A group theoretic characterization of classical unitals

Giorgio Donati • Nicola Durante

Received: 18 January 2011 / Accepted: 22 September 2011 / Published online: 13 October 2011
© Springer Science+Business Media, LLC 2011

Abstract

Let G be the group of projectivities stabilizing a unital \mathcal{U} in $\operatorname{PG}\left(2, q^{2}\right)$. In this paper, we prove that \mathcal{U} is a classical unital if and only if there are two points in \mathcal{U} such that the stabilizer of these two points in G has order $q^{2}-1$.

Keywords Unitals • Hermitian curves • Reed-Muller codes

1 Introduction

Unitals in Desarguesian projective planes, as one of the most important research areas in projective and combinatorial geometry, were a subject of many investigations. Group theoretical characterizations of classical unitals were obtained by several authors. One of the first is due to Hoffer who proves that a unital \mathcal{U} in $\operatorname{PG}\left(2, q^{2}\right)$ is classical if and only if the group of projectivities stabilizing \mathcal{U} contains $\operatorname{PSU}\left(3, q^{2}\right)$ [9]. In relation to the purpose of this paper, we may mention here also the papers of Abatangelo [1] and Ebert and Wantz [8]. In [1], Abatangelo proves that a Buekenhout-Metz unital \mathcal{U} in $\operatorname{PG}\left(2, q^{2}\right), q$ odd, is classical if and only if there is a cyclic collineation group of order $q^{2}-1$, stabilizing \mathcal{U} and fixing two distinct points of \mathcal{U}. In [8], the authors prove that a unital \mathcal{U} in $\operatorname{PG}\left(2, q^{2}\right)$ is classical if and only if the group of projectivities stabilizing \mathcal{U} contains a semidirect product $S \rtimes R$ where S has order q^{3} and R has order $q^{2}-1$. For other group theoretic characterizations of classical unitals, see, e.g., [6, 7].

An important question is how much information concerning the group G of projectivities stabilizing a unital is needed to prove that the unital is classical. At the conference Combinatorics 2010, the authors made the following conjecture:

[^0]Conjecture If there is a linear collineation group of order $q^{2}-1$ stabilizing a unital \mathcal{U} and fixing two distinct points of \mathcal{U}, then \mathcal{U} is classical.

In this paper, we prove that this conjecture holds true. The same result has been obtained by Giuzzi and Korchmáros. Their proof was completed only recently (July 2011) after one of us communicated a slight flaw in their arguments, see http://arxiv. org/abs/1009.6109.

2 Preliminary results

Let $\operatorname{PG}\left(2, q^{2}\right), q=p^{h}, p$ a prime number, be the projective plane over the Galois field $\mathrm{GF}\left(q^{2}\right)$. Throughout the paper, we will put $\mathrm{GF}(q)^{*}=\mathrm{GF}(q) \backslash\{0\}$. A unital in $\operatorname{PG}\left(2, q^{2}\right)$ is a set \mathcal{U} of $q^{3}+1$ points meeting every line of $\operatorname{PG}\left(2, q^{2}\right)$ in either 1 or $q+1$ points. Lines meeting a unital \mathcal{U} in 1 or $q+1$ points are respectively called tangent and secant lines to \mathcal{U}. Through each point of \mathcal{U} there pass q^{2} secant lines and one tangent line. Through each point P not on \mathcal{U} there pass $q^{2}-q$ secant lines and $q+1$ tangent lines, the tangent points are called the feet of P.

An example is the non-degenerate Hermitian curve or classical unital, that is, the set of the absolute points of a non-degenerate unitary polarity of $\operatorname{PG}\left(2, q^{2}\right)$. For more information on unitals in projective planes, see [3].

A central collineation of $\operatorname{PG}\left(2, q^{2}\right)$ is a collineation α fixing every point of a line ℓ (the axis of α) and fixing every line through a point C (the center of α). If $C \in \ell$, then α is an elation; otherwise α is a homology. It is well known that given a line ℓ and three distinct collinear points C, P, P^{\prime} of $\operatorname{PG}\left(2, q^{2}\right)$, with $P, P^{\prime} \notin \ell$, there is a unique central collineation with axis ℓ and center C mapping P onto P^{\prime}. Note that a non-identity homology f of $\operatorname{PG}\left(2, q^{2}\right)$ stabilizing a unital \mathcal{U} has as center a point V not on \mathcal{U} and as axis a secant line ℓ to \mathcal{U}. Indeed, suppose, by way of contradiction, that V is on \mathcal{U}. Let P be a point of $\ell \cap \mathcal{U}$. The line $V P$ is a secant line to \mathcal{U}, hence for any point Q on $(\mathcal{U} \cap V P) \backslash\{V, P\}$ we have that $|\langle f\rangle|=\left|\operatorname{Orb}_{\langle f\rangle}(Q)\right|\left|\operatorname{Stab}_{\langle f\rangle}(Q)\right|$. Since $\operatorname{Stab}_{\langle f\rangle}(Q)$ is the trivial subgroup, it follows that $|\langle f\rangle|$ divides $q-1$. Let m be a secant line to \mathcal{U} through V such that $\ell \cap m \notin \mathcal{U}$. For any point R on $m \cap \mathcal{U}$ different from V, we have that $|\langle f\rangle|=\left|\operatorname{Orb}_{\langle f\rangle}(R)\right|$, therefore $|\langle f\rangle|$ divides q. As q and $q-1$ are relatively prime, $|\langle f\rangle|=1$ and f is the identity, a contradiction. Suppose now that ℓ is a tangent line to \mathcal{U}. The line ℓ contains at most one of the feet of V, so there exists one of the feet of V, say T, not on ℓ. Since $V T$ is the tangent line to \mathcal{U} at T, it follows that $f(T)=T$, so f is the identity, a contradiction.

