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Abstract We investigate Gröbner bases of contraction ideals under monomial ho-
momorphisms. As an application, we generalize the result of Aoki–Hibi–Ohsugi–
Takemura and Ohsugi–Hibi for toric ideals of nested configurations.
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1 Introduction

In algebraic combinatorics, the theory of toric ideal is used for investigating the struc-
ture of a combinatorial model. Conti–Traverso [2] have given an algorithm for solving
the integer programming problem using the toric ideal. In recent years, applications
of the toric ideal in statistics have been successfully developed since the pioneering
work of Diaconis–Sturmfels [6]. They have given algebraic algorithms for sampling
from a finite sample space using Markov chain Monte Carlo methods. In this paper,
we investigate the structure of a combinatorial model constructed from several small
combinatorial models.

We denote by N = {0,1,2,3, . . .} the set of non-negative integers. For a multi-
index a = t (a1, . . . , ar ) ∈ Z

r and variables x = (x1, . . . , xr ), we write xa =
x

a1
1 · · ·xar

r . We set |a| = a1 + · · · + ar . Rings appearing in this paper may equip
two or more graded ring structures. We call K[x1, . . . , xn], deg(xi) = 1, a standard
graded polynomial ring. To avoid confusion, for a ring with a graded ring structure
given by an object ∗ (e.g. a weight vector w, or an abelian group Z

d ), we say that
elements or ideals are ∗-homogeneous or ∗-graded if they are homogeneous with
respect to the graded ring structure given by ∗. For a ∗-homogeneous polynomial f ,
we denote by deg∗(f ) the degree of f with respect to ∗, and call it the ∗-degree of f .
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We omit ∗ when we consider the standard grading on polynomial rings. In this paper,
“quadratic” means “of degree at most two”. We say that a monomial ideal J satis-
fies a property P (e.g. quadratic, square-free, or of degree at most m) if the minimal
system of monomial generators of J satisfies P .

Let A = (aij )1≤i≤m,1≤j≤n, be an m × n integer matrix, and b ∈ Z
m. We iden-

tify the matrix A = (a1, . . . ,an), aj = t (a1j , . . . , amj ), with the configuration
{a1, . . . ,an} ⊂ Z

m. We denote by FiberA(b) = {a ∈ N
n | A · a = b} the A-fiber

space of b. Integer programming is the problem of finding a vector a0 that maxi-
mizes (or minimizes) w ·a over FiberA(b). In some statistical models, sample spaces
are described as an A-fiber space. Let K be a field. We define the K-algebra ho-
momorphism φA : K[x1, . . . , xn] → K[y±1

1 , . . . , y±1
m ], xj �→ yaj . We set K[A] =

K[ya1 , . . . ,yan ]. We call the binomial prime ideal PA := KerφA = 〈xa −xb | a,b ∈
N

n, A · a = A · b〉 ⊂ K[x] = K[x1, . . . , xn] the toric ideal of A. We are mainly
interested in the problem when PA admits a quadratic initial ideal or a square-
free initial ideal. We call A a standard graded configuration if there exists a vec-
tor 0 
= λ = (λ1, . . . , λm) ∈ Q

m such that λ · aj = 1 for all j . If A is standard
graded, then PA is homogeneous in the usual sense, and some algebraic properties of
K[A] ∼= K[x]/PA can be derived from Gröbner bases of PA. If PA admits square-
free initial ideal, then K[A] is normal, and if PA admits quadratic initial idea, then
K[A] is a Koszul algebra, that is, the residue field K has a linear minimal graded free
resolution.

We will investigate a toric ideal PC such that C is a product of two matrices
B and A. Defining ideal of Veronese subrings of toric algebras, Segre products of
toric ideals, and toric fiber products of toric ideals are examples of toric ideals of
form PC with C = B · A. This type of matrix appears when one consider nested se-
lection: Suppose that there exist m types, C1, . . . ,Cm, of items. We make r types
of group, B1, . . . ,Br , combining these items, and express them by column vectors
bj = t (b1j , . . . , bmj ), 1 ≤ j ≤ r , where bij is the number of items of type Ci con-
tained in Bj . Then we construct n types of family, A1, . . . ,An, combining the groups
B1, . . . ,Br , and express them by column vectors aj = (a1j , . . . , arj ), 1 ≤ j ≤ n. Let
B = (bij )1≤i≤m,1≤j≤r , A = (aij )1≤i≤r,1≤j≤n and C = B · A. For c = t (c1, . . . , cn) ∈
N

n, the set of combinations of families which contain ci items of type Ci is expressed
by the C -fiber space of c. Since φB ◦ φA = φB·A, PB·A = φ−1

A (PB). For a ring ho-
momorphism φ : S → R and an ideal I ⊂ R, we call φ−1(I ) ⊂ R the contraction
ideal of I under φ. Thus the problem is reduced to the study of Gröbner bases of
contraction ideals under monomial homomorphisms.

In Sect. 2, we will show that under a suitable condition, P −1
A (I ) admits a quadratic

(resp. square-free) initial ideal if both of PA and I admit quadratic (resp. square-free)
initial ideals. We first prove this in the case where I is a monomial ideal (Theo-
rem 2.7). For a general ideal I , by extending a method developed by Sullivant [10],
we give a sufficient condition under which the initial ideal of φ−1

A (I ) coincides with

the initial ideal of the contraction ideal φ−1
A (in≺(I )) of the initial ideal of I . The main

theorem of this paper is the following.

Theorem 1 (Theorem 2.20) Let K[y] = K[y1, . . . , ys] be a Z
d -graded polynomial

ring with degZd (yi) = vi ∈ Z
d . Let H ⊂ Z

d be a finitely generated subsemigroup, and
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A = {a1, . . . ,ar} ⊂ N
s a system of generators of the semigroup

{
a ∈ N

s | degZd

(
ya

) ∈ H
} = {

a = t (a1, . . . , as) ∈ N
s | a1v1 + · · · + asvs ∈ H

}
.

We set φA : K[x1, . . . , xr ] → K[y], xj �→ yaj . Let I ⊂ K[y] be a Z
d -graded ideal.

Then the following hold.

(1) If both of I and PA admit initial ideals of degree at most m, then so does φ−1
A (I ).

(2) If both of I and PA admit square-free initial ideals, then so does φ−1
A (I ).

The configuration A in Theorem 1 corresponds to a special type of selection. For
example, suppose that there exist three items A1,A2,A3 whose (weight, volume) are
(1,30), (1,10), and (3,10), respectively. The set of combinations of these items such
that the ratio of the total weight to the total volume is 1/20 can be expressed by the
semigroup

{
t (a1, a2, a3) ∈ N

3 | a1 · (1,30) + a2 · (1,10) + a3 · (3,10) ∈ N · (1,20)
}
,

and its system of generators is A = {t (1,1,0), t (5,0,1)}.
Using Theorem 1, we generalize the results of Aoki–Hibi–Ohsugi–Takemura [1]

and Ohsugi–Hibi [8].

