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Abstract Let G0, . . . ,Gk be finite abelian groups, and let G0 ∗ · · · ∗ Gk be the
join of the 0-dimensional complexes Gi . We give a characterization of the integral
k-coboundaries of subcomplexes of G0 ∗ · · · ∗ Gk in terms of the Fourier transform
on the group G0 × · · · × Gk . This provides a short proof of an extension of a re-
cent result of Musiker and Reiner on a topological interpretation of the cyclotomic
polynomial.

Keywords Simplicial homology · Fourier transform

1 Introduction

Let G0, . . . ,Gk be finite abelian groups with the discrete topology, and let N =∏k
i=0(|Gi | − 1). The simplicial join Y = G0 ∗ · · · ∗ Gk is homotopy equivalent to

a wedge of N k-dimensional spheres (see e.g. Theorem 1.3 in [1]). Subcomplexes of
Y are called balanced complexes (see [5]). Denote the (k − 1)-dimensional skeleton
of Y by Y (k−1). Let A be a subset of G0 × · · · × Gk . Regarding each a ∈ A as an
oriented k-simplex of Y , we consider the balanced complex

X(A) = XG0,...,Gk
(A) = Y (k−1) ∪ A.

In this note we characterize the integral k-coboundaries of X(A) in terms of the
Fourier transform on the group G0 × · · · × Gk . As an application, we give a short
proof of an extension of a recent result of Musiker and Reiner [4] on a topological
interpretation of the cyclotomic polynomial.

We recall some terminology. Let R[G] denote the group algebra of a finite abelian
group G with coefficients in a ring R. By writing f = ∑

x∈G f (x)x ∈ R[G] we
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identify elements of R[G] with R-valued functions on G. For a subset A ⊂ G, let
R[A] = {f ∈ R[G] : supp(f ) ⊂ A}. A character of G is a homomorphism of G into
the multiplicative group C − {0}. Let Ĝ be the character group of G, and let 1 be the
trivial character of G. The orthogonality relation asserts that for χ ∈ Ĝ,

∑

g∈G

χ(g) = |G| · δ(χ,1), (1)

where δ(χ,1) = 1 if χ = 1 and is zero otherwise. The Fourier transform is the linear
bijection F : C[G] → C[Ĝ] given on f ∈ C[G] and χ ∈ Ĝ by

F (f )(χ) = f̂ (χ) =
∑

x∈G

f (x)χ(x).

Let G = G0 × · · · × Gk . Then Ĝ = Ĝ0 × · · · × Ĝk . For 0 ≤ i ≤ k, let

Li = G0 × · · · × Gi−1 × Gi+1 × · · · × Gk.

We identify the group of integral k-cochains Ck(X(A);Z) with Z[A] and the group of
integral (k − 1)-cochains Ck−1(X(A);Z) = Ck−1(X(G);Z) with the (k + 1)-tuples
ψ = (ψ0, . . . ,ψk) where ψi ∈ Z[Li]. The coboundary map

dk−1 : Ck−1(X(G);Z
) → Ck

(
X(G);Z

)

is given by

dk−1ψ(g0, . . . , gk) =
k∑

i=0

(−1)iψi(g0, . . . , gi−1, gi+1, . . . , gk).

For 0 ≤ i ≤ k, let 1i denote the trivial character of Gi , and let

Ĝ+ = (
Ĝ0 − {10}

) × · · · × (
Ĝk − {1k}

)
.

For A ⊂ G and f ∈ Z[G], let f|A ∈ Z[A] be the restriction of f to A. The group

Bk
(
X(A);Z

) = {
dk−1ψ|A : ψ ∈ Ck−1(X(G);Z

)}

of integral k-coboundaries of X(A) is characterized by the following:

Proposition 1.1 For any A ⊂ G,

Bk
(
X(A);Z

) = {
f|A : f ∈ Z[G] such that supp(f̂ ) ⊂ Ĝ − Ĝ+}

.