From now on, we identify, unambiguously, a projectivity of $\operatorname{PG}\left(2, q^{2}\right)$ with its matrix representation with respect to a frame of the plane. Then a group of projectivities of the plane will be identified with a group of 3×3 matrices.

The group of projectivities preserving a classical unital \mathcal{U} in $\operatorname{PG}\left(2, q^{2}\right)$ is called the projective unitary group and is denoted by $\operatorname{PGU}\left(3, q^{2}\right)$. The group $\operatorname{PGU}\left(3, q^{2}\right)$ is 2-transitive on the points of \mathcal{U} and the 2-point stabilizer is isomorphic to the multiplicative group of $\mathrm{GF}\left(q^{2}\right)$.

Let A, B, and C be three non-collinear points of $\operatorname{PG}\left(2, q^{2}\right)$, and let \mathcal{T} be the set of all non-degenerate Hermitian curves containing both A and B with $C A$ and $C B$
as tangent lines at A and B, respectively. Without loss of generality, we may suppose $A=(1,0,0), B=(0,1,0)$, and $C=(0,0,1)$. Under such assumptions, every Hermitian curve of \mathcal{T} has equation

$$
\alpha x_{1} x_{2}^{q}+\alpha^{q} x_{1}^{q} x_{2}+x_{3}^{q+1}=0
$$

where α is an element of $\operatorname{GF}\left(q^{2}\right)^{*}$. The linear collineation group preserving a Hermitian curve of \mathcal{T} has as stabilizer of both A and B the cyclic group

$$
E_{A B}=\left\{\left(\begin{array}{ccc}
\xi^{(q+1) k} & 0 & 0 \tag{1}\\
0 & 1 & 0 \\
0 & 0 & \xi^{k}
\end{array}\right): k=1, \ldots, q^{2}-1\right\},
$$

where ξ is a primitive element of $\operatorname{GF}\left(q^{2}\right)$.
We now recall some definitions and results on codes that will be useful in what follows; for more details, see [2, 4]. Let $\mathrm{F}=\mathrm{GF}(q), q=p^{h}$, and let C be a linear code (i.e., a subspace of a vector space over F with reference to a particular basis \mathcal{B}) over F and let $C^{\prime} \subset C$ be a set of vectors of C all of whose coordinates w.r.t. \mathcal{B} are in a subfield F^{\prime} of F . Then C^{\prime} is a subfield subcode of C over F^{\prime}.

Let now $V=\mathrm{F}^{m}$ and consider the vector space F^{V} over F of all functions from V to F with basis $\left\{v^{\omega}, \omega \in V\right\}$, where v^{ω} denotes the characteristic vector of the subset $\{\omega\}$ of V.

Each polynomial $p\left(x_{1}, \ldots, x_{m}\right)$ in m variables over F generates a function from F^{m} into F . Observe that different polynomials can generate the same function and that any polynomial $p\left(x_{1}, \ldots, x_{m}\right)$ can be reduced modulo $x_{i}^{q}-x_{i}$ for every $i=1, \ldots, m$ to a new polynomial $p^{\prime}\left(x_{1}, \ldots, x_{m}\right)$ such that p and p^{\prime} generate the same function and $\operatorname{deg}_{i} p^{\prime} \leq q-1$, for $i=1, \ldots, m$, where $\operatorname{deg}_{i} p^{\prime}$ denotes the degree of p^{\prime} w.r.t. x_{i}. A polynomial $p\left(x_{1}, \ldots, x_{m}\right)$ is called a reduced polynomial if $\operatorname{deg}_{i} p \leq q-1$ for $i=1, \ldots, m$. There is a one-to-one correspondence between reduced polynomials and the mappings from F^{m} to F . Let $\mathcal{R}(m, q)$ be the set of all reduced polynomials in m variables over F . The subset of $\mathcal{R}(m, q)$ consisting of all polynomials with degree at most r is denoted by $\mathcal{R}_{r}(m, q)$ and it is a subspace of $\mathcal{R}(m, q)$. A basis for $\mathcal{R}_{r}(m, q)$ is the set of monomials of the form:

$$
x_{1}^{i_{1}} \cdots x_{m}^{i_{m}} \quad \text { where } \sum_{k=1}^{m} i_{k} \leq r .
$$

If the elements of F^{m} are ordered $\underline{\alpha}_{1}, \ldots, \underline{\alpha}_{q^{m}}$, the value table of a polynomial $p \in \mathcal{R}(m, q)$ is defined to be the q^{m}-tuple $\left(p\left(\underline{\alpha}_{1}\right), \ldots, p\left(\underline{\alpha}_{q^{m}}\right)\right)$. The set of value tables for all polynomials of $\mathcal{R}(m, q)$ is a vector space of dimension q^{m} over F . The rth order generalized Reed-Muller code of length q^{m} is the set of value tables of polynomials in $\mathcal{R}_{r}(m, q)$ and it is denoted by $\operatorname{GRM}_{r}(m, q)$. Obviously, $\operatorname{GRM}_{r}(m, q)$ is a subspace of $\operatorname{GRM}_{m(q-1)}(m, q)$ which is the space of all value tables. The r th order punctured generalized Reed-Muller code, $0 \leq r<m(q-1)$, is the code $\operatorname{GRM}_{r}(m, q)^{*}$ obtained from $\operatorname{GRM}_{r}(m, q)$ by puncturing at $\underline{0} \in V$, that is, by removing the position corresponding to $\underline{0}$ for every $f \in \operatorname{GRM}_{r}(m, q)$. Let now b be
a divisor of $q-1$ and let again $0 \leq r<m(q-1)$. Denote by $\underline{e}=(1,0, \ldots, 0)^{t}$ the transpose of the first vector of the standard basis of F^{m} and by S the companion matrix of order $m \times m$ of a Singer cycle of $\operatorname{PG}(m-1, q)$. The non-primitive generalized Reed-Muller code $\operatorname{GRM}_{r}^{b}(m, q)^{*}$ of order r is the code of length $\frac{q^{m}-1}{b}=n$ given by the set of vectors

