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Abstract A graph is arc-regular if its automorphism group acts sharply-transitively
on the set of its ordered edges. This paper answers an open question about the exis-
tence of arc-regular 3-valent graphs of order 4m where m is an odd integer. Using the
Gorenstein–Walter theorem, it is shown that any such graph must be a normal cover
of a base graph, where the base graph has an arc-regular group of automorphisms
that is isomorphic to a subgroup of Aut(PSL(2, q)) containing PSL(2, q) for some
odd prime-power q. Also a construction is given for infinitely many such graphs—
namely a family of Cayley graphs for the groups PSL(2,p3) where p is an odd prime;
the smallest of these has order 9828.

Keywords Arc-regular graph · One-regular graph · Symmetric graph · Cayley graph

1 Introduction

Let X be a finite, simple, undirected graph, with vertex-set V (X), edge-set E(X),
arc-set A(X), and (full) automorphism group Aut(X). Note that an arc is an or-
dered edge (an ordered pair of adjacent vertices). An s-arc is an ordered (s + 1)-
tuple (v0, v1, . . . , vs) of vertices such that vi−1 is adjacent to vi for 1 ≤ i ≤ s, and
vi−1 �= vi+1 for 1 ≤ i < s; in other words, a directed walk of length s in which any
three consecutive vertices are distinct (so the walk never steps back along an edge
just crossed).
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The graph X is said to be s-arc-transitive if Aut(X) is transitive on the set of all
s-arcs in X, and s-arc-regular if Aut(X) is regular (that is, sharply-transitive) on the
set of all s-arcs in X. In particular, 0-arc-transitive is the same as vertex-transitive,
and 1-arc-transitive is the same as arc-transitive, or symmetric. Also the terms s-arc-
transitive and s-arc-regular are often abbreviated to just s-transitive and s-regular,
respectively; thus, for example, X is one-regular if Aut(X) is sharply-transitive on
the arcs of X. Furthermore, any subgroup of Aut(X) that acts transitively (resp., reg-
ularly) on the s-arcs of X is said to be s-arc-transitive or s-transitive (resp., s-arc-
regular or s-regular) on X.

In any connected s-arc-transitive graph, all vertices have the same valency. Con-
versely, any s-arc-regular graph in which all vertices have the same positive valency
must be connected (for otherwise an s-arc in one component can be fixed by an
automorphism moving vertices in another component). A 2-valent regular graph is
arc-regular if and only if it is a cycle.

Arc-regular graphs with specific valency greater than 2 have received consider-
able attention. For example, Chao [2] classified all 4-valent arc-regular graphs of
prime order, and Marušič [26] constructed an infinite family of 4-valent arc-regular
Cayley graphs for alternating groups. All 4-valent one-regular circulant graphs were
classified in [39], and all 4-valent one-regular Cayley graphs on abelian groups were
classified in [38]. One may also obtain a classification of 4-valent one-regular Cay-
ley graphs for dihedral groups from the work of Kwak and Oh [19] and Wang
et al. [35, 36]. Next, by [3, 25, 27, 29, 30, 37, 38], we know that all 4-valent one-
regular graphs of order p or pq (where p and q are primes) are circulant, and a
classification of such graphs can be easily deduced from [39]. Furthermore, all 4-
valent one-regular graphs of order 2pq were classified by Zhou and Feng [43]. On
the other hand, Malnič et al. [24] constructed an infinite family of infinite one-regular
graphs; see also [21, 31] for related results.

The first known example of a cubic (3-valent) one-regular graph is one with 432
vertices constructed by Frucht [15], and much subsequent work has been done in
this line as part of a more general programme of investigation of cubic arc-transitive
graphs; see [5–8, 10–14, 28], for example. Cheng and Oxley [3] proved that there
are infinitely many cubic one-regular graphs of order 2p for p prime, and Zhou and
Feng [42] classified all cubic one-regular graphs of order 2m where m is odd and
square-free.