Theorem 2 (Theorem 3.5) Let 0 < d ∈ N, and let K[z±1] = K[z±1
1 , . . . , z±1

n ] be
a Q

d -graded Laurent polynomial ring with degQd (zi) = vi ∈ Q
d . Let u1, . . . ,us ∈

Q
d be rational vectors that are linearly independent over Q. For 1 ≤ i ≤ s, take

Bi = {b(i)
j | 1 ≤ j ≤ λi} ⊂ {b ∈ Z

n | degQd (zb) = ui}, and set B = B1 ∪ · · · ∪ Bs . Let
A ⊂ N

s be a standard graded configuration. We set

A[B1, . . . , Bs] :=
{

λ1∑

j=1

a
(1)
j b

(1)
j + · · · +

λs∑

j=1

a
(s)
j b

(s)
j

∣∣∣∣

a
(i)
j ∈ N,

(
λ1∑

j=1

a
(1)
j , . . . ,

λs∑

j=1

a
(s)
j

)

∈ A
}

.

Then the following hold.

(1) If both of PB and PA admit initial ideals of degree at most m, then so does
PA[B1,...,Bd ].

(2) If both of PB and PA admit square-free initial ideals, then so does PA[B1,...,Bd ].

The configuration A[B1, . . . , Bd ] in Theorem 2 is a generalization of nested con-
figuration defined in [1], and it appears when one considers a special type of nested
selection. Theorem 2 also contains the result of Sullivant [10] (toric fiber products).
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2 Gröbner bases of contraction ideals

Let R = K[x1, . . . , xr ] and S = K[y1, . . . , ys] be polynomial rings over K , and I an
ideal of S. Let A = (a1, . . . ,ar ), ai ∈ N

s , and φA : R → S, xj �→ yaj . We investigate
Gröbner bases of the contraction ideal φ−1

A (I ) of I .
Assume that ai = aj , and let ≺ be a term order on R such that xi ≺ xj . Let

A′ = (a1, . . . ,ai−1,ai+1, . . . ,ar ). Then the union of {xj − xi} and a Gröbner basis
of PA′ ⊂ K[x1, . . . , xj−1, xj+1, . . . , xr ] with respect to the term order induced by ≺
is a Gröbner basis of PA. Thus we may identify the matrix A with the configuration
{a1, . . . ,ar} when we investigate square-freeness or degree bound of initial ideals.

2.1 Preliminaries on Gröbner bases

We recall the theory of Gröbner bases. See [3, 4, 9] for details.
We write in≺(f ) (resp. inw(f )) for the initial term (resp. initial form) of a poly-

nomial f with respect to a term order ≺ (resp. a weight vector w) following [9]. We
call inw(I ) = 〈inw(f ) | f ∈ I 〉 (resp. in≺(I ) = 〈in≺(f ) | f ∈ I 〉) the initial ideal of
I with respect to w (resp. ≺). A monomial not in in≺(I ) is called a standard mono-
mial of I with respect to ≺. We say that a finite collection of polynomials G ⊂ I is a
pseudo-Gröbner basis of I with respect to w if 〈inw(g) | g ∈ G〉 = inw(I ). If G is a
pseudo-Gröbner basis and inw(g) is a monomial for all g ∈ G, we call G a Gröbner
basis of I with respect to w.

Proposition 2.1 ([9] Proposition 1.11) For any term order ≺ and any ideal I ⊂ R,
there exists a vector w ∈ N

r such that in≺(I ) = inw(I ).

We use a term order given by a weight vector with a term order as a tie-breaker.

Definition 2.2 For a weight vector w and a term order ≺, we define a term order ≺w

as follows: xa ≺w xb if w · a < w · b, or w · a = w · b and xa ≺ xb.

Proposition 2.3 ([9] Proposition 1.8) in≺(inw(I )) = in≺w (I ).

A Gröbner basis of I with respect to ≺w is a pseudo-Gröbner basis of I with
respect to w, but the converse is not true in general.

2.2 In the case of monomial ideals

In this subsection, we consider contractions of monomial ideals.

Definition 2.4 For a monomial ideal J , we denote by δ(J ) the maximum of the
degrees of a system of minimal generators of J .

We define the monomial ideal generated by standard monomials in the contraction
ideal of a monomial ideal.
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Definition 2.5 Let I ⊂ S be a monomial ideal. Let L
(A)≺ (I ) be a monomial ideal

generated by all monomials in φ−1
A (I )\ in≺(PA). We denote by M

(A)≺ (I ) the minimal

system of monomial generators L
(A)≺ (I ).

For monomial ideals I1, I2 ⊂ S, L
(A)≺ (I1 + I2) = L

(A)≺ (I1)+L
(A)≺ (I2) as φA(u) ∈

I1 + I2 if and only if φA(u) ∈ I1 or φA(u) ∈ I2 for a monomial u. In particular, if
I = 〈yb1, . . . ,ybn〉, then

L(A)≺ (I ) = L(A)≺
(
yb1

) + · · · + L(A)≺
(
ybn

)
.

Lemma 2.6 Let I ⊂ S be a monomial ideal. Then the following hold:

(1) δ(L
(A)≺ (I )) ≤ δ(I ).

(2) If I is generated by square-free monomials, then L
(A)≺ (I ) is generated by square-

free monomials.

Proof It is enough to treat in the case where I is a principal monomial ideal. Assume
that I is generated by a monomial v. Let u ∈ φ−1

A (I )\ in≺(PA) be a monomial.

(1) Let δ := δ(I ) = deg(v) and m = deg(u). Assume that m > δ. It is enough to show
that there exists a monomial u′ ∈ φ−1

A (I ) of degree strictly less than m such that
u′ divides u. We prove this by induction on δ. It is trivial in the case where δ = 0.
Assume that δ ≥ 1. We may assume, without loss of generality, that x1 divides u.
Let ṽ = gcd(v,φA(x1)). If ṽ = 1, we can take u/x1 as u′. If ṽ 
= 1, then v/ṽ is a
monomial of degree at most δ − 1, and u/x1 ∈ φ−1

A (〈v/ṽ〉). By the hypothesis of

induction, there exists a monomial u′′ ∈ φ−1
A (v/ṽ) such that u′′ divides u/x1 and

deg(u′′) < m − 1. Then u′ = x1 · u′′ is a monomial with desired conditions.
(2) We may assume, without loss of generality, that v = ∏t

j=1 yj for some t ≤ s. Let

xa = ∏r
i=1 x

ai

i ∈ φ−1
A (I ) be a monomial. It is enough to show that there exists a

square-free monomial in φ−1
A (I ) that divides xa . For 1 ≤ k ≤ t , there exists 1 ≤

i(k) ≤ r such that ai(k) 
= 0 and yk divides φA(xi(k)). Let Λ = {i(1), . . . , i(t)}.
Then

∏
i∈Λ xi is a square-free monomial in φ−1

A (I ) which divides xa .
�

Theorem 2.7 Let I ⊂ S be a monomial ideal. Let GA be a Gröbner basis of PA with
respect to ≺. Then the following hold:

(1) GA ∪ M
(A)≺ (I ) is a Gröbner basis of φ−1

A (I ) with respect to ≺.