$$
\left\{\left(p\left(\underline{e}^{t}\right), p\left((S \underline{e})^{t}\right), \ldots, p\left(\left(S^{n-1} \underline{e}\right)^{t}\right)\right): p\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{R}_{r}^{b}(m, q)\right\}
$$

where

$$
\mathcal{R}_{r}^{b}(m, q)=\left\langle x_{1}^{i_{1}} \cdots x_{m}^{i_{m}} \in \mathcal{R}_{r}(m, q): \sum_{k=1}^{m} i_{k} \equiv 0(\bmod b)\right\rangle .
$$

Let $\mathcal{C}_{p}(m-1, q)$ be the code of points and hyperplanes of $\operatorname{PG}(m-1, q)$, that is, the subspace of the characteristic vectors of the hyperplanes of $\operatorname{PG}(m-1, q)$. We will need in what follows this result on codes (see Theorem 5.7.1 in [2]).

Proposition 2.1 Let $q=p^{h}$ and let $F=\mathrm{GF}(q)$. The subfield subcode over $\operatorname{GF}(p)$ of $\operatorname{GRM}_{q-1}^{q-1}(m, q)^{*}$, denoted by $\mathcal{P}(1, m)$, is the code $\mathcal{C}_{p}(m-1, q)$.

3 Characterization

Throughout the paper, A and B are two distinct points of a unital \mathcal{U} in $\operatorname{PG}\left(2, q^{2}\right)$ and we will denote by G the group of projectivities stabilizing \mathcal{U}, by C the common point to the tangent lines to \mathcal{U} at A and at B, by $G_{A B}$ the stabilizer of both A and B in G, by $H_{A B}$ the group of homologies of G with center C and axis $A B$, and by $L_{A B}$ the group of projectivities induced on the line $A B$ by $G_{A B}$. From now on, we will assume, without loss of generality, that $A=(1,0,0), B=(0,1,0)$, and $C=(0,0,1)$.

Lemma 3.1 If \mathcal{U} is a unital in $\operatorname{PG}\left(2, q^{2}\right)$, then $G_{A B}$ is a cyclic group of order dividing $q^{2}-1$.

Proof It is clear that the factor group $\frac{G_{A B}}{H_{A B}}$ is isomorphic to $L_{A B}$. If P is any point of \mathcal{U} on the line $A B$ different from A and from B, then $\left|L_{A B}\right|=\left|O r b_{L_{A B}}(P)\right|$ $\left|\operatorname{Stab}_{L_{A B}}(P)\right|$. Since $\operatorname{Stab}_{L_{A B}}(P)$ is the trivial subgroup, it follows that the orbits under $L_{A B}$ of points on $\mathcal{U} \cap A B$ different from A and from B have the same size, namely $\left|L_{A B}\right|$. Therefore, $\frac{\left|G_{A B}\right|}{\left|H_{A B}\right|}$ divides $q-1$. Moreover, let ℓ be a secant line to \mathcal{U} through C such that $\ell \cap A B \notin \mathcal{U}$. If Q is any point of $\mathcal{U} \cap \ell$, then $\left|H_{A B}\right|=$ $\left|\operatorname{Orb}_{H_{A B}}(Q)\right|\left|\operatorname{Stab}_{H_{A B}}(Q)\right|$. Since $\operatorname{Stab}_{H_{A B}}(Q)$ is the trivial subgroup, it follows that the orbits under $H_{A B}$ of points on $\mathcal{U} \cap \ell$ have the same size, namely $\left|H_{A B}\right|$. Thus $\left|H_{A B}\right|$ divides $q+1$. Hence $\left|G_{A B}\right|$ divides $q^{2}-1$.

The elements of $G_{A B}$ have the following form

$$
\left(\begin{array}{lll}
a & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & b
\end{array}\right),
$$

where a and b are non-zero elements of $\operatorname{GF}\left(q^{2}\right)$. The map

$$
\Phi:\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & b
\end{array}\right) \in G_{A B} \mapsto b \in \mathrm{GF}\left(q^{2}\right)^{*}
$$

is a homomorphism between $G_{A B}$ and the multiplicative group of $\operatorname{GF}\left(q^{2}\right)$. Let

$$
f=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

be an element of the kernel of Φ. Since f is a homology with axis the tangent line $C B$ and center A, it follows that f is the identity (see Sect. 2). The groups $G_{A B}$ and $\Phi\left(G_{A B}\right)$ are thus isomorphic. As $\Phi\left(G_{A B}\right)$ is a subgroup of the multiplicative group of $\operatorname{GF}\left(q^{2}\right)$, we have that $G_{A B}$ is a cyclic group.