On the other hand, cubic one-regular graphs of order 4m where m is odd are more
rare. To the best of our knowledge, there has been no previous construction of such
graphs. There are no such graphs in the census of connected symmetric cubic graphs
on up to 768 vertices complied by Conder and Dobcsányi [4]. Furthermore, Feng and
Kwak [13] have shown that there is no cubic one-regular graph of order 4p or 4p2

for prime p, and Zhou and Feng [42] have shown there is also no such graph of order
4m where m is odd and square-free. Indeed in [42], it was conjectured that there is
no cubic one-regular graph of order 4m for m odd.

In this paper, we will show that this conjecture is not true, by giving several exam-
ples. First, we use the Gorenstein–Walter theorem to prove that every one-regular
cubic graph of order 4 times an odd integer is a normal cover of a base graph,
which itself has a one-regular group of automorphisms isomorphic to a subgroup
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of Aut(PSL(2, q)) containing PSL(2, q) for some odd prime-power q . Then we il-
lustrate this by producing some examples for small values of q . Finally, we construct
an infinite family of one-regular cubic Cayley graphs of order p3(p6 − 1)/2 for odd
primes p. Taking p ≡ 3 or 5 (mod 8) gives such graphs with order 4 times an odd
integer. The smallest one (for p = 3) has order 9828 = 4 × 2457.

2 Preliminaries

Throughout this paper, we will denote by Zn the cyclic group of order n, by Dn the
dihedral group of order 2n, and by Sn and An the symmetric group and alternating
group of degree n, respectively. Also if G is a permutation group on a set Ω , then we
denote by Gα the stabilizer of α in G (that is, the subgroup of G fixing the point α),
for any α ∈ Ω . We say that G is semiregular on Ω if Gα = 1 for every α ∈ Ω , and
regular if G is transitive and semiregular on Ω , that is, if G is sharply-transitive
on Ω .

We now introduce some preliminary results from the theory of groups. The first
is well known, and sometimes called the N/C-theorem. For a subgroup H of a
group G, denote by CG(H) the centralizer of H in G, and by NG(H) the normalizer
of H in G. Conjugation of H by elements of NG(H) gives a homomorphism from
NG(H) to the automorphism group Aut(H) of H , with kernel CG(H). In particular,
CG(H) is normal in NG(H), and we have the following:

Proposition 2.1 [32, I. Theorem 6.11] The quotient group NG(H)/CG(H) is iso-
morphic to a subgroup of the automorphism group Aut(H) of H .

The next proposition is due to Burnside.

Proposition 2.2 [18, Chap. IV, Theorem 2.6] Let G be a finite group and let P be a
Sylow p-subgroup of G. If NG(P ) = CG(P ), then G has a normal p-complement,
that is, a normal subgroup N such that G = NP with N ∩ P = 1.

We will also need the Gorenstein–Walter theorem:

Proposition 2.3 [16, Sect. 16.3] Let G be a finite group with dihedral Sylow 2-
subgroups. Let N be the largest normal subgroup of G of odd order. Then G/N

is isomorphic to

(i) a (dihedral) Sylow 2-subgroup of G, or
(ii) A7, or

(iii) a subgroup of Aut(PSL(2, q)) containing PSL(2, q) for some odd q .

To prove our second main theorem, we need some facts about fields of order p3:

Proposition 2.4 For any odd prime p, let K = GF(p3) be the field of order p3, and
let F = GF(p) be the base field of K . Then
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(a) the multiplicative groups K∗ and F ∗ of K and F are cyclic groups of order
p3 − 1 and p − 1, respectively, and |K∗ :F ∗| = p2 + p + 1;

(b) K has automorphism group of order 3, generated by the automorphism
α: x �→ xp;

(c) if a ∈ K∗, then a ∈ F if and only if a + a−1 ∈ F ; and
(d) if t ∈ K but t3 �∈ F , then tp−1 �∈ F but tp

2+p+1 ∈ F .