(2) δ(in≺(φ−1
A (I ))) ≤ max{δ(I ), δ(in≺(PA))}.

(3) If I and in≺(PA) are generated by square-free monomials, then in≺(φ−1
A (I )) is

also generated by square-free monomials.

Proof It is clear that GA ∪ M
(A)≺ (I ) ⊂ φ−1

A (I ). Let f ∈ φ−1
A (I ), and g be the re-

mainder of f when divided by GA. Then any term of g is not in in≺(PA). Hence
different monomials appearing in g map to different monomials under φA. Since I

is a monomial ideal, it follows that all terms of g are in L
(A)≺ (I ). Thus the remainder
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of g when divided by M
(A)≺ (I ) is zero. Therefore a remainder of f on division by

G ∪ M
(A)≺ (I ) is zero. This implies (1).

We conclude (2) and (3) immediately from (1) and Lemma 2.6. �

2.3 Reduction to the case of monomial ideals

Let I be an ideal of S. We fix a weight vector w = (w1, . . . ,ws) ∈ N
s on S =

K[y1, . . . , ys] such that inw(I ) is a monomial ideal. We take

φ∗
Aw := w · A = (

degw φA(x1), . . . ,degw φA(xr )
)

as a weight vector on R = K[x1, . . . , xr ]. We define N-graded structures on R and
S by w and φ∗

Aw, respectively; R = ⊕
i∈N

Ri and S = ⊕
i∈N

Si where Ri and Si

are the K-vector spaces spanned by all monomials of weight i with respect to φ∗
Aw

and w, respectively. Then φA is a homogeneous homomorphism of graded rings of
degree 0, that is, φA(Ri) ⊂ Si . Hence PA is a φ∗

Aw-homogeneous ideal.

In the case where the equality inφ∗
Aw(φ−1

A (I )) = φ−1
A (inw(I )) holds, we can

reduce to the case of monomial ideal. It is easy to show that inφ∗
Aw(φ−1

A (I )) ⊂
φ−1

A (inw(I )) (see Lemma 2.11 (1)). In the case of toric fiber product, the converse

inclusion holds true [10]. However, the equality inφ∗
Aw(φ−1

A (I )) = φ−1
A (inw(I )) does

not hold in general.

Example 2.8 Let R = K[x1, x2] and S = K[y1, y2] be polynomial rings, w = (2,1) a
weight vector on S, and A = ( 1 1

0 1

)
. Then φA(x1) = y1, φA(x2) = y1y2, and φ∗

Aw =
(2,3). Let I be an ideal generated by f = y1 + y2 ∈ S. Then

φ−1
A (I ) = 〈x1 − y1, x2 − y1y2, f 〉 ∩ R = 〈

x2
1 + x2

〉

and thus inφ∗
Aw(φ−1

A (I )) = 〈x2
1〉. On the other hand, inw(f ) = y1 and thus

φ−1
A

(
inw(I )

) = 〈x1, x2〉.

Therefore inφ∗
Aw(φ−1

A (I )) 
= φ−1
A (inw(I )).

Theorem 2.9 Let the notation be as above. Suppose, in addition, that the equality

inφ∗
Aw

(
φ−1

A (I )
) = φ−1

A
(
inw(I )

)

holds. Then the following hold:

(1) in≺φ∗
A w

(φ−1
A (I )) = in≺(PA) + L

(A)≺ (inw(I )).

(2) δ(in≺φ∗
Aw

(φ−1
A (I ))) ≤ max{δ(inw(I )), δ(in≺(PA))}.

(3) If both of inw(I ) and in≺(PA) are generated by square-free monomials, then
in≺φ∗

Aw
(φ−1

A (I )) is generated by square-free monomials.
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Proof Since

in≺φ∗
A w

(
φ−1

A (I )
) = in≺

(
inφ∗

Aw

(
φ−1

A (I )
)) = in≺

(
φ−1

A
(
inw(I )

))
,

and inw(I ) is a monomial ideal, we conclude the assertion by applying Theorem 2.7
to the monomial ideal inw(I ). �

In the rest of this paper, we investigate when the equality inφ∗
Aw(φ−1

A (I )) =
φ−1

A (inw(I )) holds.

2.4 Pseudo-Gröbner bases

We naturally extend the definition of pseudo-Gröbner bases to ideals of N-graded
rings.

Definition 2.10 Let A = ⊕
i∈N

Ai be an N-graded ring and f = ∑
i fi ∈ A (fi ∈ Ai).

We define inA(f ) = fd where d = deg(f ) = max{i | fi 
= 0}. For an ideal I ⊂ A, we
define

inA(I) = 〈
inA(f ) | f ∈ I

〉 ⊂ A.

We say that a finite collection of polynomials G ⊂ I is a pseudo-Gröbner basis of I

if 〈inA(g) | g ∈ G〉 = inA(I).

It is easy to show that a pseudo-Gröbner basis of I generates I . Let A = ⊕
i∈N

Ai

and B = ⊕
i∈N

Bi be graded rings, and φ : A → B a graded ring homomorphism of
degree 0, that is, φ(Ai) ⊂ Bi for all i.

Lemma 2.11 Let I be an ideal of B . Then the following hold:

(1) inA(φ−1(I )) ⊂ φ−1(inB(I)).
(2) If φ is surjective, then inA(φ−1(I )) = φ−1(inB(I)).

Proof (1) Let f = ∑d
i=1 fi ∈ φ−1(I ) where fi ∈ Ai and fd 
= 0. Then inA(f ) = fd ,

φ(f ) = ∑d
i=1 φ(fi) ∈ I , and φ(fi) ∈ Bi . Hence φ(fd) = 0 or φ(fd) = inB(φ(f )) ∈

inB(I), and thus φ(inA(f )) ∈ inB(I).
(2) Since A/Kerφ ∼= B as N-graded rings, and φ−1(I )/Kerφ ∼= I as N-graded

ideals, inA(φ−1(I )) coincides with φ−1(inB(I)) module Kerφ. Since Kerφ is
a homogeneous ideal of A, Kerφ ⊂ inA(φ−1(I )), and it is clear that Kerφ ⊂
φ−1(inB(I)). Hence we conclude the assertion. �

2.5 Sufficient condition so that initial commutes with contraction

Now, we return to the problem when the equality inφ∗
Aw(φ−1

A (I )) = φ−1
A (inw(I ))

holds. The homomorphism φA : R → S can be decomposed into the surjection R →
K[A] and the inclusion K[A] ↪→ S. Since K[A] has an N-graded ring structure
induced by w, we can consider pseudo-Gröbner bases of ideals of K[A] in the sense
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of Definition 2.10. Note that inK[A](f ) = inw(f ) for f ∈ K[A]. By Lemma 2.11,
the equality

inφ∗
Aw

(
φ−1

A (I )
) = φ−1

A
(
inw(I )

)

holds if and only if the equality

inK[A]
(
I ∩ K[A]) = inw(I ) ∩ K[A]

holds. To obtain a sufficient condition for this equality to hold, we define a class of
subrings of a graded ring.