Proposition 3.2 Let \mathcal{U} be a unital in $\mathrm{PG}\left(2, q^{2}\right)$ such that $G_{A B}$ has order $q^{2}-1$. The subgroup $H_{A B}$ has order $q+1$.

Proof The group $L_{A B}$, isomorphic to the factor group $\frac{G_{A B}}{H_{A B}}$, has order a divisor of $q-1$ (see proof of Lemma 3.1). Since $\left|G_{A B}\right|=q^{2}-1$, we have that $q+1$ divides $\left|H_{A B}\right|$. Moreover, $\left|H_{A B}\right|$ divides $q+1$ (see proof of Lemma 3.1), hence $\left|H_{A B}\right|=q+1$.

Proposition 3.3 Let \mathcal{U} be a unital in $\mathrm{PG}\left(2, q^{2}\right)$ such that $G_{A B}$ has order $q^{2}-1$. If P is a point of $\mathrm{PG}\left(2, q^{2}\right)$ not on the edges of the triangle $A B C$, then the orbit of P under the action of $H_{A B}$ is a Baer subline of the line $C P$.

Proof Every homology of G with center C and axis $A B$ has the following form $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & b\end{array}\right)$, where b is a non-zero element of $\operatorname{GF}\left(q^{2}\right)$. The map

$$
\Phi^{\prime}:\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & b
\end{array}\right) \in H_{A B} \mapsto b \in \mathrm{GF}\left(q^{2}\right)^{*}
$$

is a monomorphism between $H_{A B}$ and the multiplicative group of $\operatorname{GF}\left(q^{2}\right)$, so $\Phi^{\prime}\left(H_{A B}\right)$ is a multiplicative subgroup of $\mathrm{GF}\left(q^{2}\right)$ of order $q+1$. It follows that

$$
H_{A B}=\left\{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & b
\end{array}\right): b^{q+1}=1\right\} .
$$

Under our hypothesis, we may assume that $P=(1,1,1)$. The orbit of P under the action of $H_{A B}$ is the set $\mathcal{O}_{P}=\left\{(1,1, b): b^{q+1}=1\right\}=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}=x_{2}\right.$ and $\left.x_{2}^{q+1}-x_{3}^{q+1}=0\right\}$. Therefore, \mathcal{O}_{P} is a Baer subline of the line $C P$.

Proposition 3.4 Let \mathcal{U} be a unital in $\mathrm{PG}\left(2, q^{2}\right)$ such that $G_{A B}$ has order $q^{2}-1$. Then \mathcal{U} intersects the line $A B$ in a Baer subline whose points are the feet of C.

Proof The map

$$
\Psi:\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & b
\end{array}\right) \in G_{A B} \mapsto a \in \operatorname{GF}\left(q^{2}\right)^{*}
$$

is a homomorphism between $G_{A B}$ and the multiplicative group of $\operatorname{GF}\left(q^{2}\right)$. The kernel of Ψ is $H_{A B}$, hence $\Psi\left(G_{A B}\right)$ is isomorphic to the factor group $\frac{G_{A B}}{H_{A B}}$. As $\left|H_{A B}\right|=q+1$ (see Proposition 3.3), $\Psi\left(G_{A B}\right)$ is a subgroup of order $q-1$ of the multiplicative group of $\mathrm{GF}\left(q^{2}\right)$, thus $\Psi\left(G_{A B}\right)=\mathrm{GF}(q)^{*}$. Moreover, since $G_{A B}$ is a cyclic group and $\Phi\left(G_{A B}\right)=\mathrm{GF}\left(q^{2}\right)^{*}$, it follows that

$$
G_{A B}=\left\{\left(\begin{array}{ccc}
\rho^{k} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \xi^{k}
\end{array}\right): k=1, \ldots, q^{2}-1\right\}
$$

where ξ is a primitive element of $\operatorname{GF}\left(q^{2}\right)$ and ρ is a primitive element of $\operatorname{GF}(q)$. Let P be a point of $\mathcal{U} \cap A B$ different from A and from B. We may assume that $P=(1,1,0)$. The orbit of P under the action of $G_{A B}$ is the set $\mathcal{O}_{P}=\left\{\left(\rho^{k}, 1,0\right)\right.$: $\left.k=1, \ldots, q^{2}-1\right\}$. Hence

$$
\mathcal{O}_{P} \cup\{A, B\}=\left\{\left(x_{1}, x_{2}, 0\right): \beta x_{1} x_{2}^{q}+\beta^{q} x_{1}^{q} x_{2}=0\right\},
$$

where β is an element of $\operatorname{GF}\left(q^{2}\right)$ such that $\beta^{q-1}=-1$. The set $\mathcal{U} \cap A B$ is thus a Baer subline of $A B$. Let ℓ be a secant line to \mathcal{U} through C and let Q be a point of $\ell \cap \mathcal{U}$ not on the line $A B$. Since $\mathcal{U} \cap \ell$ is the orbit of the point Q under $H_{A B}$ and since $\left|H_{A B}\right|=q+1$, it follows that no point of $\mathcal{U} \cap \ell$ is on $A B$. Hence the points of $A B \cap \mathcal{U}$ are the feet of C.

If ξ is a primitive element of $\operatorname{GF}\left(q^{2}\right)$, then every primitive element of $\operatorname{GF}(q)$ is given by $\xi^{\lambda(q+1)}$, where λ is a suitable positive integer such that λ and $q-1$ are relatively prime and $\lambda<q-1$. If g_{λ} is the projectivity of $\operatorname{PG}\left(2, q^{2}\right)$ with matrix representation

$$
\left(\begin{array}{ccc}
\xi^{\lambda(q+1)} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \xi
\end{array}\right)
$$

then, from the proof of the previous proposition, there exists an integer λ such that

$$
\begin{equation*}
G_{A B}=\left\langle g_{\lambda}\right\rangle=\left\{g_{\lambda}^{k}: k=1, \ldots, q^{2}-1\right\} \tag{2}
\end{equation*}
$$

Proposition 3.5 Let \mathcal{U} be a unital in $\operatorname{PG}\left(2, q^{2}\right)$ such that $G_{A B}$ has order $q^{2}-1$. If P is a point not on the edges of the triangle $A B C$, then the orbit \mathcal{O}_{P} of P under the action of $G_{A B}$ is contained in the Baer subpencil of lines with vertex C containing the lines CA, CB and CP. Moreover, \mathcal{O}_{P} meets every line through A, different from $A B$ and $A C$, in a unique point.

Proof Without loss of generality, we may assume that $P=(1,1,1)$. From (2), we have that $\mathcal{O}_{P}=\left\{\left(\xi^{\lambda(q+1) k}, 1, \xi^{k}\right): k=1, \ldots, q^{2}-1\right\}$. The Baer subpencil of lines \mathcal{P} with vertex C containing $C A, C B$ and $C P$ is the rank 2 Hermitian curve of $\operatorname{PG}\left(2, q^{2}\right)$ with equation $\beta x_{1} x_{2}^{q}+\beta^{q} x_{1}^{q} x_{2}=0$, where β is an element of $\operatorname{GF}\left(q^{2}\right)$ such that $\beta^{q-1}=-1$. Since \mathcal{O}_{P} is contained in \mathcal{P}, the assertion follows. Moreover, let ℓ be a line through A different from $A B$ and $A C$. The line ℓ is represented by the equation $x_{2}=\rho x_{3}$, with $\rho \neq 0$. It follows that $\mathcal{O}_{P} \cap \ell=\left\{\left(\left(\rho^{-1}\right)^{\lambda(q+1)}, 1, \rho^{-1}\right)\right\}$.

Proposition 3.6 Let \mathcal{U} be a unital in $\mathrm{PG}\left(2, q^{2}\right)$ such that $G_{A B}$ has order $q^{2}-1$. If P is a point on the line $A B$ not on \mathcal{U} then the feet of P form a Baer subline contained in a line through C.

Proof Let ℓ_{1} be a tangent line to \mathcal{U} through P and let $P_{1}=\ell_{1} \cap \mathcal{U}$. From Proposition 3.3, the orbit of P_{1} under the action of $H_{A B}$ is a Baer subline contained in a line through C. Since the points of this orbit coincide with the feet of P, the assertion follows.

For any non-zero element α of $\operatorname{GF}\left(q^{2}\right)$, consider the set $\mathcal{H}_{\alpha, \lambda}$ of the $\operatorname{GF}\left(q^{2}\right)$ rational points of the algebraic curve with equation

$$
x_{3}^{\lambda(q+1)}+\alpha x_{1} x_{2}^{\lambda(q+1)-1}+\alpha^{q} x_{1}^{q} x_{2}^{\lambda(q+1)-q}=0
$$

where λ and $q-1$ are relatively prime and $0<\lambda<q-1$.
Proposition 3.7 The group $\left\langle g_{\lambda}\right\rangle$ stabilizes every set of the family $\left\{\mathcal{H}_{\alpha, \lambda}: \alpha \in\right.$ $\left.\operatorname{GF}\left(q^{2}\right)^{*}\right\}$.

Proof Let $P=\left(y_{1}, y_{2}, y_{3}\right)$ be a point of $\mathcal{H}_{\alpha, \lambda}$. The element g_{λ}^{k} of $\left\langle g_{\lambda}\right\rangle$ maps P onto the point $P^{\prime}=\left(\xi^{\lambda(q+1) k} y_{1}, y_{2}, \xi^{k} y_{3}\right)$ that also satisfies the equation of $\mathcal{H}_{\alpha, \lambda}$.

Proposition 3.8 The group H of all homologies of $\mathrm{PG}\left(2, q^{2}\right)$ with center A and axis $B C$ has a sharply transitive action on the set $\left\{\mathcal{H}_{\alpha, \lambda}: \alpha \in \mathrm{GF}\left(q^{2}\right)^{*}\right\}$ for any fixed λ.

Proof Let α_{1} and α_{2} be any two elements of $\operatorname{GF}\left(q^{2}\right)^{*}$. The homology $\left(x_{1}, x_{2}, x_{3}\right) \mapsto$ $\left(\alpha_{1} x_{1}, \alpha_{2} x_{2}, \alpha_{2} x_{3}\right)$ belongs to H and maps the set $\mathcal{H}_{\alpha_{1}, \lambda}$ onto the set $\mathcal{H}_{\alpha_{2}, \lambda}$. Since there are $q^{2}-1$ homologies in H and $q^{2}-1$ sets $\mathcal{H}_{\alpha, \lambda}$ (with λ fixed), the assertion follows.

Proposition 3.9 Every secant line to a set $\mathcal{H}_{\alpha, \lambda}$ through A meets $\mathcal{H}_{\alpha, \lambda}$ in a Baer subline.