Proof First, (a) and (b) are well known, with α: x �→ xp the Frobenius automor-
phism. The “only if” part of (c) is obvious, so suppose that a + a−1 ∈ F . Then ei-
ther a + a−1 = 0 or (a + a−1)p−1 = 1. If a + a−1 = 0, then a2 = (−a−1)2 = a−2,
so a4 = 1, and then since |K∗ :F ∗| is odd, this implies that a ∈ F . On the other
hand, if (a + a−1)p−1 = 1, then by part (b) or just the fact that K has characteris-
tic p, we find that a + a−1 = (a + a−1)p = ap + a−p , so a − ap = a−p − a−1 =
a−1−p(a − ap). Hence either a − ap = 0 or a−1−p = 1. In the former case, ap = a,
so ap−1 = 1, and therefore a ∈ F ∗. In the latter case, a−1−p = 1, so ap+1 = 1. But
p3 − 1 = (p + 1)(p2 − p + 1) − 2, so gcd(p + 1,p3 − 1) = 2, and hence there are
integers s and t such that 2 = (p + 1)s + (p3 − 1)t . Thus a2 = a(p+1)s+(p3−1)t =
(ap+1)s(ap3−1)t = 1, which again implies that a ∈ F . This proves (c). Finally, for
part (d), we note that gcd(p − 1,p2 + p + 1) = gcd(p − 1,3) = 1 or 3, since
p2 + p + 1 = (p − 1)(p + 2) + 3. In particular, tp−1 �∈ F , because t3 �∈ F . On the
other hand, tp

2+p+1 ∈ F since |K∗ :F ∗| = p2 + p + 1. �

Next, we need the following, which follows from Dickson’s classification [9] of
subgroups of the projective special linear groups PSL(2, q); see also [18, II.8.27] or
[17, Theorem 2.2].

Proposition 2.5 Let q = p3 where p is an odd prime. Then the group PSL(2, q) has
four classes of maximal subgroups:

(a) subgroups isomorphic to PSL(2,p);
(b) dihedral subgroups of order q − 1;
(c) dihedral subgroups of order q + 1;
(d) subgroups isomorphic to a semidirect product Z

3
p � Z q−1

2
.

We also need some known facts about symmetric graphs and Cayley graphs. First,
by a theorem of Tutte [33, 34], every finite connected cubic symmetric graph is s-
arc-regular for some s ≤ 5, and the vertex stabilizer in its automorphism group is
known:

Proposition 2.6 [10, Proposition 2-5] Let X be a connected symmetric cubic graph,
and let G be an s-regular subgroup of Aut(X). Then the stabilizer Gv of v ∈ V (X) in
G is isomorphic to Z3, S3, S3 ×Z2, S4, or S4 ×Z2 for s = 1,2,3,4, or 5, respectively.

Next, for a finite group G and a subset S of G such that S = S−1 and 1 /∈ S,
the Cayley graph Cay(G,S) for G with respect to S is defined to have vertex set G

and edge set {{g, sg} | g ∈ G,s ∈ S}. Given g ∈ G, right multiplication x �→ xg (for
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x ∈ G) is a permutation R(g) on G, and the homomorphism from G to Sym(G)

taking each g to R(g) is called the right regular representation of G. The im-
age R(G) = {R(g) | g ∈ G} of G is a regular permutation group on G, and is
isomorphic to G, which can therefore be regarded as a subgroup of the automor-
phism group Aut(Cay(G,S)). In particular, the Cayley graph Cay(G,S) is vertex-
transitive. Moreover, the group Aut(G,S) = {α ∈ Aut(G) | Sα = S} is a subgroup
of Aut(Cay(G,S)), indeed of the stabilizer Aut(Cay(G,S))1 of the vertex 1. Also a
Cayley graph Cay(G,S) is said to be normal if R(G) is normal in Aut(Cay(G,S)).