Definition 2.12 Let G be a semigroup, and S = ⊕
v∈G Sv a G-graded ring. For a

subsemigroup H ⊂ G, we define

S(H) =
⊕

v∈H

Sv,

a graded subring of S.

We consider the case where S is a multi-graded polynomial ring; let S = K[y] =
K[y1, . . . , ys] be a Z

d -graded polynomial ring with degZd (yi) = vi , vi ∈ Z
d . Set

V = (v1, . . . ,vs). Let H be a finitely generated subsemigroup of Z
d . Then

S(H) = K
[
ya | a ∈ N

s ,degZd

(
ya

) ∈ H
]

= K
[
ya | a = t (a1, . . . , as) ∈ N

s , V · a = a1v1 + · · · + asvs ∈ H
]
.

We will prove that S(H) is Noetherian, equivalently, {a ∈ N
s | V · a ∈ H} is finitely

generated as a semigroup.

Definition 2.13 We say that a semigroup H ⊂ Z
d is normal if H = L ∩ C for some

sublattice L ⊂ Z
d and finitely generated rational cone C ⊂ R

d .

It is well-known that normal semigroups are finitely generated (Gordan’s Lemma).

Lemma 2.14 Let H1,H2 ⊂ Z
d be finitely generated semigroups. Then H1 ∩ H2 is

also a finitely generated semigroup.

Proof It is enough to show that K[H1 ∩ H2] = K[xa | a ∈ H1 ∩ H2] is a Noetherian
ring. Let Hi = ZHi ∩ R≥0Hi for i = 1,2. Then H1, H2, and H1 ∩ H2 are finitely
generated semigroups by Gordan’s Lemma. Thus there exists 0 
= di ∈ N such that
diHi ⊂ Hi . Let d = d1d2. Then K[d(H1 ∩ H2)] ⊂ K[H1 ∩ H2] ⊂ K[H1 ∩ H2]. Since
K[d(H1 ∩H2)] is Noetherian, and K[H1 ∩H2] is a finitely generated K[d(H1 ∩H2)]-
module, K[H1 ∩H2] is also a finitely generated K[d(H1 ∩H2)]-module. Thus K[H1 ∩
H2] is a Noetherian ring. Therefore H1 ∩ H2 is a finitely generated semigroup. �

Lemma 2.15 Let V = (v1, . . . ,vn), vi ∈ Z
m, be an m × n integer matrix, and H ⊂

Z
m a finitely generated semigroup. Then {a ∈ N

n | V · a ∈ H} is a finitely generated
semigroup.



J Algebr Comb (2012) 36:1–19 9

Proof By Lemma 2.14, (
∑n

i=1 Zvi )∩H is a finitely generated semigroup. Thus there
exist a1, . . . ,a� ∈ Z

m such that {V · a1, . . . , V · a�} is a system of generators of the
semigroup (

∑n
i=1 Zvi )∩H. Let L = {a ∈ Z

m | V ·a = 0}. Then {a ∈ Z
n | V ·a ∈ H} =

L+∑�
i=1 N ·ai , and it is a finitely generated semigroup. Thus {a ∈ N

n | V ·a ∈ H} =
{a ∈ Z

n | V · a ∈ H} ∩ N
n is also a finitely generated semigroup by Lemma 2.14. �

By Lemma 2.15, S(H) is Noetherian for a Z
d -graded polynomial ring S and a

finitely generated semigroup H ⊂ Z
d .

Notation 2.16 Let S = K[y1, . . . , ys], and d > 0 be a positive integer. We fix a d × s

integer matrix V = (v1, . . . ,vs) with the column vectors v1, . . . ,vs ∈ Z
d . We define

a Z
d -graded structure on S by setting degZd (yi) = vi . Then degZd ya = V · a for

a ∈ N
s , and S = ⊕

v∈Zd Sv where Sv is the K-vector space spanned by all monomials
in S of multi-degree v. Let H be a finitely generated subsemigroup of Z

d . Let AH =
{a1, . . . ,ar} ⊂ N

s be a system of generators of {a = t (a1, . . . , as) | V · a ∈ H} as a
semigroup. Then S(H) = K[AH]. Let R[H] = K[x1, . . . , xr ] a polynomial ring over
K , and φAH

: R[H] → S, xi �→ yai , the monomial homomorphism corresponding to
AH.

We remark that AH is not always a standard graded configuration.

Definition 2.17 For v ∈ Z
d , we define

CH(v) =
⊕

u∈(−v+H)∩Zd

Su,

a Z
d -graded K[AH]-submodule of S. Let ΓH(v) be the minimal system of generators

of CH(v) as an K[AH]-module consisting of monomials in S.

If Sv 
= 0, then CH(v) ∼= f · CH(v) ⊂ K[AH] for any 0 
= f ∈ Sv . Hence CH(v)

is isomorphic to an ideal of K[AH] up to shift of grading. In particular, CH(v) is
finitely generated over K[AH].

Lemma 2.18 Let the notation be as in Notation 2.16. Fix a weight vector w ∈ N
s

on S, and regard S and K[AH] as N-graded rings. Let I be a Z
d -graded ideal with

Z
d -homogeneous system of generators F = {f1, . . . , f�} with degZd (fi) = vi ∈ Z

d .
Then the following hold:

(1) I ∩ K[AH] is generated by {ya · fi | 1 ≤ i ≤ �, ya ∈ ΓH(vi )}.
(2) inK[AH](I ∩ K[AH]) = inw(I ) ∩ K[AH].
(3) If F is a pseudo-Gröbner basis of I with respect to w, then

{
ya · fi | 1 ≤ i ≤ �, ya ∈ ΓH(vi )

}

is a pseudo-Gröbner basis of I ∩ K[AH] in sense of Definition 2.10.
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Proof (1) For 1 ≤ i ≤ � and ya ∈ ΓH(vi ), ya · fi is a Z
d -homogeneous element

whose degree is in H by the definition of ΓH(vi ), thus ya · fi ∈ K[A]. Let J be
the ideal of K[AH] generated by {ya · fi | 1 ≤ i ≤ �, ya ∈ ΓH(vi )}. Then J ⊂
I ∩ K[AH].

For the converse inclusion, take a Z
d -homogeneous element g ∈ I ∩ K[AH],

deg(g) = v, and write g = ∑
hifi where hi ’s are Z

d -homogeneous elements with
deg(hifi) = v. Since v ∈ H, we have hifi ∈ I ∩K[AH], and thus degZd (hi)+vi ∈ H.
Hence hi ∈ CH(vi ). Therefore it follows that g ∈ J .