Proof Let r be a secant line to a set $\mathcal{H}_{\alpha, \lambda}$ through A. From Proposition 3.8, it is enough to show that $\mathcal{H}_{1, \lambda}$ intersects the line r in a Baer subline. Suppose that $r=A B$. The set $\mathcal{H}_{1, \lambda} \cap r$ is $\{A, B\} \cup\left\{(x, 1,0): x^{q-1}=-1\right\}$ which is a Baer subline. Suppose now that r has equation $x_{2}=x_{3}$. The set of common points of $\mathcal{H}_{1, \lambda}$ and r is $\{A\} \cup$ $\left\{(x, 1,1): 1+x+x^{q}=0\right\}$, which is a Baer subline. Since $\left\langle g_{\lambda}\right\rangle$ stabilizes $\mathcal{H}_{1, \lambda}$ and
has a sharply transitive action on the lines through A different from $A B$ and $A C$ (being $A C$ a tangent line to $\mathcal{H}_{1, \lambda}$), it follows that any line through A, different from $A B$ and $A C$ meets $\mathcal{H}_{1, \lambda}$ in a Baer subline.

Proposition 3.10 Every set $\mathcal{H}_{\alpha, \lambda}$ has $q^{3}+1$ points.
Proof From Proposition 3.9, every secant line to $\mathcal{H}_{\alpha, \lambda}$ through A meets $\mathcal{H}_{\alpha, \lambda}$ in q points distinct from A. Since $A C$ is the unique tangent line to $\mathcal{H}_{\alpha, \lambda}$ at A, it follows that $\left|\mathcal{H}_{\alpha, \lambda}\right|=q^{3}+1$.

Let s be the line of $\operatorname{PG}\left(2, q^{2}\right)$ with equation $x_{2}=x_{3}$ and let $B^{\prime}=s \cap B C=$ $(0,1,1)$.

Proposition 3.11 Every Baer subline of s containing A and not containing B^{\prime} is contained in a unique set of the family $\left\{\mathcal{H}_{\alpha, \lambda}: \alpha \in \operatorname{GF}\left(q^{2}\right)^{*}\right\}$ for any fixed λ.

Proof Let s_{0} be a Baer subline of s containing A and not containing B^{\prime}. There exists an element $\theta \in \operatorname{GF}\left(q^{2}\right)^{*}$ such that s_{0} has equations $x_{2}^{q+1}+\theta x_{1} x_{2}^{q}+\theta^{q} x_{1}^{q} x_{2}=0$ and $x_{2}=x_{3}$. The set $\mathcal{H}_{\theta, \lambda}$ is the unique set of the family $\left\{\mathcal{H}_{\alpha, \lambda}: \alpha \in \mathrm{GF}\left(q^{2}\right)^{*}\right\}$ meeting s in the Baer subline s_{0}.

Proposition 3.12 Every Baer subline containing both A and B is contained in $q-1$ sets of the family $\left\{\mathcal{H}_{\alpha, \lambda}: \alpha \in \operatorname{GF}\left(q^{2}\right)^{*}\right\}$ for any fixed λ.

Proof Let ℓ_{0} be a Baer subline of $A B$ containing A and B. The subline ℓ_{0} is represented by equations $\theta x_{1} x_{2}^{q}+\theta^{q} x_{1}^{q} x_{2}=0, x_{3}=0$, for any θ in a coset Ω of $\operatorname{GF}(q)^{*}$ in the multiplicative group $\operatorname{GF}\left(q^{2}\right)^{*}$. Hence ℓ_{0} is contained in exactly $q-1$ sets of $\left\{\mathcal{H}_{\alpha, \lambda}: \alpha \in \operatorname{GF}\left(q^{2}\right)^{*}\right.$, namely $\mathcal{H}_{\theta, \lambda}$ with $\theta \in \Omega$.

Proposition 3.13 Every point P of $\mathrm{PG}\left(2, q^{2}\right)$ not on the edges of the triangle $A B C$ is contained in q sets of the family $\left\{\mathcal{H}_{\alpha, \lambda}: \alpha \in \mathrm{GF}\left(q^{2}\right)^{*}\right\}$ for any fixed λ.

Proof Let $P=\left(y_{1}, y_{2}, 1\right)$. The number of sets of the family $\left\{\mathcal{H}_{\alpha, \lambda}: \alpha \in \operatorname{GF}\left(q^{2}\right)^{*}\right\}$ containing P coincides with the number of solutions of the equation $1+\alpha y_{1} y_{2}^{\lambda(q+1)-1}$ $+\left(\alpha y_{1} y_{2}^{\lambda(q+1)-1}\right)^{q}=0$ in the unknown α. Since this number is q the assertion follows.

Proposition 3.14 If a set $\mathcal{H}_{\alpha, \lambda}$ is a unital in $\operatorname{PG}\left(2, q^{2}\right)$, then $\lambda=1$.
Proof Suppose that a set $\mathcal{H}_{\beta, \lambda}$ is a unital in $\operatorname{PG}\left(2, q^{2}\right)$. From Proposition 3.9 and from a famous result due to Casse, O'Keefe, Penttila [5] and Quinn, Casse [10], it follows that $\mathcal{H}_{\beta, \lambda}$ is a Buekenhout-Metz unital with respect to A. The linear collineation group preserving the unital $\mathcal{H}_{\beta, \lambda}$ has as stabilizer of both A and B exactly the group $\left\langle g_{\lambda}\right\rangle$ of size $q^{2}-1$. Hence $\mathcal{H}_{\beta, \lambda}$ is a classical unital (see [3]) with $C A$ and $C B$ as tangent line at A and at B, respectively, so $G_{A B}=E_{A B}$ (see (1) in Sect. 2). From this condition, it follows that $\lambda=1$.

From (2) there exists an integer λ such that $G_{A B}=\left\langle g_{\lambda}\right\rangle$. Let \mathcal{P} be the set formed by the point C, by all the $q+1$ Baer sublines containing both A and B, and by the orbits under $G_{A B}=\left\langle g_{\lambda}\right\rangle$ of the points of $\operatorname{PG}\left(2, q^{2}\right)$ not on the edges of the triangle $A B C$. Let \mathcal{L} be the set formed by the line $A B$, by the Baer subpencils of lines with vertex C and projecting a Baer subline containing both A and B, and by the $q^{2}-1$ sets $\mathcal{H}_{\alpha, \lambda}$ for $\alpha \in \operatorname{GF}\left(q^{2}\right)^{*}$. We show that \mathcal{P} and \mathcal{L} are respectively the set of points and the set of lines of a projective plane.

Proposition 3.15 The incidence structure (\mathcal{P}, \mathcal{L}), where the incidence relation is set theoretic inclusion, is a projective plane of order q.

Proof Observe that $|\mathcal{P}|=|\mathcal{L}|=q^{2}+q+1$. We claim that every line ℓ of \mathcal{L} has $q+1$ points. This is clearly true for the line $A B$. If the line ℓ is a Baer subpencil projecting a Baer subline ℓ_{0} containing both A and B, then it contains $q-1$ orbits under $G_{A B}$ of points not on the edges of the triangle $A B C$, it contains ℓ_{0} and the point C. If ℓ is a set $\mathcal{H}_{\alpha, \lambda}$, it contains q orbits of points not on the edges of the triangle $A B C$ and a Baer subline containing both A and B.

We claim that every point P of \mathcal{P} is incident with $q+1$ lines. This is clearly true for the point C. If P is a Baer subline containing both A and B, then it is contained in $q-1$ sets of the family $\left\{\mathcal{H}_{\alpha, \lambda}: \alpha \in \operatorname{GF}\left(q^{2}\right)^{*}\right\}$ (see Proposition 3.12), it is contained in the line $A B$ and in the Baer subpencil with vertex C projecting P. If P is an orbit under $G_{A B}$ of a point not on the edges of the triangle $A B C$, then it is contained in q sets of the family $\left\{\mathcal{H}_{\alpha, \lambda}: \alpha \in \operatorname{GF}\left(q^{2}\right)^{*}\right\}$ (see Proposition 3.13) and it is contained in a Baer subpencil of lines with vertex C projecting a Baer subline containing both A and B (see Proposition 3.5).

Finally, we prove that any two distinct points P_{1} and P_{2} of \mathcal{P} are incident with exactly one line of \mathcal{L}. If P_{1} and P_{2} are Baer sublines containing both A and B, then $A B$ is the unique line containing them. If $P_{1}=C$ and P_{2} is a Baer subline containing both A and B, then the Baer subpencil of lines with vertex C projecting P_{2} is the unique line containing P_{1} and P_{2}. If $P_{1}=C$ and P_{2} is an orbit under $G_{A B}$ of a point not on the edges of the triangle $A B C$, then, from Proposition 3.5, there exists a unique element of \mathcal{L} containing both P_{1} and P_{2}. Suppose now that P_{1} and P_{2} are distinct orbits under $G_{A B}$ of points not on the edges of the triangle $A B C$. From Proposition 3.5, each one of the orbits P_{1} and P_{2} meets the line s with equation $x_{2}=x_{3}$ in a unique point, say Q_{1} and Q_{2}, respectively.

Let s_{0} be the Baer subline of s containing A, Q_{1} and Q_{2}. If s_{0} contains the point $s \cap B C$, then P_{1} and P_{2} are both contained in the Baer subpencil of lines with vertex C projecting s_{0}. Such a subpencil is the unique line containing P_{1} and P_{2}. If s_{0} does not contain the point $s \cap B C$, then, from Proposition 3.11, there exists a unique set of the family $\left\{\mathcal{H}_{\alpha, \lambda}: \alpha \in \operatorname{GF}\left(q^{2}\right)^{*}\right\}$ containing s_{0}. Such a set is the unique line containing P_{1} and P_{2}.

Proposition 3.16 The characteristic vector $v^{\mathcal{H}_{\alpha, \lambda}}$ of the set $\mathcal{H}_{\alpha, \lambda}$ is in the linear code of $\operatorname{PG}\left(2, q^{2}\right)$.

Proof It is sufficient to prove the result for $\mathcal{H}_{1, \lambda}$ (see Proposition 3.8). From Proposition 2.1, we need only to show that $v^{\mathcal{H}_{1, \lambda}} \in \mathcal{P}(1,3)$. Consider the polynomial

$$
p\left(x_{1}, x_{2}, x_{3}\right)=1-\left(x_{3}^{\lambda(q+1)}+x_{1} x_{2}^{\lambda(q+1)-1}+x_{1}^{q} x_{2}^{\lambda(q+1)-q}\right)^{q-1} .
$$

Then $p\left(x_{1}, x_{2}, x_{3}\right)=1$ if and only if $\left(x_{1}, x_{2}, x_{3}\right)$ is a point of $\mathcal{H}_{1, \lambda}$ and $p\left(x_{1}, x_{2}, x_{3}\right)$ $=0$ elsewhere. Moreover, $p\left(x_{1}, x_{2}, x_{3}\right)$ is given in terms of monomial functions in the non-primitive generalized Reed-Muller code $\operatorname{GRM}_{q^{2}-1}^{q^{2}-1}\left(3, q^{2}\right)$, since each monomial of $p\left(x_{1}, x_{2}, x_{3}\right)$ has degree exactly $q^{2}-1$ once reduced modulo $x_{i}^{q^{2}}-x_{i}$. Since $p\left(x_{1}, x_{2}, x_{3}\right) \in\{0,1\}$ for all $\left(x_{1}, x_{2}, x_{3}\right)$, it follows that the value table of $p\left(x_{1}, x_{2}, x_{3}\right)$ has all entries in the subfield $\operatorname{GF}(p)$. Thus, from Proposition 2.1, the incidence vector $v^{\mathcal{H}_{1, \lambda}}$ of length $\frac{\left(q^{2}\right)^{3}-1}{q^{2}-1}=q^{4}+q^{2}+1$ is the subfield subcode $\mathcal{P}(1,3)$.

Proposition 3.17 Let \mathcal{U} be a unital in $\operatorname{PG}\left(2, q^{2}\right)$ such that $G_{A B}$ has order $q^{2}-1$. Then $\left|\mathcal{U} \cap \mathcal{H}_{\alpha, \lambda}\right| \geq 3$ for all $\alpha \in \operatorname{GF}\left(q^{2}\right)^{*}$ and for all possible λ.

Proof From the previous proposition $v^{\mathcal{H}_{\alpha, \lambda}}=v^{m_{1}}+\cdots+v^{m_{t}}$ for some lines $m_{1}, \ldots, m_{t}\left(t \geq 3\right.$ since $\left.\left|\mathcal{H}_{\alpha, \lambda}\right|=q^{3}+1\right)$. If \cdot denotes the usual inner product, then $\left|\mathcal{U} \cap \mathcal{H}_{\alpha, \lambda}\right|=v^{\mathcal{U}} \cdot v^{\mathcal{H}_{\alpha, \lambda}}=v^{\mathcal{U}} \cdot\left(v^{m_{1}}+\cdots+v^{m_{t}}\right)=t \bmod p$.

Consider the line $A B$, this intersects $\mathcal{H}_{\alpha, \lambda}$ in a Baer subline, hence in $1 \bmod p$ points. Each line m_{i} intersects $A B$ in again $1 \bmod p$ points (either 1 or $q^{2}+1$). As $v^{\mathcal{H}_{\alpha, \lambda}}=v^{m_{1}}+\cdots+v^{m_{t}}$, we have that $t=1 \bmod p$. Since A, B are common points to \mathcal{U} and $\mathcal{H}_{\alpha, \lambda}$ it follows $\left|\mathcal{U} \cap \mathcal{H}_{\alpha, \lambda}\right| \geq p+1 \geq 3$.

Theorem 3.18 If \mathcal{U} is a unital in $\operatorname{PG}\left(2, q^{2}\right)$ such that $G_{A B}$ has order $q^{2}-1$, then \mathcal{U} is classical.

Proof There exists an integer λ such that $G_{A B}=\left\langle g_{\lambda}\right\rangle$ (see (2)). From the previous proposition, the unital \mathcal{U} has at least one point different from A and B with each set $\mathcal{H}_{\alpha, \lambda}$, and hence it has one orbit in common with each $\mathcal{H}_{\alpha, \lambda}$. This gives that \mathcal{U} is a line of the projective plane $(\mathcal{P}, \mathcal{L})$, since it is a subset of size $q+1$ of \mathcal{P} meeting every line. Therefore, the set \mathcal{U} coincides with a set $\mathcal{H}_{\gamma, \lambda}$ for some non-zero $\gamma \in \operatorname{GF}\left(q^{2}\right)$. From Proposition 3.14, we have that $\lambda=1$ and \mathcal{U} is the classical unital $\mathcal{H}_{\gamma, 1}$.

References

1. Abatangelo, L.M.: Una caratterizzazione gruppale delle curve hermitiane. Matematiche 39, 101-110 (1984)
2. Assmus, E.F. Jr., Key, J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1992)
3. Barwick, S.G., Ebert, G.L.: Unitals in Projective Planes. Springer Monographs in Mathematics. Springer, New York (2008)
4. Bruen, A.A., Forcinito, M.A.: Cryptography, Information Theory and Error-Correction. WileyInterscience, New York (2006)
5. Casse, L.R.A., O'Keefe, C.M., Penttila, T.: Characterizations of Buekenhout-Metz unitals. Geom. Dedic. 59, 29-42 (1996)
6. Cossidente, A., Ebert, G.L., Korchmáros, G.: A group theoretic characterization of classical unitals. Arch. Math. 74, 1-5 (2000)
7. Cossidente, A., Ebert, G.L., Korchmáros, G.: Unitals in finite Desarguesian planes. J. Algebr. Comb. 14, 119-125 (2001)
8. Ebert, G.L., Wantz, K.: A group theoretic characterization of Buekenhout-Metz unitals. J. Comb. Des. 4, 143-152 (1996)
9. Hoffer, A.R.: On unitary collineation groups. J. Algebra 22, 211-218 (1972)
10. Quinn, C.T., Casse, L.R.A.: Concerning a characterization of Buekenhout-Metz unitals. J. Geom. 52, 159-167 (1995)

[^0]: G. Donati • N. Durante (\boxtimes)

 Università di Napoli "Federico II", Via Cintia, 80126 Naples, Italy
 e-mail: ndurante@unina.it