Proposition 2.7 [40, Propositions 1.3 and 1.5] A Cayley graph X = Cay(G,S) is
normal if and only if Aut(Cay(G,S))1 = Aut(G,S), or equivalently, if and only if
Aut(X) is isomorphic to the semidirect product R(G) � Aut(G,S).

Automorphism groups of symmetric cubic Cayley graphs for non-abelian simple
groups were investigated by Xu et al. in [41], leading to the following remarkable
result:

Proposition 2.8 [41, Theorem 1.1] Let G be a finite non-abelian simple group, and
let X be a connected symmetric cubic Cayley graph for G. Then either X is a normal
Cayley graph, or otherwise G = A47 and Aut(X) = A48.

Finally, suppose that G is a group of automorphisms acting vertex-transitively on
the graph X, and let N be a normal subgroup of G. Then the quotient graph XN

of X relative to N is defined as the graph with vertices the orbits of N in V (X),
and with two such orbits adjacent in XN if there is an edge in X between those
two orbits. Also X is a cover of XN when the graph induced between two adjacent
N -orbits is a perfect matching. (Indeed, it is a normal cover of XN , since N is a
normal subgroup of the vertex-transitive group G.) In the special case where X is a
symmetric cubic graph and G acts arc-transitively on X, we have the following (from
[20, Theorem 9]):

Proposition 2.9 If N has more than two orbits in V (X), then XN is also a symmetric
cubic graph, and N is the kernel of the action of G on the set of orbits of N . Moreover,
the action of N on V (X) is semiregular, and G/N is arc-transitive on XN .

3 Classification and construction of examples

We begin with a theorem that restricts the structure of the automorphism groups of
one-regular cubic graphs of order 4 times an odd integer.

Theorem 3.1 Let X be a one-regular cubic graph of order 4m where m is odd.
Then X is a normal cover of a base graph Y , where Y has an arc-regular group
of automorphisms that is isomorphic to a subgroup of Aut(PSL(2, q)) containing
PSL(2, q) for some odd prime-power q .
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Proof Let A = Aut(X). By one-regularity of X, we know that |A| = 3|V (X)| = 12m.
Also let P be a Sylow 2-subgroup of A. Then |P | = 4, so P ∼= Z4 or Z2 × Z2.

Suppose P ∼= Z4. Then by Proposition 2.1, NA(P )/CA(P ) � Aut(P ) ∼=
Aut(Z4) ∼= Z2. Hence |NA(P )/CA(P )| = 1 or 2. If |NA(P )/CA(P )| = 2 then since
CA(P ) contains P (which has order 4), we find that |NA(P )| (and hence |A|) is divis-
ible by 2 × 4 = 8, a contradiction. Thus |NA(P )/CA(P )| = 1, so NA(P ) = CA(P ),
and Proposition 2.2 applies, giving a normal subgroup T in A such that A = T P and
T ∩P = 1. In particular, |T | = |A|/|P | = 12m/4 = 3m, and then since |V (X)| = 4m,
it follows that T must have four orbits on V (X), with vertex-stabilizer Tu

∼= Z3 (for
some vertex u in any orbit). But on the other hand, Proposition 2.9 implies that T is
semiregular on V (X), a contradiction.

Thus P ∼= Z2 × Z2. Let N be the largest normal subgroup of A of odd order.
Then N has at least four orbits on V (X). By Proposition 2.9, X is a normal cover of
the quotient graph XN and A/N is one-regular on XN . If |N | = 3m then, again by
Proposition 2.9, N is semiregular on V (X), which is impossible. Thus |N | < 3m, and
in particular, A/N �∼= P . Also A/N �∼= A7, since |A| is not divisible by 8. By Propo-
sition 2.3, we conclude that A/N is isomorphic to a subgroup of Aut(PSL(2, q))

containing PSL(2, q), for some odd q . By taking Y = XN , this completes the proof
of the theorem. �

We now give some examples of such graphs, for small values of q .