As an application of Proposition 1.1, we study the homology of a family of bal-
anced complexes introduced by Musiker and Reiner [4]. Let p0, . . . , pk be distinct
primes and for 0 ≤ i ≤ k, let Gi = Z/piZ = Zpi

. Writing n = ∏k
i=0 pi , let

θ : Zn → G = G0 × · · · × Gk
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be the standard isomorphism given by

θ(x) = (
x(mod p0), . . . , x(mod pk)

)
.

For any �, let Z
×
� = {m ∈ Z� : gcd(m, �) = 1}. Let ϕ(n) = |Z×

n | = ∏k
i=0(pi − 1) be

the Euler function of n, and let A0 = {ϕ(n) + 1, ϕ(n) + 2, . . . , n − 2, n − 1}. For
A ⊂ {0, . . . , ϕ(n)}, consider the complex

KA = X
(
θ(A ∪ A0)

) ⊂ Zp0 ∗ · · · ∗ Zpk
.

Let ω = exp( 2πi
n

) be a fixed primitive nth root of unity. The nth cyclotomic poly-
nomial (see e.g. [2]) is given by

Φn(z) =
∏

j∈Z
×
n

(
z − ωj

) =
ϕ(n)∑

j=0

cj z
j ∈ Z[z].

Musiker and Reiner [4] discovered the following remarkable connection between the
coefficients of Φn(z) and the homology of the complexes K{j}.

Theorem 1.2 (Musiker and Reiner) For any j ∈ {0, . . . , ϕ(n)},

H̃i (K{j};Z) ∼=
⎧
⎨

⎩

Z/cjZ, i = k − 1,

Z, i = k and cj = 0,

0 otherwise.

The next result extends Theorem 1.2 to general KA. Let

cA = (cj : j ∈ A) ∈ Z
A

and

dA =
{

gcd(cA), cA 	= 0,

0, cA = 0.

Theorem 1.3 For any A ⊂ {0, . . . , ϕ(n)},

H̃i (KA;Z) ∼=

⎧
⎪⎨

⎪⎩

Z, i = k − 1 and dA = 0,

Z
|A|−1 ⊕ Z/dAZ, i = k,

0 otherwise,

and

H̃i (KA;Z) ∼=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z/dAZ, i = k − 1,

Z
|A|, i = k and dA = 0,

Z
|A|−1, i = k and dA 	= 0,

0 otherwise.

Proposition 1.1 is proved in Sect. 2. It is then used in Sect. 3 to obtain an ex-
plicit form of the k-coboundaries of KA (Proposition 3.1) that directly implies Theo-
rem 1.3.



568 J Algebr Comb (2012) 35:565–571

2 k-Coboundaries and Fourier transform

Proof of Proposition 1.1 It suffices to consider the case A = G. Let ψ = (ψ0, . . . ,ψk)

∈ Ck−1(X(G);Z). Using (1), it follows that for any χ = (χ0, . . . , χk) ∈ Ĝ,

d̂k−1ψ(χ) =
∑

g=(g0,...,gk)∈G

dk−1ψ(g)χ(g)

=
∑

(g0,...,gk)

k∑

i=0

(−1)iψi(g0, . . . , gi−1, gi+1, . . . , gk)

k∏

j=0

χj (gj )

=
k∑

i=0

(−1)i
∑

(g0,...,gi−1,gi+1,...,gk)

ψi(g0, . . . , gi−1, gi+1, . . . , gk)

×
∏

j 	=i

χj (gj )
∑

gi

χi(gi)

=
k∑

i=0

(−1)iψ̂i(χ0, . . . , χi−1, χi+1, . . . , χk)|Gi |δ(χi,1i ).

Therefore supp(d̂k−1ψ) ⊂ Ĝ − Ĝ+, and so

U1
def= Bk

(
X(G);Z

) ⊂ {
f ∈ Z[G] : supp(f̂ ) ⊂ Ĝ − Ĝ+} def= U2.

Since X(G) is homotopy equivalent to a wedge of
∏k

i=0(|Gi | − 1) = |Ĝ+|
k-dimensional spheres, it follows that Hk(X(G);Z) = Z[G]/U1 is free of rank |Ĝ+|
and hence rankU1 = |Ĝ| − |Ĝ+|. On the other hand, the injectivity of the Fourier
transform implies that

rankU2 ≤ dimC

{
f ∈ C[G] : supp(f̂ ) ⊂ Ĝ − Ĝ+} = |Ĝ| − ∣

∣Ĝ+∣
∣

and therefore rankU2/U1 = 0. Since U2/U1 ⊂ Hk(X(G);Z) is free, it follows that
U1 = U2. �

3 The homology of KA

Recall that, in the context of Theorems 1.2 and 1.3, one chooses G = Zp0 ×· · ·×Zpk

and n = ∏k
j=0 pj . For h ∈ Z[G], let θ∗h ∈ Z[Zn] be the pullback of h given by

θ∗h(x) = h(θ(x)). For any �, we identify the character group Ẑ� with Z� via the iso-
morphism η� : Z� → Ẑ� given by η�(y)(x) = exp(2πixy/�). The Fourier transform
on Z� is then regarded as the automorphism of C[Z�] given by

f̂ (y) =
∑

x∈Z�

f (x) exp

(
2πixy

�

)

.
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Proposition 1.1 implies the following characterization of the integral k-cobounda-
ries of KA. For A ⊂ {0, . . . , ϕ(n)}, let θA denote the restriction of θ to A ∪ A0, and
let θ∗

A be the induced isomorphism from Z[θ(A ∪ A0)] to Z[A ∪ A0]. Let

B(A) = {
f|A∪A0 : f ∈ Z[Zn] such that f̂ (1) = 0

}
.

Proposition 3.1

θ∗
A

(
Bk(KA;Z)

) = B(A).

Proof We first examine the relation between the Fourier transforms on Zn and on G.
Let

λ =
k∑

j=0

∏

t 	=j

pt ∈ Z
×
n .

For any h ∈ Z[G] and m ∈ Zn,

θ̂∗h(λm) =
∑

x∈Zn

θ∗h(x) exp

(
2πixλm

n

)

=
∑

x∈Zn

h
(
θ(x)

)
exp

(
k∑

j=0

2πixm

pj

)

= ĥ
(
θ(m)

)
. (2)

Noting that

θ−1(Ĝ+) = θ−1(
Z

×
p0

× · · · × Z
×
pk

) = Z
×
n = λZ

×
n ,

it follows from Proposition 1.1 and (2) that

Bk(KA;Z) = {
h|θ(A∪A0) : h ∈ Z[G] such that supp(̂h) ⊂ Ĝ − Ĝ+}

= (θ∗
A)−1{f|A∪A0 : f ∈ Z[Zn] such that supp(f̂ ) ⊂ Zn − Z

×
n

}
. (3)

Let Pn = {ωm : m ∈ Z
×
n } be the set of primitive nth roots of 1. The Galois group

Gal(Q(ω)/Q) acts transitively on Pn. Hence, by (3):

θ∗
A

(
Bk(KA;Z)

)

= {
f|A∪A0 : f ∈ Z[Zn] such that supp(f̂ ) ⊂ Zn − Z

×
n

}

=
{

f|A∪A0 : f ∈ Z[Zn] such that f̂ (m) =
∑

x∈Zn

f (x)ωmx = 0 for all m ∈ Z
×
n

}

= {
f|A∪A0 : f ∈ Z[Zn] such that f̂ (1) = 0

} = B(A). �

Corollary 3.2 θ∗
A induces an isomorphism between Hk(KA;Z) and

H(A)
def= Z[A ∪ A0]/B(A).
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For j ∈ A ∪ A0, let gj ∈ Z[A ∪ A0] be given by gj (i) = 1 if i = j and gj (i) = 0
otherwise. Let [gj ] be the image of gj in H(A). The computation of H(A) depends
on the following:

Claim 3.3

(i) H(A) is generated by {[gj ] : j ∈ A}.
(ii) The minimal relation between {[gj ]}j∈A is

∑
j∈A cj [gj ] = 0.

Proof of (i) Let t ∈ A0. There exist u0, . . . , uϕ(n)−1 ∈ Z such that

ϕ(n)−1∑

�=0

u�ω
� + ωt = 0.

Let f ∈ Z[Zn] be given by

f (�) =
⎧
⎨

⎩

u�, 0 ≤ � ≤ ϕ(n) − 1,

1, � = t,

0 otherwise.

Since

f̂ (1) =
ϕ(n)−1∑

�=0

u�ω
� + ωt = 0,

it follows that
∑

j∈A

ujgj + gt = f|A∪A0 ∈ B(A).

Hence [gt ] = −∑
j∈A uj [gj ]. �

Proof of (ii) Let f ∈ Z[Zn] be given by f (�) = c� if 0 ≤ � ≤ ϕ(n) and zero other-
wise. Since f̂ (1) = Φn(ω) = 0, it follows that

∑

j∈A

cjgj = f|A∪A0 ∈ B(A).

Hence
∑

j∈A cj [gj ] = 0. Conversely, suppose that
∑

j∈A αj [gj ] = 0 for inte-

gers {αj }j∈A. Then there exists an h ∈ Z[Zn] such that ĥ(1) = 0 and h|A∪A0 =
∑

j∈A αjgj . In particular, h(�) = 0 for � ≥ ϕ(n) + 1. Let p(z) = ∑ϕ(n)
�=0 h(�)z�. Then

p(ω) = ĥ(1) = 0. Hence p(z) = rΦn(z) for some r ∈ Z. Therefore αj = h(j) = rcj

for all j ∈ A. �

Proof of Theorem 1.3 Corollary 3.2 and Claim 3.3 imply that

Hk(KA;Z) ∼= H(A) = Z[A]/ZcA
∼= Z

|A|−1 ⊕ Z/dAZ. (4)
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The remaining parts of Theorem 1.3 are formal consequences of (4) and the universal
coefficient theorem (see e.g. [3]):

0 ← Hom
(
Hp(KA;Z),Z

) ← Hp(KA;Z) ← Ext
(
Hp−1(KA;Z),Z

) ← 0. (5)

First consider the case cA = 0. By (4) and (5),

0 ← Hom
(
Hk(KA;Z),Z

) ← Z
|A| ← Ext

(
Hk−1(KA;Z),Z

) ← 0.

Therefore Hk(KA;Z) ∼= Z
|A|, and Hk−1(KA;Z) is torsion free. The Euler–Poincaré

relation

rank Hk(KA;Z) = rank H̃k−1(KA;Z) + |A| − 1 (6)

then implies that H̃k−1(KA;Z) ∼= Z and

H̃k−1(KA;Z) ∼= Hom
(
H̃k−1(KA;Z),Z

) ∼= Z.

Next assume that cA 	= 0. By (4) and (5),

0 ← Hom
(
Hk(KA;Z),Z

) ← Z
|A|−1 ⊕ Z/dAZ ← Ext

(
Hk−1(KA;Z),Z

) ← 0.

Therefore Hk(KA;Z) ∼= Z
|A|−1 and Ext (Hk−1(KA;Z),Z) = Z/dAZ. It follows by

(6) that rank H̃k−1(KA;Z) = 0. Hence H̃k−1(KA;Z) = Z/dAZ and
H̃k−1(KA;Z) = 0. �

Remark In the proof of (ii) it was observed that the function f ∈ Z[Zn] given
by f (�) = c� if 0 ≤ � ≤ ϕ(n) and zero otherwise is the image under θ∗ of a
k-coboundary of X(G). This fact also appears (with a different proof) in Proposi-
tion 24 of [4] and is attributed there to D. Fuchs.
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