ+/λ)+rib(μ/μ−) terms on the
left-hand side.

We have at least ht(λ+/λ) gray cells in λ+/λ, and at least wt(μ/μ−) gray cells in
μ/μ−. So the weight of a term on the left-hand side is

(−1)|μ/μ−|(−q)ht(λ+/λ)+wt(μ/μ−)(−q)j ,
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where j is the number of cells that are gray by choice, and these choices are made
independently. By the binomial theorem,

∑

(

rib(λ+/λ) + rib(μ/μ−)

j

)

(−1)|μ/μ−|(−q)ht(λ+/λ)+wt(μ/μ−)(−q)j

= (−1)|μ/μ−|(−q)ht(λ+/λ)+wt(μ/μ−)(1 − q)rib(λ+/λ)+rib(μ/μ−),

which finishes the proof of the lemma. �

We have managed to rewrite SQMNR′′ as follows:

sλ/μ ·
(

∑

τ�r

(1 − q)�(τ)mτ

)

=
∑

λ+,λ′,μ−,μ′
(−1)|μ/μ−|(−q)|λ+/λ′|+|μ′/μ−|sλ+/μ−,

where the sum is over partitions λ+, λ′,μ−,μ′ such that λ+/λ and μ/μ− are broken
ribbons with |λ+/λ| + |μ/μ−| = r , λ′/λ and μ′/μ− are horizontal strips, and λ+/λ′
and μ/μ′ are vertical strips.

Fix λ, μ and r . Therefore: a term on the right-hand side of SQMNR′′ corresponds
to a semistandard Young tableau T with some cells colored white and some cells
colored gray, such that the following properties are satisfied:

• the shape of T is λ+/μ− for some λ+ ⊇ λ and μ− ⊆ μ, |λ+/λ|+ |μ/μ−| = r , and
λ+/λ and μ/μ− are broken ribbons;

• the white cells form a skew diagram λ′/μ′ for some partitions λ′,μ′;
• the white cells in λ+/λ form a horizontal strip, and the white cells in μ/μ− form

a vertical strip;
• the gray cells are in (λ+/λ) ∪ (μ/μ−), and they form a vertical strip in λ+/λ and

a horizontal strip in μ/μ−.

We call such an object a colored tableau of shape (λ,μ,λ′,μ′, λ+,μ−). We weight
a colored tableau by

(−1)|μ/μ−|(−q)|λ+/λ′|+|μ′/μ−|.

Now perform the involution Ψ on the gray cells of a colored tableau. More specif-
ically, find Ψλ′,μ′,λ+,μ−(T ). Since λ+/λ′ is a vertical strip and μ′/μ− is a horizontal
strip, the map is well defined. One gray cell is removed, and one gray cell is added in
the process. The result is a colored tableau T ′ of shape (λ,μ,λ′,μ′, λ++,μ−−) for
some λ++, μ−−; it has the same white cells as T , the same number of gray cells as
T , and with the property that |μ/μ−−| = |μ/μ−| ± 1 unless T = T ′ is a fixed point.

This already cancels a large number of terms. The ones that remain correspond to
fixed points of Ψλ′,μ′,λ+,μ− . Each such fixed point consists of a semistandard skew
Young tableau S of some shape λ′/μ′, where λ′/λ is a horizontal strip and μ/μ′ is
a vertical strip, and of a strictly decreasing word w coming from reverse insertion of
λ+/λ′. Such an object is weighted by (−1)|μ/μ′|(−q)|w|.

Now apply the Assaf–McNamara involution Φ to the tableau. More specifically,
find Φλ,μ,λ′,μ′(S). The result is a semistandard Young tableaux S′ of some shape
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λ+++/μ−−− with the property that |μ/μ−−−| = |μ/μ−| ± 1 unless S = S′ is a
fixed point. This cancels more terms. The ones that remain correspond to fixed points
of Φλ,μ,λ′,μ′ , together with a strictly decreasing word w and the weight (−q)|w|.
Each such fixed point consists of a semistandard Young tableau R of shape λ/μ,
together with a weakly increasing word v and a strictly decreasing word w. Such an
object is weighted by (−q)|w|. Furthermore, every such triple (R, v,w) appears as
a non-canceling term on the right. Indeed, insert the elements of v into R to get a
semistandard Young tableau S of shape λ′/μ for some partition λ′ so that λ′/λ is a
horizontal strip; then insert the elements of w into S and color the new cells gray
to get a colored tableau T of shape λ+/μ for some partition λ+ so that λ+/λ′ is a
vertical strip. Then applying Ψ and Φ to T yields (R, v,w).

It remains to enumerate all triples (R, v,w). If we want (v,w) to contain, say,
τi copies of i, 1 ≤ i ≤ �, we can choose any j -subset of {1, . . . , �} and put the el-
ements in decreasing order to form w, and then put the remaining elements of the
multiset {1τ1,2τ2, . . . , �τ�} in weakly increasing order to form v. Furthermore, the
weight of (R, v,w) for these v and w is (−q)j . That means that the right-hand side
of SQMNR′′ becomes, after cancellations,

sλ/μ ·
(

∑

τ�r

(1 − q)�(τ)mτ

)

,

which is the left-hand side of SQMNR′′.

5 A proof via skew Littlewood–Richardson rule

It is informative to use Lam–Lauve–Sotille’s [4] skew Littlewood–Richardson rule to
find another proof of SQMNR. The first lemma is a simple computation that allows us
to replace the quantum power sum functions with “hook” Schur functions and should
remind the reader of the enumeration of pairs (v,w) for v a weakly increasing word
and w a strictly decreasing word at the end of the previous section. The second lemma
is technical and states that a certain property is preserved in jeu de taquin slides. And
the third lemma sheds some light on connections between jeu de taquin, hooks, and
decompositions of broken ribbons into vertical and horizontal strips.

Lemma 10 For all r , we have

p̃r =
r

∑

k=1

(−q)r−ksk,1r−k .

Proof Let us compute the expansion of the right-hand side in basis mλ. Given
λ = (λ1, λ2, . . . , λ�) and k, 1 ≤ k ≤ r , it is easy to count the number of semistan-
dard Young tableaux of shape (k,1r−k) and type λ: place 1 in cell (1,1), choose the
elements to place in the (only) cell of rows 2, . . . , r − k + 1 in

(

�−1
r−k

)

ways and place
them in the first column in strictly increasing order, and place the remaining elements
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in weakly increasing order in the first row. This tells us that the coefficient of mλ in
the right-hand side is

r
∑

k=1

(−q)r−k

(

� − 1

r − k

)

= (1 − q)�−1,

which is also the coefficient of mλ in p̃r . �

For the second lemma, we have to recall the celebrated backward (respectively,
forward) jeu de taquin slide due to Schützenberger. Say we are given a skew standard
Young tableau of shape λ/μ. Let c = c0 be a cell that is not in λ/μ, shares the right
or lower edge (respectively, the left or upper edge) with λ/μ, and is such that λ/μ∪ c

is a valid skew diagram. Let c1 be the cell of λ/μ that shares an edge with c0; if there
are two such cells, take the one with the smaller entry (respectively, larger entry).
Then move the entry occupying c1 to c0, look at the tableau entries below or to the
right of c1 (respectively, above or to the left of c1), and repeat the same procedure. We
continue until we reach the boundary, say in m moves. The new tableau is a standard
Young tableau and is called jdtc(T ). We say that c0, c1, . . . , cm is the path of the slide.

If T is a skew standard Young tableau, we can repeatedly perform backward jeu
de taquin slides. The final result S is a standard Young tableau of straight shape, and
it is independent of the choices during the execution of the algorithm. We say that T

rectifies to S. See [8, Appendix A1.2].
Say we are given a standard Young tableau T of shape λ/μ. We say that T has the

k-NE property if the following statements are true:

NE1 the entry in the last cell of the first non-empty row (i.e. the northeast cell) of
λ/μ is k;

NE2 if i < j < k, then i appears strictly to the left of j in T ;
NE3 if j > i > k, then i appears strictly above j in T .

Figure 15 shows some tableaux with 5-NE property.

Lemma 11 If a tableau T has the k-NE property, its shape is a broken ribbon. Fur-
thermore, the k-NE property is preserved in a jeu de taquin slide.

Proof For the first statement, assume that there is a 2 × 2 square in λ/μ, assume it
has numbers a, b in the upper row and c, d in the lower row. If c < k, then a < c

implies a < k, and this is a contradiction with property NE2. If c > k, then d > c

Fig. 15 Examples of tableaux
with 5-NE property
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implies d > k, and this is contradiction with property NE3. But we cannot have c = k

since c is obviously not the northeast cell of T .
Now take the path c0, c1, . . . , cm of a backward slide in T . We claim that either all

ci are in the same row, or all ci are in the same column, or m = 2, c1 is below c0, and
c2 is to the right of c1.

If they are not in the same row or column, it means that the ci ’s take a turn. All
three cells involved in the turn (i.e. ci, ci+1, ci+2, where either ci+1 lies to the right
of ci and ci+2 lies below ci+1, or ci+1 lies below ci and ci+2 lies to the right of ci+1)
cannot be in λ/μ, since that would imply that there is a 2×2 block in λ/μ. Therefore
the only option is if the entries involved in the turn are c0, c1, c2. Say that c1 lies to
the right of c0 and c2 lies below c1. The fact that we can add c0 to λ/μ implies that
there is a cell c′ of λ/μ below c0, with entry, say, a3. Say that we have a1 in c1 and
a2 in c2. We have a3 < k (since a3 > k would imply a2 > a3 > k, and this would
contradict NE3). We also have a1 < a3, since otherwise we would be sliding from c′
into c0 rather than from c1. But then a1 < k lies to the right of a3 < k, even though
a1 < a3, which contradicts NE2.

That means that c1 lies below c0 and c2 lies to the right of c1. If m ≥ 3, there must
be cells both above c2 and c3 in λ/μ, and this would give a 2 × 2 block.

Assume first that all ci are in the same row. Obviously the northeast cell is pre-
served, so property NE1 holds for the new tableau. Furthermore, since all cells of the
tableau stay in the same row, NE3 is preserved. If NE2 is violated in the new tableau,
it must mean that there is a cell c′ with entry < k in T in the same column as c0. But
this can only happen if c′ lies immediately below c0; by NE2, its entry is less than
the entry of c1, and therefore we would slide from c′ into c0, not from c1.

If all ci are in the same column, the proof that the properties NE1, NE2 and NE3
are preserved is completely analogous. So let us assume that we have m = 2, c1 is
below c0, and c2 is to the right of c1. There must be a cell c′ of λ/μ to the right of
c0, say with entry a3. Assume we have a1 in c1 and a2 in c2. Then a1 < k (a1 > k

would imply a2 > k and contradict NE3) and a2 > k (a2 < k would imply a3 < k and
contradict NE2). So all cells with entries < k stay in the same column, and all cells
with entries > k stay in the same row. Therefore NE2 and NE3 are still satisfied, and
it is clear that the northeast cell stays in place.

The proof for a forward slide is analogous. This completes the proof of the
lemma. �

Lemma 12 Take r, k, 1 ≤ k ≤ r , and let S be the standard Young tableau of shape
(k,1r−k) with 1,2, . . . , k in the first row, and k + 1, k + 2, . . . , r in rows 2,3, . . . , r −
k + 1. Choose a skew shape λ/μ. Then the number of standard Young tableaux of

shape λ/μ that rectify to S is
( rib(λ/μ)−1
k−1−wt(λ/μ)

)

if λ/μ is a broken ribbon of size r , and 0
otherwise.

Proof Obviously the number is 0 unless |λ/μ| = r .
Note that S has the k-NE property. By Lemma 11, that means that if T of shape

λ/μ rectifies to S, T has the k-NE property and its shape λ/μ is a broken ribbon.
Furthermore, there is only one non-skew standard Young tableau that has the k-NE
property, and that is S.
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Fig. 16 Tableaux T , S and T ∗ S

It remains to assume that λ/μ is a broken ribbon of size r , and to count the number
of standard Young tableaux of shape λ/μ that have the k-NE property. Place k in the
northeast cell. If a cell in λ/μ has a right neighbor in λ/μ, then the entry has to be less
than k (otherwise both this entry and the entry to the right would be greater than k,
and this would contradict NE3). Similarly, if a cell in λ/μ has an upper neighbor in
λ/μ, then the entry has to be greater than k (otherwise both this entry and the entry
above it would be less than k, and this would contradict NE2).

This means that there are at least wt(λ/μ) elements that are < k. We can choose
the northeast element of any ribbon except the northeast ribbon and make it < k.
Since there are k − 1 elements total that are less than k, we have

(

rib(λ/μ) − 1

k − 1 − wt(λ/μ)

)

choices. �

Finally, recall the following result from [4]. For standard Young tableaux T and
S, we let T ∗ S be the tableau we get by placing T below and to the left of S. See
Fig. 16 for an example.

Theorem 13 (Skew Littlewood–Richardson rule—SLRR) Let λ, μ, σ , τ be parti-
tions and fix a standard Young tableau T of shape σ . Then

sλ/μsσ/τ =
∑

(−1)|R−|sλ+/μ−,

where the sum is over triples (R−,R+,R) of standard Young tableaux of respective
shapes (μ/μ−)c , λ+/λ and τ such that R− ∗ R+ ∗ R rectifies to T .

SLRR and the lemmas indeed prove SQMNR as follows. By Lemma 10,

sλ/μ · p̃r =
r

∑

k=1

(−q)r−ksλ/μ · sk,1r−k .
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By SLRR,

sλ/μ · sk,1r−k =
∑

R−,R+
(−1)|R−|sλ+/μ− ,

where the sum is over R− ∈ SYT((μ/μ−)c), R+ ∈ SYT(λ+/λ) such that R− ∗ R+
rectifies to T , where T is the standard Young tableau of shape (k,1r−k) with
1,2, . . . , k in the first row, and k + 1, k + 2, . . . , r in rows 2,3, . . . , r − k + 1. By
Lemma 12, the sum on the right is over λ+,μ− such that λ+/λ and μ/μ− are broken
ribbons, and for such λ+,μ−, the coefficient of sλ+/μ− is

(−1)|μ/μ−|
(

rib(λ+/λ) + rib(μ/μ−) − 1

k − 1 − wt(λ+/λ) − ht(μ/μ−)

)

.

This means that the coefficient of sλ+/μ− in sλ/μ · p̃r is

(−1)|μ/μ−| ∑

k

(−q)r−k

(

rib(λ+/λ) + rib(μ/μ−) − 1

k − 1 − wt(λ+/λ) − ht(μ/μ−)

)

.

Since r = rib(λ+/λ)+ rib(μ/μ−)+wt(λ+/λ)+wt(μ/μ−)+ht(λ+/λ)+ht(μ/μ−),
the sum equals

(−q)ht(λ+/λ)+wt(μ/μ−)
∑

k

(−q)rib(λ+/λ)+rib(μ/μ−)−1−(k−1−wt(λ+/λ)−ht(μ/μ−))

×
(

rib(λ+/λ) + rib(μ/μ−) − 1

k − 1 − wt(λ+/λ) − ht(μ/μ−)

)

= (−q)ht(λ+/λ)+wt(μ/μ−)(1 − q)rib(λ+/λ)+rib(μ/μ−)−1

by the binomial theorem. This is SQMNR′.

6 Some conjectures involving Hall–Littlewood polynomials

The quantum power sum functions p̃r are equal to Hall–Littlewood polynomials Pr

(with parameter q instead of the usual t), see e.g. [5, p. 214]. So while SPR gives
the expansion of sλ/μsr , SQMNR gives the expansion of sλ/μPr . Of course, the ex-
pansion of PλPr and PλP1r = Pλs1r in terms of Pλ+ are two of the basic results
for Hall–Littlewood polynomials (see [5, Sect. III, (3.2) and (3.10)]). The following
questions naturally arise. Can we exchange the roles of P and s in SQMNR, i.e. is
there a natural expansion of Pλ/μsr in terms of Pλ+/μ−? What about Pλ/μs1r ? The
following conjectures suggest that the answers to these questions are in the affirma-
tive.

Recall the definition of the q-binomial coefficient,
[

n

k

]

q

= [n]!
[k]![n − k]! ,

where [i]! = 1(1 + q)
(

1 + q + q2) · · · (1 + q + q2 + · · · + qi−1).
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For a horizontal strip λ/μ, define

hs(λ/μ) =
∏

λc
j =μc

j +1
λc

j+1=μc
j+1

(

1 − qmj (λ)
)

.

For a vertical strip λ/μ, define

vs(λ/μ) =
∏

j≥1

[

λc
j − λc

j+1
λc

j − μc
j

]

q

.

For a broken ribbon λ/μ, define

br(λ/μ) = (−q)ht(λ/μ)(1 − q)rib(λ/μ).

For any skew shape λ/μ, define

sk(λ/μ) = q
∑

j (
λc
j
−μc

j
2

)
∏

j

[

λc
j − μc

j+1
mj(μ)

]

q

.

With this notation, SQMNR′ can be expressed as

sλ/μ · Pr = 1

1 − q

∑

λ+,μ−
(−1)|μ/μ−| br

(

λ+/λ
)

br
((

μ/μ−)c)
sλ+/μ− ,

where the sum on the right is over λ+,μ− such that λ+/λ and μ/μ− are broken
ribbons with |λ+/λ| + |μ/μ−| = r .

Conjecture 14 For partitions λ,μ, μ ⊆ λ, and r ≥ 0 we have

Pλ/μ · sr =
∑

(−1)|μ/μ−| sk
(

λ+/λ
)

vs
(

μ/μ−)

Pλ+/μ− ,

where the sum on the right is over all λ+ ⊇ λ, μ− ⊆ μ such that μ/μ− is a vertical
strip and |λ+/λ| + |μ/μ−| = r .

For λ = μ = ∅, this is identity (2) on p. 219 in [5]. The formula seems to be new
for μ = ∅ and arbitrary λ.

Conjecture 15 For partitions λ,μ, μ ⊆ λ, and r ≥ 0 we have

Pλ/μ · s1r = Pλ/μ · P1r =
∑

(−1)|μ/μ−| vs
(

λ+/λ
)

sk
(

μ/μ−)

Pλ+/μ− ,

where the sum on the right is over all λ+ ⊇ λ, μ− ⊆ μ such that λ+/λ is a vertical
strip and |λ+/λ| + |μ/μ−| = r .

For μ = ∅, this is [5, Sect. III, (3.2)].
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The methods of this paper do not seem to work for these conjectures. In other
words, the sign-reversing involutions described in Sects. 3 and 4 cancel only the
constant coefficients on both sides of the conjectured equalities; positive powers of q

cancel in some other, mysterious manner.
The author was unable to find a (conjectural) skew version of the Pieri rule for

Hall–Littlewood polynomials, i.e. an expansion of Pλ/μPr in terms of Pλ+/μ− .

7 Final remarks

7.1 The motivation for this work was the open problem posed by Assaf and Mc-
Namara in [2]: to find a combinatorial proof of the skew Murnaghan–Nakayama
rule (SMNR). Even though this paper provides a completely bijective proof of the
skew quantum Murnaghan–Nakayama rule, which obviously specializes to the non-
quantum rule, Assaf–McNamara’s problem remains open. Indeed, plugging q = 1
into SQMNR′′, which is the identity we proved bijectively, gives 0 on both sides. To
get SMNR, we have to divide SQMNR′′ by 1 − q and then set q = 1.

One possibility would be to find a bijective proof of SQMNR′ instead. This would
mean that one of the northeast corners of ribbons of (λ+/λ) ∪ (μ/μ−) would have
to be colored white (or gray), perhaps the northeast corner of λ+/λ or the northeast
corner of μ/μ−. We were unable to find such a bijection. Even such a bijection,
however, would not be enough to construct a bijection that proves SMNR. Indeed,
plugging in q = 1 makes many of the skew tableaux weighted with 0, and hence
would not appear on the right-hand side of SMNR at all. We would want to avoid
such 0-weight objects in the sign-reversing involution.

One possibility would be to construct an involution-principle type of bijection.
Namely, given a skew semistandard Young tableau of shape λ+/μ, with λ+/λ a rib-
bon of size r , we would map it to a tableau of shape λ++/μ−−, where λ++/λ is a
broken ribbon of size r − 1 and |μ/μ−−| a broken ribbon of size 1, then map this
to a tableau of shape λ+++/μ−−−, where λ+++/λ is a broken ribbon of size r − 2
and |μ/μ−−| a broken ribbon of size 2 etc., until finally reaching a tableau of shape
μ/μ−, where μ/μ− is a ribbon of size r . We leave this as motivation for further
work.

7.2 There is another natural q-version of power sum functions, defined by

p̄r =
∑

τ�r

qr−�(τ)(q − 1)�(τ)−1mτ ,

p̄μ = p̄μ1 p̄μ2 · · · .
For example,

p̄4 = q3m4 + q2(q − 1)m31 + q2(q − 1)m22 + q(q − 1)2m211 + (q − 1)3m1111

and

p̄22 = q2m4 + 2q(q − 1)m31 + (

3q2 − 2q + 1
)

m22 + 2(q − 1)(2q − 1)m211

+ 6(q − 1)2m1111.
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We have

p̄r |q=1 = mr = pr, p̄r |q=0 = (−1)r−1m1r = (−1)r−1s1r ,

lim
q→∞

p̄r

qr−1
=

∑

τ�r

mτ = sr .

Theorem 16 (SQMNR′′′) For partitions λ,μ, μ ⊆ λ, and r ≥ 0, we have

sλ/μ · p̄r = (−1)r−1
∑

λ+,μ−
(−1)|μ/μ−|(−q)wt(λ+/λ)+ht(μ/μ−)

× (1 − q)rib(λ+/λ)+rib(μ/μ−)−1sλ+/μ− ,

where the sum on the right is over λ+,μ− such that λ+/λ and μ/μ− are broken
ribbons with |λ+/λ| + |μ/μ−| = r .

For q = 0, this is the conjugate skew Pieri rule (multiplied by (−1)r−1), for q = 1,
this is again the skew Murnaghan–Nakayama rule, and if we divide by qr−1 and send
q to ∞, we get the skew Pieri rule. We could give an involutive proof in the spirit of
the proof of SQMNR′, but we can also derive SQMNR′′′ from SQMNR′ by observing
that p̄r = qr p̃r |q=q−1 .

7.3 Lam–Lauve–Sotille’s skew Littlewood–Richardson rule is very general, but the
computation of actual coefficients in the expansion, i.e. counting all standard Young
tableaux of a given shape that rectify to a given tableau, is complicated in practice. In
light of Sect. 5, our work can be seen as one possible answer to the following ques-
tion. For what special shapes of λ,μ,σ, τ can we actually compute the coefficients?
SQMNR can be interpreted as saying that if τ = ∅ and σ is a hook, the coefficients
are (up to sign) certain binomial coefficients, while SPR says that the coefficient is
±1 if τ = ∅ and σ = r .

It would be interesting to find other examples when the coefficients can be com-
puted and yield elegant answers, both for Schur functions and for other Hopf algebras.
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