(2), (3) Assume that {f1, . . . , f�} is a pseudo-Gröbner basis with respect to w.
Since inw(I ) is also Z

d -graded ideal and inw(fi) ∈ Svi
, the contraction ideal inw(I )∩

K[AH] is generated by {ya · inw(fi) | 1 ≤ i ≤ �, ya ∈ ΓH(vi )}. As ya · inw(fi) =
inw(ya · fi), we conclude inK[AH](I ∩ K[AH]) = inw(I ) ∩ K[AH]. �

Proposition 2.19 Let the notation be as in Notation 2.16. Let w′ := φ∗
AH

w. Then

φ−1
AH

(
inw(I )

) = inw′
(
φ−1

AH
(I )

)
.

Proof We also denote by φAH
the surjection R → K[AH]. By Lemma 2.18,

inK[AH]
(
I ∩ K[AH]) = inw(I ) ∩ K[AH],

and by Lemma 2.11 (2),

φ−1
AH

(
inK[AH]

(
I ∩ K[AH])) = inw′

(
φ−1

AH

(
I ∩ K[AH])).

Thus φ−1
AH

(inw(I ) ∩ K[AH]) = inw′(φ−1
AH

(I ∩ K[AH])). Since φ−1
AH

(J ∩ K[AH]) =
φ−1

AH
(J ) for any ideal J ⊂ S, we conclude that φ−1

AH
(inw(I )) = inw′(φ−1

AH
(I )). �

Theorem 2.20 Let S = K[y1, . . . , ys] be a Z
d -graded polynomial ring with

degZd (yi) = vi ∈ Z
d . Let H ⊂ Z

d be a finitely generated subsemigroup, and AH =
{a1, . . . ,ar} ⊂ N

s a system of generators of the semigroup {a ∈ N
s | degZd (ya) ∈ H}.

We set R[H] = K[x1, . . . , xr ], and φAH
: R[H] → S, xj �→ yaj . Let I ⊂ S a Z

d -
graded ideal. Take a term order ≺ on R[H], and a weight vector w ∈ N

s on S such
that inw(I ) is a monomial ideal. Let w′ := φ∗

AH
w. Then the following hold:

(1) δ(in≺w′ (φ
−1

AH
(I ))) ≤ max{δ(inw(I )), δ(in≺(PAH

))}.
(2) If both of inw(I ) and in≺(PAH

) are generated by square-free monomials, then

in≺w′ (φ
−1

AH
(I )) is also generated by square-free monomials.

Proof The assertions follow from Theorem 2.9 and Proposition 2.19. �

Note that Theorem 2.20 holds true even if AH is not a standard graded configura-
tion.
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2.6 Pseudo-Gröbner bases and Gröbner bases of contraction ideals

We will give a method to construct a pseudo Gröbner basis of φ−1
AH

(I ), and investigate
when it become a Gröbner basis. First, we fix the notation in this subsection.

Notation 2.21 Let S = K[y1, . . . , ys], AH, R[H] = K[x1, . . . , xr ], and φAH
:

R[H] → S be as in Notation 2.16. Let ≺ be a term order on R[H], and GAH
the

reduced Gröbner basis of PAH
with respect to ≺. Let I ⊂ S be a Z

d -graded ideal,
and fix a weight vector w ∈ N

s on S such that inw(I ) is a monomial ideal. Let
w′ := φ∗

AH
w = w · A.

Definition 2.22 For 0 
= q ∈ K[AH], there is the unique polynomial q̃ ∈ R[H] such
that φAH

(q̃) = q and any term of q̃ is not in in≺(PAH
). We define lift≺(q) = q̃ . For

a subset Q ⊂ K[AH], we define lift≺(Q) = {lift≺(q) | q ∈ Q}.

Remark 2.23

(1) For q ∈ K[AH], take a polynomial p ∈ R[H] such that φAH
(p) = q . Then

lift≺(q) is the remainder of p on division by GAH
with respect to ≺.

(2) If u ∈ K[AH] is a monomial, then lift≺(u) is a monomial such that degw(u) =
degw′(lift≺(u)) since the remainder of a monomial on division by a w′-
homogeneous binomial ideal is a monomial with the same degree. Therefore,
if Q is a set of monomials, then so is lift≺(Q).

(3) Let q ∈ K[AH] ⊂ S. If inw(q) is a monomial, then inw′(lift≺(q)) is also a
monomial and degw′(lift≺(q)) = degw(q) by (2). Furthermore, inw′(lift≺(q)) =
lift≺(inw(q)), and φAH

(inw′(lift≺(q))) = inw(q).
(4) Since R[H]/KerφAH

∼= K[AH] as N-graded rings, for an ideal J of K[AH] with

a system of generators Q, we have φ−1
AH

(J ) = 〈lift≺(Q)〉 + KerφAH
.

Proposition 2.24 Let J be an ideal in K[AH] with a pseudo-Gröbner basis Q =
{q1, . . . , q�} (in the sense of Definition 2.10 with a graded ring structure given by w).
Then lift≺(F ) ∪ GAH

is a pseudo-Gröbner basis of φ−1
AH

(J ) with respect to w′.

Proof This easily follows from the above remarks. �

Combining Proposition 2.24 and Lemma 2.18, we can obtain a pseudo-Gröbner
basis of φ−1

AH
(I ).

Definition 2.25 For a finite set F = {f1, . . . , f�} ⊂ S, degZd fi = vi , we define

Lift≺(F ) := lift≺
({

ya · fi | 1 ≤ i ≤ �, ya ∈ ΓH(vi )
})

.

The notation Lift≺(F ) was introduced in the case of toric fiber product by Sulli-
vant in [10].
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Proposition 2.26 Let the notation be as in Notation 2.21. Let F = {f1, . . . , f�} a
pseudo-Gröbner basis of I with respect to w consisting of Z

d -homogeneous polyno-
mials. Then the union Lift≺(F ) ∪ GAH

is a pseudo-Gröbner basis of φ−1
AH

(I ) with

respect to w′.

We remark that GAH
∪ Lift≺(F ) is not always a Gröbner basis even if I is a

principal monomial ideal.

Example 2.27 Let S = K[y1, y2, y3] be an N-graded ring with deg(y1) = deg(y2) =
deg(y3) = 1. Let H = {2n | n ∈ N} ⊂ N. Then AH = {t (2,0), t (1,1), t (0,2)}, R[H] =
K[x1, x2, x3], and φAH

: R[H] → S, x1 �→ y2
1 , x2 �→ y1y2, x3 �→ y2

2 . Let ≺ be the
lexicographic order on R[H] such that x1 ≺ x2 ≺ x3. Then the reduced Gröbner basis
GAH

of PAH
is {x1x3 − x2

2}. Let I = 〈y2y
3
3〉 and F = {y2y

3
3}. Then Lift≺(F ) =

{x2x3} and φ−1
AH

(I ) = 〈x2x3, x1x3 − x2
2〉. Let w be any weight vector on S. Since

φ−1
AH

(I ) is a w′-homogeneous ideal, GAH
∪ Lift≺(F ) = {x2x3, x1x3 − x2

2} is pseudo-

Gröbner basis of φ−1
AH

(I ) with respect to w′. However, GAH
∪ Lift≺(F ) is not a

Gröbner basis of φ−1
AH

(I ). Recall that GAH
∪ M

(A)≺ (I ) is a Gröbner basis of φ−1
AH

(I )

with respect to ≺w′ by Theorem 2.7. We have M
(A)≺ (I ) = {x2x3, x

3
2}, and GAH

∪
M

(A)≺ (I ) = {x2x3, x1x3 − x2
2 , x3

2} is a Gröbner basis of φ−1
AH

(I ) with respect to ≺w′ .

Note that x3
2 is obtained from the S-polynomial S(x2x3, x1x3 − x2

2) = x3
2 , and it

has degree 3 which is strictly greater than deg(x2x3) = deg(x1x3 − x2
2) = 2.

We will give a sufficient condition for the pseudo-Gröbner basis constructed in
Proposition 2.26 to be a Gröbner basis.

Proposition 2.28 Let the notation be as in Notation 2.21. Assume that AH is a stan-
dard graded configuration. Suppose that F = {f1, . . . , f�} is a Gröbner basis of I

with respect to w. Let Li = L
(A)≺ (inw(fi)) and Mi = M

(A)≺ (inw(fi)). Assume that for
each i, there exists δi ∈ N such that deg(u) = δi for all u ∈ Mi . Then GAH

∪Lift≺(F )

is a Gröbner basis of φ−1
AH

(I ) with respect to ≺w′ .

Proof Note that PAH
is a homogeneous ideal as AH is a standard graded config-

uration. As GAH
∪ Lift≺(F ) is a pseudo-Gröbner basis of φ−1

AH
(I ) and GAH

con-

sists of w′-homogeneous polynomials, the initial ideal inw′(φ−1
AH

(I )) is generated by
GAH

∪ {inw′(g) | g ∈ Lift≺(F )}. Since

in≺w′
(
φ−1

AH
(I )

) = in≺
(
inw′

(
φ−1

AH
(I )

))
,

GAH
∪ Lift≺(F ) is a Gröbner basis of φ−1

AH
(I ) if and only if GAH

∪ {inw′(g) | g ∈
Lift≺(F )} is a Gröbner basis of φ−1

AH
(inw(I )) = inw′(φ−1

AH
(I )). By Remark 2.23 (3),

it follows that
{
inw′(g) | g ∈ Lift≺(F )

} = Lift≺
({

inw(f ) | f ∈ F
})

.
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Thus it is enough to show that

GAH
∪ Lift≺

({
inw(f ) | f ∈ F

})

is a Gröbner basis of φ−1
AH

(inw(I )) with respect to ≺w′ . Since {inw(f ) | f ∈ F }
is a system of generators of the monomial ideal inw(I ), it is enough to prove
this theorem for inw(I ). Thus we may, and do assume that I is a monomial ideal
and F = {f1, . . . , f�} is the minimal system of monomial generators of I . Then
GAH

∪ (
⋃�

i=1 Mi) is a Gröbner basis of φ−1
AH

(I ) by Theorem 2.7.
Note that Lift≺(F ) is a set of monomials, and GAH

∪ Lift≺(F ) is a system of

generators of φ−1
AH

(I ). We will prove that GAH
∪ Lift≺(F ) is a Gröbner basis of

φ−1
AH

(I ) with respect to ≺ using Buchberger’s criterion. It is enough to show that
the remainder of the S-polynomial S(u,g) when divided by GAH

∪ Lift≺(F ) is zero
for all u ∈ Lift≺(F ) and g ∈ GAH

. Let u ∈ Lift≺(F ). Then u ∈ Li for some i, and
thus deg(u) ≥ δi . For any g ∈ GAH

, as u 
∈ in≺(PAH
), it follows that u 
= in≺(g) and

thus the degree of the S-polynomial S(u,g) is strictly greater than δi . Let u′ be a
remainder of S(u,g) when divided by GAH

∪ Lift≺(F ). Since GAH
∪ Lift≺(F ) is

a set of homogeneous binomials and monomials, u′ is zero or a monomial in Li of
degree deg(S(u,g)) > δi . Hence in≺(u′) = u′ is zero or not a member of the minimal
system of monomial generators of inw′(φ−1

AH
(I )). If u′ 
= 0 for some u ∈ Lift≺(F ),

this contradicts to the next lemma. �

Lemma 2.29 Let I ⊂ K[x1, . . . , xr ] be a homogeneous ideal with a homogeneous
system of generators G = {g1, . . . , g�}. Assume that G is not a Gröbner basis of I .

Then there exist 1 ≤ i < j ≤ � such that the initial of S(gi, gj )
G

is a member of

the minimal system of monomial generators of in≺(I ) where S(gi, gj )
G

denotes the
remainder of the S-polynomial S(gi, gj ) when divided by G.

Proof First, note that if S(gi, gj )
G 
= 0, then degS(gi, gj )

G ≥ max{deg(gi),

deg(gj )}. Assume, to the contrary, the initial of S(gi, gj )
G

is zero or not a mem-
ber of the minimal system of monomial generators of in≺(I ) for all 1 ≤ i < (j ≤ �).
Let F = {xb(1)

, . . . ,xb(m)} be the minimal system of monomial generators of in≺(I ).
We may assume that xb(1)

is the monomial of minimal degree among monomials in
F which are not in 〈in≺(g) | g ∈ G〉. Let G′ ⊂ I be a finite subset of I such that
G ∪ G′ is a minimal Gröbner basis of I computed from G by Buchberger’s algo-
rithm. Then there exists h ∈ G′\G such that xb(1) = in≺(h). By the procedure of

Buchberger’s algorithm, deg(xb(1)
) = degh ≥ degS(gi, gj )

G
for some 1 ≤ i < j ≤ �

with S(gi, gj )
G 
= 0. Let xb(k) ∈ F such that xb(k)

divides the initial of S(gi, gj )
G

. By

the assumption, the initial of S(gi, gj )
G

does not coincide with xb(k)
, and thus the de-

gree of xb(k)
is strictly less than S(gi, gj )

G
. Therefore deg(xb(1)

) > deg(xb(k)
). Since

any term of S(gi, gj )
G

is not in 〈in≺(g) | g ∈ G〉, we have xb(k) 
∈ 〈in≺(g) | g ∈ G〉.
This is a contradiction. �
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3 Applications

We will present some applications of Theorem 2.20. For a given positive integer n,
[n] = {1,2, . . . , n} denotes the set of the first n positive integers.

3.1 Veronese configurations

Let S = K[y1, . . . , ys] = ⊕
i∈N

Si be a standard graded polynomial ring, that is,
deg(yi) = 1 for all i. Let d be a positive integer, and

Ad = {
a = t (a1, . . . , as) ∈ N

s | |a| = d
}

the Veronese configuration. Then S(N·d) = K[Ad ] is the d th Veronese subring of
S. Let R = K[xa | a ∈ Ad ] be a polynomial ring, and φAd

: R → S, xa �→ ya , the
monomial homomorphism corresponding to Ad . It is known that there exist a lexi-
cographic order on R such that in≺(PAd

) is generated by square-free monomial of
degree two [5].

Theorem 3.1 Let I ⊂ S be a homogeneous ideal, w a weight vector on S such that
inw(I ) is a monomial ideal, and ≺ a term order on R such that in≺(PAd

) is generated
by square-free monomial of degree two. We denote the weight vector φ∗

Ad
w by w′.

Then the following hold:

(1) δ(in≺w′ (φ
−1

Ad
(I )) ≤ max{2, δ(inw(I ))}.

(2) If inw(I ) is generated by square-free monomials, then in≺w′ (φ
−1

Ad
(I )) is gener-

ated by square-free monomials.

Proof The assertion immediately follows from Theorem 2.20. �

Eisenbud–Reeves–Totaro proved in [7] that if K is an infinite field, the coordinates
y1, . . . , ys of S are generic, and ≺ is a certain reversed lexicographic order, then it
holds that δ(in≺w′ (φ

−1
Ad

(I )) ≤ max{2, δ(inw(I ))/d}.
3.2 Toric fiber products

We recall toric fiber products defined in [10]. Let d and s1, . . . , sd , t1, . . . , td be posi-
tive integers, and A = {u1, . . . ,ud} ⊂ Z

d . Let

S1 = K[y] = K
[
y

(i)
j | i ∈ [d], j ∈ [si]

]
,

S2 = K[z] = K
[
z
(i)
k | i ∈ [d], k ∈ [ti]

]
,

be Z
d -graded polynomial rings with

deg
(
y

(i)
j

) = deg
(
z
(i)
k

) = ui

for i ∈ [d], j ∈ [si], k ∈ [ti]. Then

S := S1 ⊗K S2 ∼= K
[
y

(i)
j , z

(i)
k | i ∈ [d], j ∈ [si], k ∈ [ti]

]
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carries a Z
d × Z

d -graded ring structure by setting

degS

(
y

(i)
j

) = (ui ,0), degS

(
z
(i)
k

) = (0,ui )

for i ∈ [d], j ∈ [si], k ∈ [ti] in S. Let R = K[x(i)
jk | i ∈ [d], j ∈ [si], k ∈ [ti]] be a

polynomial ring, and φ : R → S the monomial homomorphism φ(x
(i)
jk ) = y

(i)
j z

(i)
k .

Let I1 ⊂ S1 and I2 ⊂ S2 be Z
d -graded ideals. We denote (I1 ⊗ S2) + (S1 ⊗ I2) ⊂ S

simply by I1 + I2. The ideal

I1 ×A I2 := φ−1(I1 + I2)

is called the toric fiber product of I1 and I2.
Assume that u1, . . . ,ud are linearly independent over Q. Let

Δ = {
(v,v) | v ∈ Z

d
} ⊂ Z

d × Z
d

be the diagonal subsemigroup of Z
d ×Z

d . Since u1, . . . ,ud are linearly independent,
we have

S(Δ) ∼= K
[
y

(i)
j z

(i)
k | i ∈ [d], j ∈ [si], k ∈ [ti]

]
.

We denote by φΔ the above homomorphism φ in this case.
Let w1 and w2 be weight vectors of S1 and S2 such that inw1(I1) and inw2(I2) are

monomial ideals, and set w = (w1,w2), the weight order of S. Let G1 and G2 be
Gröbner bases of I1 and I2 with respect to w1 and w2, respectively.

Theorem 3.2 Let the notation be as above. Assume that u1, . . . ,ud are linearly inde-
pendent over Q. Let ≺ be the lexicographic term order on R such that x

(i1)
j1k1

≺ x
(i2)
j2k2

if
i1 < i2 or i1 = i2 and j1 < j2 or i1 = i2 and j1 = j2 and k1 > k2. Then the following
hold:

(1) δ(in≺φ∗
Δ

w
(I1 ×A I2)) ≤ max{2, δ(inw1(I1)), δ(inw1(I2))}.

(2) If both of inw1(I1) and inw2(I2) are generated by square-free monomials, then
in≺φ∗

Δ
w
(I1 ×A I2) is generated by square-free monomials.

Proof By [10] Proposition 2.6, the Gröbner basis of KerφΔ with respect to ≺ is

{
x

(i)
j1k2

x
(i)
j2k1

− x
(i)
j1k1

x
(i)
j2k2

| i ∈ [d], 1 ≤ j1 < j2 ≤ si , 1 ≤ k1 < k2 ≤ ti
}

where underlined terms are initial. Since G = G1 ∪ G2 is a Gröbner basis of I1 + I2
with respect to w, we have

δ
(
inw(I1 + I2)

) = max
{
δ
(
inw1(I1)

)
, δ

(
inw1(I2)

)}
.

As I1 + I2 is a Z
d × Z

d -graded ideal, the assertions follow from Theorem 2.20. �

In case of toric fiber product, the pseudo-Gröbner basis constructed as in Propo-
sition 2.26 from a Gröbner basis of I1 + I2 is a Gröbner basis of I1 ×A I2. This
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is mentioned in [10] Corollary 2.10, but the proof contains a minor gap (the author
claims that the pseudo-Gröbner basis is a Gröbner basis without proof). One can fill
this gap using Proposition 2.28.

Theorem 3.3 Let G1 and G2 be Gröbner bases of I1 and I2 with respect to weight
vectors w1 and w2, respectively, and set w = (w1,w2). Then the pseudo-Gröbner
basis of I1 ×A I2 constructed from G := G1 ∪G2 as in Proposition 2.26 is a Gröbner
basis of I1 ×A I2 with respect to ≺φ∗

Δw .

Proof Let g ∈ G. By Proposition 2.28, it is enough to show that deg(xb) = deg(g)

for all xb ∈ M
(Δ)≺ (inw(g)) to prove this theorem. Since g ∈ S1 or g ∈ S2, we may

assume, without loss of generality, that g ∈ S1 = K[y]. Set inw(g) = ya .
Let xb ∈ M

(Δ)≺ (inw(g)). Then ya divide φΔ(xb). Since the degree of φΔ(xb) in
y is the same as deg(xb) by the definition of φΔ, we have deg(xb) ≥ deg(ya). By
Lemma 2.6 (1), it holds that deg(xb) ≤ deg(ya). Hence we conclude deg(xb) =
deg(ya) = deg(g). �

3.3 Generalized nested configurations

Let n, s and λ1, . . . , λs be positive integers. Let Bi = {b(i)
1 , . . . ,b

(i)
λi

} ⊂ Z
n, 1 ≤ i ≤ s,

and A ⊂ N
s be standard graded configurations. The (generalized) nested configura-

tion arising from A and B1, . . . , Bs is the configuration

A[B1, . . . , Bs] : =
{

λ1∑

j=1

a
(1)
j b

(1)
j + · · · +

λs∑

j=1

a
(s)
j b

(s)
j

∣
∣∣∣

a
(i)
j ∈ N,

(
λ1∑

j=1

a
(1)
j , . . . ,

λs∑

j=1

a
(s)
j

)

∈ A
}

.

The original definition of nested configurations by Aoki–Hibi–Ohsugi–Takemura [1]
is the case where there exist 0 < n1, . . . , ns ∈ N such that N

n = N
n1 × · · · × N

ns and
Bi ⊂ N

ni .
Let F = ⊕s

i=1
⊕λi

j=1 Ze
(i)
j be a free Z-module of rank λ1 + · · · + λs . Let Ei =

{e(i)
1 , . . . , e

(i)
λi

} ⊂ F for 1 ≤ i ≤ s, and A ⊂ N
s a configuration. We set

S = K[E1 ∪ · · · ∪ Es] ∼= K
[
y

(i)
j | i ∈ [s], j ∈ [λi]

]
,

the N
s -graded polynomial ring with degNs y

(i)
j = ei . Then

S(NA) = K
[

A[E1, . . . , Es]
]
.

A Gröbner basis of PA[E1,...,Es ] is given in [8].

Theorem 3.4 ([8] Theorem 2.5) Let the notation be as above. Then the following
holds:
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(1) If PA admits an initial ideal of degree at most m, then so does PA[E1,...,Es ].
(2) If PA admits a square-free initial ideal, then so does PA[E1,...,Es ].

By Theorem 3.4 and Theorem 2.20, for the monomial homomorphism φA[E1,...,Es ] :
K[xa | a ∈ A[E1, . . . , Es]] → S and a Z

s -deal I ⊂ S, one can describe the initial ideal
of the contraction ideal φ−1

A[E1,...,Es ](I ) using Gröbner bases of PA and I . In the case
where I is a toric ideal, we have the following.

Theorem 3.5 Let 0 < d ∈ N, and let K[z±1] = K[z±1
1 , . . . , z±1

n ] be a Q
d -graded

Laurent polynomial ring with degQd (zi) = vi ∈ Q
d . Let u1, . . . ,us ∈ Q

d be rational

vectors that are linearly independent over Q. Take Bi = {b(i)
j | 1 ≤ j ≤ λi} ⊂ {b ∈

Z
n | degQd (zb) = ui} for 1 ≤ i ≤ s, and set B = B1 ∪ · · · ∪ Bs . Let A ⊂ N

s be a
standard graded configuration. Then the following hold.

(1) If both of PB and PA admit initial ideals of degree at most m, then so does
PA[B1,...,Bs ].

(2) If both of PB and PA admit square-free initial ideals, then so does PA[B1,...,Bs ].

Proof Let R = K[xa | a ∈ A[E1, . . . , Es]], S = K[y(i)
j | i ∈ [s], j ∈ [λi]] be poly-

nomial rings, and set φA[E1,...,Es ] : R → S, xa �→ ya , and φB : S → K[z±1] =
K[z±1

1 , . . . , z±1
n ], y(i)

j �→ z
b

(i)
j . Then φB ◦φA[E1,...,Es ] = φA[B1,...,Bs ]. Since u1, . . . ,us

are linearly independent, PB = KerφB is a Z
s -graded ideal. By Theorem 3.4 and

Theorem 2.20, we conclude the assertion. �

Example 3.6 Assume that there are four types of ingredient, z1, z3, z3, z4, and three
manufacturers, B1,B2,B3. Assume that each ingredient zi is equipped with a prop-
erty vector vi = (vi1, vi2, vi3) ∈ N

3 as in Table 1. Each of the manufacturers provides
products combining z1, . . . , z4. A product is expressed as a monomial z

b1
1 z

b2
2 z

b3
3 z

b4
4

where bi is the number of zi contained in the product. Assume that property vectors
are additive, that is, the property vector of z

b1
1 z

b2
2 z

b3
3 z

b4
4 is b1v1 + · · · + b4v4. Sup-

pose that each manufacturer Bj sells the products with a fixed property vector wj as
in Table 2, and we set Bj the corresponding configuration. Suppose each customer
choose two manufacturers and buys one product from each chosen manufacturer, and

Table 1 Ingredient
Ingredient Property 1 Property 2 Property 3

z1 600 30 20

z2 400 30 10

z3 700 20 30

z4 1200 40 50
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Table 2 Products

Manufacturer Products Property vector wj

B1 ȳ1 := z2
1z3z4, ȳ2 := z1z2z3

3 (3100, 120, 120)

B2 ȳ3 := z1z3z2
4, ȳ4 := z2z3

3z4 (3700, 130, 150)

B3 ȳ5 := z2
1z2

4, ȳ6 := z1z2z2
3z4, ȳ7 := z2

2z4
3 (3600, 140, 140)

the chosen two manufacturers are expressed by columns of A.

A =
⎛

⎝
1 1 0
1 0 1
0 1 1

⎞

⎠ , B1 =

⎛

⎜⎜
⎝

2 1
0 1
1 3
1 0

⎞

⎟⎟
⎠ ,

B2 =

⎛

⎜⎜
⎝

1 0
0 1
1 3
2 1

⎞

⎟⎟
⎠ , B3 =

⎛

⎜⎜
⎝

2 1 0
0 1 2
0 2 4
2 1 0

⎞

⎟⎟
⎠ .

Then there are 16 patterns of customer’s choice of products, which are expressed by
columns of A[E1, E2, E3];

A[E1, E2, E3] =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where E1 = (e1, e2), E2 = (e3, e4), and E3 = (e5, e6, e7). Then A[B1, B2, B3] is the
product of (B1, B2, B3) and A[E1, E2, E3];

A[B1, B2, B3] =

⎛

⎜⎜
⎝

3 2 2 1 4 3 2 3 2 1 3 2 1 2 1 0
0 1 1 2 0 1 2 1 2 3 0 1 2 1 2 3
2 4 4 6 1 3 5 3 5 7 1 3 5 3 5 7
3 2 2 1 3 2 1 2 1 0 4 3 2 3 2 1

⎞

⎟⎟
⎠ .

Suppose that there are 1000 customers, and the choices of the customers is

a0 = t (101,59,80,21,129,62,78,83,47,51,98,70,12,58,31,20)

where the kth component of a0 is the number of customers whose choice corresponds
to the kth column of A[E1, E2, E3]. Then the ith component of A[B1, B2, B3] · a0 =
t (2447,1003,3267,2286) is the number of zi in the whole of the sold products.
We consider all the possibilities of 1000 customers choices such that the number
of zi in the whole of the sold products is the same as a0 for all i = 1,2,3,4.
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This space is expressed as the A[B1, B2, B3]-fiber space of A[B1, B2, B3] · a0 =
t (2447,1003,3267,2286). The Gröbner basis of PB with respect to the lexicographic
order ≺lex with y7 ≺lex · · · ≺lex y1 is

{
y4y1 − y3y2, y6y1 − y5y2, y7y1 − y6y2, y6y3 − y5y4, y7y3 − y6y4, y7y5 − y2

6

}
,

thus in≺lex(PB) is generated by square-free quadratic monomials. The toric ideal
PA = 〈x1x3 −x2

2〉 admits a square-free quadratic initial ideal. Therefore PA[B1,B2,B3]
also admits a square-free quadratic initial ideal by Theorem 3.5.
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