Example 3.2 In the group GL(6,3), consider the following two matrices:

a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 1 0

−1 0 0 −1 0 0

−1 0 1 0 0 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 −1 −1 0

1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

These can be written as a = (
x 0
0 1

)
and b = (

y 0
v 1

)
where x and y are elements of

GL(5,3) satisfying the defining relations for a one-regular group of automorphisms
of the graph F220A in the census of symmetric cubic graphs of small order [4]. In
particular, 〈x, y〉 is isomorphic to PSL(2,11). Also, the element c = ((ab)3(ab−1)3)2

has the form
(

I5 0
w 1

)
, and this element and its conjugates by b, b−1, ba and bab gen-

erate an elementary abelian subgroup N of order 35, which is normal in the group A

generated by a and b. In particular, A is isomorphic to an extension of N ∼= (Z3)
5

by PSL(2,11). Thus A acts regularly on the arcs of a connected cubic graph X

of order 53460, which is a 35-fold cover of XN
∼= F220A. There is, however, no

automorphism of A which takes the generators a and b to their inverses, because
abababab−1ababab−1ab−1 has order 5 while ab−1ab−1ab−1abab−1ab−1abab

has order 15. Hence by observations in [5] or [10], this graph has no 2-arc or 3-
arc regular group of automorphisms. It also has no 4- or 5-arc regular group of
automorphisms because otherwise, by [7], its automorphism group would have a
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composition factor isomorphic to PSL(2,7), which is impossible. Thus X is one-
regular.

There are many such cubic one-regular covers of F220A obtainable in this way,
such as another one with N ∼= (Z7)

11. These elementary abelian covers can also be
found in a slightly different way, using the technique of lifting symmetries (as de-
scribed in [23]).

Example 3.3 A similar approach gives cubic one-regular covers of F364A, including
one with automorphism group an extension of (Z3)

7 by PSL(2,13), and another with
automorphism group an extension of (Z7)

14 by PSL(2,13).

Example 3.4 The graph F108 in the census [4] is 2-arc regular, with automorphism
group an extension G of (Z3)

3 by S4, with the index 2 subgroup H = (Z3)
3

� A4
acting regularly on one-arcs. This graph has numerous arc-transitive abelian cov-
ers with automorphism group an extension of an abelian normal subgroup by either
H or G. Among them there is a one-regular cubic graph X of order 36 · 108 with
Aut(X) ∼= (Z3)

6
�H . Note that since A4 ∼= PSL(2,3), the group Aut(X) is an exten-

sion by PSL(2,3) of a metabelian 3-group N of order 39, and the quotient XN is the
tetrahedral graph K4. There are other such examples with Aut(X) ∼= (Z3)

k
� H for

various values of k between 6 and 49, or with Aut(X) ∼= (Z5)
k

� H for many values
of k (including k = 6), and others with different possibilities for N besides these.
Details are available from the first author on request.

There are similar examples of cubic one-regular ‘covers of covers’ of the do-
decahedral graph F20A, with Aut(X) an extension of a metabelian 3-group N by
A5 ∼= PSL(2,5).

Next, we note that PSL(2, q) is a quotient of the modular group PSL(2,Z) ∼=
Z2 ∗Z3 and so acts regularly on the arcs of some cubic graph Y , for all q �= 9; see [22].
When q ≡ 3 or 5 (mod 8), the order of this graph Y is 4 times an odd integer. On the
basis of the limited evidence provided by the above (and many similar) examples, we
conjecture that for every prime-power q > 9, there are infinitely many one-regular
cubic graphs with automorphism group an extension of a nilpotent group of odd order
by PSL(2, q).

Before giving our second main theorem, we need a little more notation. For any
matrix M ∈ SL(2,K), we will denote by M the image of M under the natural homo-
morphism from SL(2,K) to PSL(2,K) = SL(2,K)/Z(SL(2,K)).

Theorem 3.5 For any odd prime p, let K = GF(p3) be the field of order p3, let α

be the Frobenius automorphism of K , and for any element t ∈ K such that t3 lies
outside the base field F = GF(p), let

U =
(

1 −2t

t−1 −1

)
, V = Uα =

(
1 −2tp

t−p −1

)
, and

W = V α =
(

1 −2tp
2

t−p2 −1

)
.
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Then

(i) the images U , V and W generate PSL(2,K), and
(ii) the Cayley graph Cay(PSL(2,K), {U,V ,W }) is a one-regular cubic graph.

Proof First, since Tr(U) = Tr(V ) = Tr(W) = 0, the images U , V and W in
PSL(2,K) are involutions. Also

UV =
(

1 − 2t1−p −2(tp − t)

t−1 − t−p 1 − 2tp−1

)
and

UV W =
(

1 − 2t1−p − 2tp−p2 + 2t1−p2 −2t + 2tp − 2tp
2 + 4t1−p+p2

t−1 − t−p + t−p2 − 2t−1+p−p2 −1 + 2tp−1 − 2tp
2−1 + 2tp

2−p

)
,

the traces of which are

Tr(UV ) = −2
(
tp−1 + t−(p−1) − 1

)
and

Tr(UV W) = 2
(
tp−1 − t1−p + tp

2−p − tp−p2 + t1−p2 − tp
2−1)

= 2
[(

tp−1 − t1−p
) + (

tp−1 − t1−p
)p + (

tp−1 − t1−p
)p2]

.

Before proceeding, consider Tr(UV W) = 2(tp−1 − t1−p + tp
2−p − tp−p2 +

t1−p2 − tp
2−1), and suppose that Tr(UV W) = 0. For convenience, let m = tp−1,

which we know does not lie in F , so mp �= 1 and mp2 �= 1. On the other hand,
mp2+p+1 = t (p−1)(p2+p+1) = tp

3−1 = 1, so tp
2−1 = mp+1 = m−p2

. Now 0 =
Tr(UV W) = 2(m − m−1 + mp − m−p + m−(p+1) − mp+1), and it follows that

m−1(m + 1)(m − 1) = m − m−1 = m−p − m−(p+1) + mp+1 − mp

= (m − 1)(m−(p+1) + mp).

Since m �= 1, this gives m + 1 = m(m−(p+1) + mp) = m−p + mp+1, which on mul-
tiplication by mp becomes mp+1 + mp = 1 + m2p+1, giving 0 = m2p+1 − mp+1 −
mp + 1 = (mp − 1)(mp+1 − 1). Since mp �= 1, we deduce that mp+1 = 1, but then
it follows that mp2 = m−(p+1) = 1, a contradiction. Thus Tr(UV W) �= 0, and in par-
ticular, UV W is not an involution.

Now let H be the subgroup of PSL(2,K) generated by U , V and W . To prove (i),
it suffices to show that H cannot be a subgroup of any of the maximal subgroups of
PSL(2,K) given by the cases (a) to (d) of Proposition 2.5.

By Proposition 2.4, we find that tp−1 �∈ F and so Tr(UV ) = −2(tp−1 +
t−(p−1) − 1) �∈ F , which implies that H cannot be isomorphic to PSL(2,p).

Next, suppose that H is a subgroup of a dihedral group. Since Tr(UV ) �= 0, we
know that UV has order greater than 2 in PSL(2,K), and so 〈U,V 〉 must be a di-
hedral group of order greater than 4, and hence H itself is dihedral, of order 2n for
some n. Moreover, UV lies in the unique cyclic subgroup of order n in H ∼= Dn,
and U and V cannot commute. Then since Uα = V and V α = W , it follows that
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also V and W cannot commute. Thus U,V and W are non-commuting involutions in
H ∼= Dn, lying outside of the cyclic subgroup of order n, and hence also UV W is an
involution, which is impossible. Thus H cannot lie in a dihedral subgroup, and this
eliminates cases (b) and (c).

Next, suppose H is a subgroup of a semidirect product Z
3
p � Z q−1

2
, as in case (d).

Then H has a unique (normal) Sylow p-subgroup P , which is elementary abelian,
with cyclic quotient H/P . Since 〈U,V 〉 is a dihedral group of order more than 4,
it follows that UV has order p, so 〈U,V 〉 is a dihedral subgroup of order 2p.
Hence, in particular, conjugation by U must invert V U . Similarly, UW has order
p and is inverted by conjugation by U . It follows that also V W = (V U)(UW) has
order 1 or p and is inverted by conjugation by U , so (UV W)2 = (V W)UV W =
(V W)−1V W = 1. Hence UV W is an involution, which again is impossible. Thus
H cannot be contained in a maximal subgroup from class (d), and therefore H =
PSL(2,K).

Now take G = PSL(2,K) and S = {U,V ,W }, let X be the Cayley graph
Cay(G,S), and let A = Aut(X). By observations in the previous section, A has a reg-
ular subgroup R(G) isomorphic to G. To prove (ii), it suffices to show that Aut(G,S)

is generated by the automorphism α of G = PSL(2,K) induced by the Frobenius au-
tomorphism α of K , of order 3, and that A = R(G) � Aut(G,S).

Since α ∈ Aut(G,S) induces a cyclic permutation of the three neighbours of the
identity vertex of X, we know that X is symmetric. By Proposition 2.8, it follows
that X is a normal Cayley graph, and then by Proposition 2.7, we find that A =
R(G) � Aut(G,S). Hence we need only show that |Aut(G,S)| = 3.

To do this, note that Aut(G,S) is faithful on S (since X is connected), and
therefore |Aut(G,S)| = 3 or 6, and accordingly, |A| = 3|G| or 6|G|. Suppose that
|Aut(G,S)| = 6. Let B be the subgroup of A generated by R(G) and α. This is
isomorphic to P�L(2,K), of order 3|G|, and so B has index 2 in A. Now let
C = CA(B), the centralizer of B in A. Then C∩B = Z(B) which is trivial, so |C| = 1
or 2. If |C| = 2, then A ∼= B × C so C is central in A, and therefore 〈α,C〉 ∼= Z6, and
A = R(G) � 〈α,C〉 ∼= R(G) � Z6, which gives A/R(G) ∼= Z6. On the other hand,
A = R(G)A1 (since R(G) acts regularly on V (X)), so A1 ∼= A/R(G) ∼= Z6. But that
is impossible, by Proposition 2.6. Thus |C| = 1.

In particular, NA(B)/CA(B) = A/C ∼= A, and so Proposition 2.1 tells us
that A is isomorphic to a subgroup of Aut(B) ∼= Aut(P�L(2,K)) ∼= P�L(2,K).
Comparing orders, we have A ∼= P�L(2,K). But this gives A1 ∼= A/R(G) ∼=
P�L(2,K)/PSL(2,K) ∼= Z6, the same contradiction as above. Thus |Aut(G,S)| = 3,
as required. �

Let p ≡ 3 or 5 (mod 8). Then PSL(2,K) has order p3(p3 − 1)(p3 + 1)/2, which
is 4 times an odd integer. By Theorem 3.5, we have the following corollary.

Corollary 3.6 There exist infinitely many cubic one-regular graphs of order 4m

where m is odd.
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10. Djoković, D.Ž., Miller, G.L.: Regular groups of automorphisms of cubic graphs. J. Comb. Theory,
Ser. B 29, 195–230 (1980)

11. Feng, Y.-Q., Kwak, J.H.: One-regular cubic graphs of order a small number times a prime or a prime
square. J. Aust. Math. Soc. 76, 345–356 (2004)

12. Feng, Y.-Q., Kwak, J.H.: Classifying cubic symmetric graphs of order 10p or 10p2. Sci. China Ser.
A 49, 300–319 (2006)

13. Feng, Y.-Q., Kwak, J.H.: Cubic symmetric graphs of order a small number times a prime or a prime
square. J. