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Abstract Let G be the group of projectivities stabilizing a unital U in PG(2, q2).
In this paper, we prove that U is a classical unital if and only if there are two points
in U such that the stabilizer of these two points in G has order q2 − 1.
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1 Introduction

Unitals in Desarguesian projective planes, as one of the most important research
areas in projective and combinatorial geometry, were a subject of many investi-
gations. Group theoretical characterizations of classical unitals were obtained by
several authors. One of the first is due to Hoffer who proves that a unital U in
PG(2, q2) is classical if and only if the group of projectivities stabilizing U contains
PSU(3, q2) [9]. In relation to the purpose of this paper, we may mention here also
the papers of Abatangelo [1] and Ebert and Wantz [8]. In [1], Abatangelo proves that
a Buekenhout–Metz unital U in PG(2, q2), q odd, is classical if and only if there is a
cyclic collineation group of order q2 − 1, stabilizing U and fixing two distinct points
of U . In [8], the authors prove that a unital U in PG(2, q2) is classical if and only if
the group of projectivities stabilizing U contains a semidirect product S � R where
S has order q3 and R has order q2 − 1. For other group theoretic characterizations of
classical unitals, see, e.g., [6, 7].

An important question is how much information concerning the group G of pro-
jectivities stabilizing a unital is needed to prove that the unital is classical. At the
conference Combinatorics 2010, the authors made the following conjecture:
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Conjecture If there is a linear collineation group of order q2 −1 stabilizing a unital
U and fixing two distinct points of U , then U is classical.

In this paper, we prove that this conjecture holds true. The same result has been
obtained by Giuzzi and Korchmáros. Their proof was completed only recently (July
2011) after one of us communicated a slight flaw in their arguments, see http://arxiv.
org/abs/1009.6109.

2 Preliminary results

Let PG(2, q2), q = ph, p a prime number, be the projective plane over the Galois
field GF(q2). Throughout the paper, we will put GF(q)∗ = GF(q) \ {0}. A unital in
PG(2, q2) is a set U of q3 + 1 points meeting every line of PG(2, q2) in either 1 or
q + 1 points. Lines meeting a unital U in 1 or q + 1 points are respectively called
tangent and secant lines to U . Through each point of U there pass q2 secant lines and
one tangent line. Through each point P not on U there pass q2 − q secant lines and
q + 1 tangent lines, the tangent points are called the feet of P .

An example is the non-degenerate Hermitian curve or classical unital, that is, the
set of the absolute points of a non-degenerate unitary polarity of PG(2, q2). For more
information on unitals in projective planes, see [3].

A central collineation of PG(2, q2) is a collineation α fixing every point of a line
� (the axis of α) and fixing every line through a point C (the center of α). If C ∈ �,
then α is an elation; otherwise α is a homology. It is well known that given a line �

and three distinct collinear points C,P,P ′ of PG(2, q2), with P,P ′ /∈ �, there is a
unique central collineation with axis � and center C mapping P onto P ′. Note that a
non-identity homology f of PG(2, q2) stabilizing a unital U has as center a point V

not on U and as axis a secant line � to U . Indeed, suppose, by way of contradiction,
that V is on U . Let P be a point of �∩ U . The line V P is a secant line to U , hence for
any point Q on (U ∩ V P ) \ {V,P } we have that |〈f 〉| = |Orb〈f 〉(Q)||Stab〈f 〉(Q)|.
Since Stab〈f 〉(Q) is the trivial subgroup, it follows that |〈f 〉| divides q − 1. Let m be
a secant line to U through V such that �∩m /∈ U . For any point R on m∩ U different
from V , we have that |〈f 〉| = |Orb〈f 〉(R)|, therefore |〈f 〉| divides q . As q and q − 1
are relatively prime, |〈f 〉| = 1 and f is the identity, a contradiction. Suppose now
that � is a tangent line to U . The line � contains at most one of the feet of V , so there
exists one of the feet of V , say T , not on �. Since V T is the tangent line to U at T , it
follows that f (T ) = T , so f is the identity, a contradiction.

From now on, we identify, unambiguously, a projectivity of PG(2, q2) with its ma-
trix representation with respect to a frame of the plane. Then a group of projectivities
of the plane will be identified with a group of 3 × 3 matrices.

The group of projectivities preserving a classical unital U in PG(2, q2) is called
the projective unitary group and is denoted by PGU(3, q2). The group PGU(3, q2) is
2-transitive on the points of U and the 2-point stabilizer is isomorphic to the multi-
plicative group of GF(q2).

Let A, B, and C be three non-collinear points of PG(2, q2), and let T be the set
of all non-degenerate Hermitian curves containing both A and B with CA and CB

http://arxiv.org/abs/1009.6109
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as tangent lines at A and B , respectively. Without loss of generality, we may sup-
pose A = (1,0,0), B = (0,1,0), and C = (0,0,1). Under such assumptions, every
Hermitian curve of T has equation

αx1x
q

2 + αqx
q

1 x2 + x
q+1
3 = 0,

where α is an element of GF(q2)∗. The linear collineation group preserving a Hermi-
tian curve of T has as stabilizer of both A and B the cyclic group

EAB =
⎧
⎨

⎩

⎛

⎝
ξ (q+1)k 0 0

0 1 0
0 0 ξk

⎞

⎠ : k = 1, . . . , q2 − 1

⎫
⎬

⎭
, (1)

where ξ is a primitive element of GF(q2).
We now recall some definitions and results on codes that will be useful in what

follows; for more details, see [2, 4]. Let F = GF(q), q = ph, and let C be a linear
code (i.e., a subspace of a vector space over F with reference to a particular basis B)
over F and let C′ ⊂ C be a set of vectors of C all of whose coordinates w.r.t. B are in
a subfield F′ of F. Then C′ is a subfield subcode of C over F′.

Let now V = Fm and consider the vector space FV over F of all functions from V

to F with basis {vω,ω ∈ V }, where vω denotes the characteristic vector of the subset
{ω} of V .

Each polynomial p(x1, . . . , xm) in m variables over F generates a function from
Fm into F. Observe that different polynomials can generate the same function and that
any polynomial p(x1, . . . , xm) can be reduced modulo x

q
i −xi for every i = 1, . . . ,m

to a new polynomial p′(x1, . . . , xm) such that p and p′ generate the same function
and degip

′ ≤ q − 1, for i = 1, . . . ,m, where degip
′ denotes the degree of p′ w.r.t.

xi . A polynomial p(x1, . . . , xm) is called a reduced polynomial if degip ≤ q − 1 for
i = 1, . . . ,m. There is a one-to-one correspondence between reduced polynomials
and the mappings from Fm to F. Let R(m,q) be the set of all reduced polynomials
in m variables over F. The subset of R(m,q) consisting of all polynomials with
degree at most r is denoted by Rr (m,q) and it is a subspace of R(m,q). A basis for
Rr (m,q) is the set of monomials of the form:

x
i1
1 · · ·xim

m where
m∑

k=1

ik ≤ r.

If the elements of Fm are ordered α1, . . . , αqm , the value table of a polynomial
p ∈ R(m,q) is defined to be the qm-tuple (p(α1), . . . , p(αqm)). The set of value
tables for all polynomials of R(m,q) is a vector space of dimension qm over F. The
r th order generalized Reed–Muller code of length qm is the set of value tables of
polynomials in Rr (m,q) and it is denoted by GRMr (m,q). Obviously, GRMr (m,q)

is a subspace of GRMm(q−1)(m,q) which is the space of all value tables. The r th
order punctured generalized Reed–Muller code, 0 ≤ r < m(q − 1), is the code
GRMr (m,q)∗ obtained from GRMr (m,q) by puncturing at 0 ∈ V , that is, by re-
moving the position corresponding to 0 for every f ∈ GRMr (m,q). Let now b be
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a divisor of q − 1 and let again 0 ≤ r < m(q − 1). Denote by e = (1,0, . . . ,0)t the
transpose of the first vector of the standard basis of Fm and by S the companion ma-
trix of order m×m of a Singer cycle of PG(m−1, q). The non-primitive generalized
Reed–Muller code GRMb

r (m,q)∗ of order r is the code of length qm−1
b

= n given by
the set of vectors

{(
p
(
et

)
,p

(
(Se)t

)
, . . . , p

((
Sn−1e

)t)) : p(x1, . . . , xm) ∈ Rb
r (m,q)

}
,

where

Rb
r (m,q) =

〈

x
i1
1 · · ·xim

m ∈ Rr (m,q) :
m∑

k=1

ik ≡ 0 (mod b)

〉

.

Let Cp(m − 1, q) be the code of points and hyperplanes of PG(m − 1, q), that is, the
subspace of the characteristic vectors of the hyperplanes of PG(m − 1, q). We will
need in what follows this result on codes (see Theorem 5.7.1 in [2]).

Proposition 2.1 Let q = ph and let F = GF(q). The subfield subcode over GF(p) of
GRMq−1

q−1(m,q)∗, denoted by P (1,m), is the code Cp(m − 1, q).

3 Characterization

Throughout the paper, A and B are two distinct points of a unital U in PG(2, q2) and
we will denote by G the group of projectivities stabilizing U , by C the common point
to the tangent lines to U at A and at B , by GAB the stabilizer of both A and B in G,
by HAB the group of homologies of G with center C and axis AB, and by LAB the
group of projectivities induced on the line AB by GAB. From now on, we will assume,
without loss of generality, that A = (1,0,0), B = (0,1,0), and C = (0,0,1).

Lemma 3.1 If U is a unital in PG(2, q2), then GAB is a cyclic group of order dividing
q2 − 1.

Proof It is clear that the factor group GAB
HAB

is isomorphic to LAB. If P is any point
of U on the line AB different from A and from B , then |LAB| = |OrbLAB(P )|
|StabLAB(P )|. Since StabLAB(P ) is the trivial subgroup, it follows that the orbits
under LAB of points on U ∩ AB different from A and from B have the same size,
namely |LAB|. Therefore, |GAB|

|HAB| divides q − 1. Moreover, let � be a secant line to
U through C such that � ∩ AB /∈ U . If Q is any point of U ∩ �, then |HAB| =
|OrbHAB(Q)||StabHAB(Q)|. Since StabHAB(Q) is the trivial subgroup, it follows that
the orbits under HAB of points on U ∩ � have the same size, namely |HAB|. Thus
|HAB| divides q + 1. Hence |GAB| divides q2 − 1.

The elements of GAB have the following form
⎛

⎝
a 0 0
0 1 0
0 0 b

⎞

⎠ ,
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where a and b are non-zero elements of GF(q2). The map

Φ :
⎛

⎝
a 0 0
0 1 0
0 0 b

⎞

⎠ ∈ GAB �→ b ∈ GF(q2)∗

is a homomorphism between GAB and the multiplicative group of GF(q2). Let

f =
⎛

⎝
a 0 0
0 1 0
0 0 1

⎞

⎠

be an element of the kernel of Φ . Since f is a homology with axis the tangent line
CB and center A, it follows that f is the identity (see Sect. 2). The groups GAB and
Φ(GAB) are thus isomorphic. As Φ(GAB) is a subgroup of the multiplicative group
of GF(q2), we have that GAB is a cyclic group. �

Proposition 3.2 Let U be a unital in PG(2, q2) such that GAB has order q2 − 1. The
subgroup HAB has order q + 1.

Proof The group LAB, isomorphic to the factor group GAB
HAB

, has order a divisor of q−1

(see proof of Lemma 3.1). Since |GAB| = q2 − 1, we have that q + 1 divides |HAB|.
Moreover, |HAB | divides q + 1 (see proof of Lemma 3.1), hence |HAB| = q + 1. �

Proposition 3.3 Let U be a unital in PG(2, q2) such that GAB has order q2 − 1. If P

is a point of PG(2, q2) not on the edges of the triangle ABC, then the orbit of P under
the action of HAB is a Baer subline of the line CP.

Proof Every homology of G with center C and axis AB has the following form(
1 0 0
0 1 0
0 0 b

)

, where b is a non-zero element of GF(q2). The map

Φ ′ :
⎛

⎝
1 0 0
0 1 0
0 0 b

⎞

⎠ ∈ HAB �→ b ∈ GF
(
q2)∗

is a monomorphism between HAB and the multiplicative group of GF(q2),
so Φ ′(HAB) is a multiplicative subgroup of GF(q2) of order q + 1. It follows that

HAB =
⎧
⎨

⎩

⎛

⎝
1 0 0
0 1 0
0 0 b

⎞

⎠ : bq+1 = 1

⎫
⎬

⎭
.

Under our hypothesis, we may assume that P = (1,1,1). The orbit of P under the
action of HAB is the set OP = {(1,1, b) : bq+1 = 1} = {(x1, x2, x3) : x1 = x2 and
x

q+1
2 − x

q+1
3 = 0}. Therefore, OP is a Baer subline of the line CP. �
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Proposition 3.4 Let U be a unital in PG(2, q2) such that GAB has order q2 −1. Then
U intersects the line AB in a Baer subline whose points are the feet of C.

Proof The map

Ψ :
⎛

⎝
a 0 0
0 1 0
0 0 b

⎞

⎠ ∈ GAB �→ a ∈ GF
(
q2)∗

is a homomorphism between GAB and the multiplicative group of GF(q2). The kernel
of Ψ is HAB, hence Ψ (GAB) is isomorphic to the factor group GAB

HAB
. As |HAB| = q + 1

(see Proposition 3.3), Ψ (GAB) is a subgroup of order q − 1 of the multiplicative
group of GF(q2), thus Ψ (GAB) = GF(q)∗. Moreover, since GAB is a cyclic group
and Φ(GAB) = GF(q2)∗, it follows that

GAB =
⎧
⎨

⎩

⎛

⎝
ρk 0 0
0 1 0
0 0 ξk

⎞

⎠ : k = 1, . . . , q2 − 1

⎫
⎬

⎭
,

where ξ is a primitive element of GF(q2) and ρ is a primitive element of GF(q).
Let P be a point of U ∩ AB different from A and from B . We may assume that
P = (1,1,0). The orbit of P under the action of GAB is the set OP = {(ρk,1,0) :
k = 1, . . . , q2 − 1}. Hence

OP ∪ {A,B} = {
(x1, x2,0) : βx1x

q

2 + βqx
q

1 x2 = 0
}
,

where β is an element of GF(q2) such that βq−1 = −1. The set U ∩ AB is thus a
Baer subline of AB. Let � be a secant line to U through C and let Q be a point of
� ∩ U not on the line AB. Since U ∩ � is the orbit of the point Q under HAB and since
|HAB| = q + 1, it follows that no point of U ∩ � is on AB. Hence the points of AB ∩ U
are the feet of C. �

If ξ is a primitive element of GF(q2), then every primitive element of GF(q) is
given by ξλ(q+1), where λ is a suitable positive integer such that λ and q − 1 are
relatively prime and λ < q − 1. If gλ is the projectivity of PG(2, q2) with matrix
representation

⎛

⎝
ξλ(q+1) 0 0

0 1 0
0 0 ξ

⎞

⎠ ,

then, from the proof of the previous proposition, there exists an integer λ such that

GAB = 〈gλ〉 = {gk
λ : k = 1, . . . , q2 − 1}. (2)

Proposition 3.5 Let U be a unital in PG(2, q2) such that GAB has order q2 − 1. If
P is a point not on the edges of the triangle ABC, then the orbit OP of P under the
action of GAB is contained in the Baer subpencil of lines with vertex C containing
the lines CA, CB and CP. Moreover, OP meets every line through A, different from
AB and AC, in a unique point.
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Proof Without loss of generality, we may assume that P = (1,1,1). From (2), we
have that OP = {(ξλ(q+1)k,1, ξ k) : k = 1, . . . , q2 − 1}. The Baer subpencil of lines P
with vertex C containing CA, CB and CP is the rank 2 Hermitian curve of PG(2, q2)

with equation βx1x
q

2 + βqx
q

1 x2 = 0, where β is an element of GF(q2) such that
βq−1 = −1. Since OP is contained in P , the assertion follows. Moreover, let � be a
line through A different from AB and AC. The line � is represented by the equation
x2 = ρx3, with ρ �= 0. It follows that OP ∩ � = {((ρ−1)λ(q+1),1, ρ−1)}. �

Proposition 3.6 Let U be a unital in PG(2, q2) such that GAB has order q2 − 1. If P

is a point on the line AB not on U then the feet of P form a Baer subline contained
in a line through C.

Proof Let �1 be a tangent line to U through P and let P1 = �1 ∩ U . From Proposi-
tion 3.3, the orbit of P1 under the action of HAB is a Baer subline contained in a line
through C. Since the points of this orbit coincide with the feet of P , the assertion
follows. �

For any non-zero element α of GF(q2), consider the set Hα,λ of the GF(q2)-
rational points of the algebraic curve with equation

x
λ(q+1)

3 + αx1x
λ(q+1)−1
2 + αqx

q

1 x
λ(q+1)−q

2 = 0,

where λ and q − 1 are relatively prime and 0 < λ < q − 1.

Proposition 3.7 The group 〈gλ〉 stabilizes every set of the family {Hα,λ : α ∈
GF(q2)∗}.

Proof Let P = (y1, y2, y3) be a point of Hα,λ. The element gk
λ of 〈gλ〉 maps P onto

the point P ′ = (ξλ(q+1)ky1, y2, ξ
ky3) that also satisfies the equation of Hα,λ. �

Proposition 3.8 The group H of all homologies of PG(2, q2) with center A and axis
BC has a sharply transitive action on the set {Hα,λ : α ∈ GF(q2)∗} for any fixed λ.

Proof Let α1 and α2 be any two elements of GF(q2)∗. The homology (x1, x2, x3) �→
(α1x1, α2x2, α2x3) belongs to H and maps the set Hα1,λ onto the set Hα2,λ. Since
there are q2 − 1 homologies in H and q2 − 1 sets Hα,λ (with λ fixed), the assertion
follows. �

Proposition 3.9 Every secant line to a set Hα,λ through A meets Hα,λ in a Baer
subline.

Proof Let r be a secant line to a set Hα,λ through A. From Proposition 3.8, it is
enough to show that H1,λ intersects the line r in a Baer subline. Suppose that r = AB.
The set H1,λ ∩ r is {A,B}∪ {(x,1,0) : xq−1 = −1} which is a Baer subline. Suppose
now that r has equation x2 = x3. The set of common points of H1,λ and r is {A} ∪
{(x,1,1) : 1 + x + xq = 0}, which is a Baer subline. Since 〈gλ〉 stabilizes H1,λ and
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has a sharply transitive action on the lines through A different from AB and AC (being
AC a tangent line to H1,λ), it follows that any line through A, different from AB and
AC meets H1,λ in a Baer subline. �

Proposition 3.10 Every set Hα,λ has q3 + 1 points.

Proof From Proposition 3.9, every secant line to Hα,λ through A meets Hα,λ in q

points distinct from A. Since AC is the unique tangent line to Hα,λ at A, it follows
that |Hα,λ| = q3 + 1. �

Let s be the line of PG(2, q2) with equation x2 = x3 and let B ′ = s ∩ BC =
(0,1,1).

Proposition 3.11 Every Baer subline of s containing A and not containing B ′ is
contained in a unique set of the family {Hα,λ : α ∈ GF(q2)∗} for any fixed λ.

Proof Let s0 be a Baer subline of s containing A and not containing B ′. There exists
an element θ ∈ GF(q2)∗ such that s0 has equations x

q+1
2 + θx1x

q

2 + θqx
q

1 x2 = 0 and
x2 = x3. The set Hθ,λ is the unique set of the family {Hα,λ : α ∈ GF(q2)∗} meeting s

in the Baer subline s0. �

Proposition 3.12 Every Baer subline containing both A and B is contained in q − 1
sets of the family {Hα,λ : α ∈ GF(q2)∗} for any fixed λ.

Proof Let �0 be a Baer subline of AB containing A and B . The subline �0 is repre-
sented by equations θx1x

q

2 + θqx
q

1 x2 = 0, x3 = 0, for any θ in a coset Ω of GF(q)∗
in the multiplicative group GF(q2)∗. Hence �0 is contained in exactly q − 1 sets of
{Hα,λ : α ∈ GF(q2)∗, namely Hθ,λ with θ ∈ Ω . �

Proposition 3.13 Every point P of PG(2, q2) not on the edges of the triangle ABC
is contained in q sets of the family {Hα,λ : α ∈ GF(q2)∗} for any fixed λ.

Proof Let P = (y1, y2,1). The number of sets of the family {Hα,λ : α ∈ GF(q2)∗}
containing P coincides with the number of solutions of the equation 1+αy1y

λ(q+1)−1
2

+ (αy1y
λ(q+1)−1
2 )q = 0 in the unknown α. Since this number is q the assertion fol-

lows. �

Proposition 3.14 If a set Hα,λ is a unital in PG(2, q2), then λ = 1.

Proof Suppose that a set Hβ,λ is a unital in PG(2, q2). From Proposition 3.9 and from
a famous result due to Casse, O’Keefe, Penttila [5] and Quinn, Casse [10], it follows
that Hβ,λ is a Buekenhout–Metz unital with respect to A. The linear collineation
group preserving the unital Hβ,λ has as stabilizer of both A and B exactly the group
〈gλ〉 of size q2 − 1. Hence Hβ,λ is a classical unital (see [3]) with CA and CB as
tangent line at A and at B, respectively, so GAB = EAB (see (1) in Sect. 2). From this
condition, it follows that λ = 1. �
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From (2) there exists an integer λ such that GAB = 〈gλ〉. Let P be the set formed
by the point C, by all the q + 1 Baer sublines containing both A and B , and by the
orbits under GAB = 〈gλ〉 of the points of PG(2, q2) not on the edges of the triangle
ABC. Let L be the set formed by the line AB, by the Baer subpencils of lines with
vertex C and projecting a Baer subline containing both A and B , and by the q2 − 1
sets Hα,λ for α ∈ GF(q2)∗. We show that P and L are respectively the set of points
and the set of lines of a projective plane.

Proposition 3.15 The incidence structure (P , L), where the incidence relation is set
theoretic inclusion, is a projective plane of order q .

Proof Observe that |P | = |L| = q2 +q +1. We claim that every line � of L has q +1
points. This is clearly true for the line AB. If the line � is a Baer subpencil projecting
a Baer subline �0 containing both A and B , then it contains q − 1 orbits under GAB

of points not on the edges of the triangle ABC, it contains �0 and the point C. If � is
a set Hα,λ, it contains q orbits of points not on the edges of the triangle ABC and a
Baer subline containing both A and B .

We claim that every point P of P is incident with q + 1 lines. This is clearly true
for the point C. If P is a Baer subline containing both A and B , then it is contained in
q − 1 sets of the family {Hα,λ : α ∈ GF(q2)∗} (see Proposition 3.12), it is contained
in the line AB and in the Baer subpencil with vertex C projecting P . If P is an orbit
under GAB of a point not on the edges of the triangle ABC, then it is contained in q

sets of the family {Hα,λ : α ∈ GF(q2)∗} (see Proposition 3.13) and it is contained in
a Baer subpencil of lines with vertex C projecting a Baer subline containing both A

and B (see Proposition 3.5).
Finally, we prove that any two distinct points P1 and P2 of P are incident with

exactly one line of L. If P1 and P2 are Baer sublines containing both A and B , then
AB is the unique line containing them. If P1 = C and P2 is a Baer subline containing
both A and B , then the Baer subpencil of lines with vertex C projecting P2 is the
unique line containing P1 and P2. If P1 = C and P2 is an orbit under GAB of a
point not on the edges of the triangle ABC, then, from Proposition 3.5, there exists
a unique element of L containing both P1 and P2. Suppose now that P1 and P2

are distinct orbits under GAB of points not on the edges of the triangle ABC. From
Proposition 3.5, each one of the orbits P1 and P2 meets the line s with equation
x2 = x3 in a unique point, say Q1 and Q2, respectively.

Let s0 be the Baer subline of s containing A, Q1 and Q2. If s0 contains the point
s∩BC, then P1 and P2 are both contained in the Baer subpencil of lines with vertex C

projecting s0. Such a subpencil is the unique line containing P1 and P2. If s0 does not
contain the point s ∩BC, then, from Proposition 3.11, there exists a unique set of the
family {Hα,λ : α ∈ GF(q2)∗} containing s0. Such a set is the unique line containing
P1 and P2. �

Proposition 3.16 The characteristic vector vHα,λ of the set Hα,λ is in the linear code
of PG(2, q2).
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Proof It is sufficient to prove the result for H1,λ (see Proposition 3.8). From Propo-
sition 2.1, we need only to show that vH1,λ ∈ P (1,3). Consider the polynomial

p(x1, x2, x3) = 1 − (
x

λ(q+1)

3 + x1x
λ(q+1)−1
2 + x

q

1 x
λ(q+1)−q

2

)q−1
.

Then p(x1, x2, x3) = 1 if and only if (x1, x2, x3) is a point of H1,λ and p(x1, x2, x3)

= 0 elsewhere. Moreover, p(x1, x2, x3) is given in terms of monomial functions in the

non-primitive generalized Reed–Muller code GRMq2−1
q2−1

(3, q2), since each monomial

of p(x1, x2, x3) has degree exactly q2 − 1 once reduced modulo x
q2

i − xi . Since
p(x1, x2, x3) ∈ {0,1} for all (x1, x2, x3), it follows that the value table of p(x1, x2, x3)

has all entries in the subfield GF(p). Thus, from Proposition 2.1, the incidence vector

vH1,λ of length (q2)3−1
q2−1

= q4 + q2 + 1 is the subfield subcode P (1,3). �

Proposition 3.17 Let U be a unital in PG(2, q2) such that GAB has order q2 − 1.
Then |U ∩ Hα,λ| ≥ 3 for all α ∈ GF(q2)∗ and for all possible λ.

Proof From the previous proposition vHα,λ = vm1 + · · · + vmt for some lines
m1, . . . ,mt (t ≥ 3 since |Hα,λ| = q3 + 1). If · denotes the usual inner product, then
|U ∩ Hα,λ| = vU · vHα,λ = vU · (vm1 + · · · + vmt ) = t mod p.

Consider the line AB, this intersects Hα,λ in a Baer subline, hence in 1 mod p

points. Each line mi intersects AB in again 1 mod p points (either 1 or q2 + 1). As
vHα,λ = vm1 + · · · + vmt , we have that t = 1 mod p. Since A,B are common points
to U and Hα,λ it follows |U ∩ Hα,λ| ≥ p + 1 ≥ 3. �

Theorem 3.18 If U is a unital in PG(2, q2) such that GAB has order q2 − 1, then U
is classical.

Proof There exists an integer λ such that GAB = 〈gλ〉 (see (2)). From the previous
proposition, the unital U has at least one point different from A and B with each
set Hα,λ, and hence it has one orbit in common with each Hα,λ. This gives that U is a
line of the projective plane (P , L), since it is a subset of size q +1 of P meeting every
line. Therefore, the set U coincides with a set Hγ,λ for some non-zero γ ∈ GF(q2).
From Proposition 3.14, we have that λ = 1 and U is the classical unital Hγ,1. �
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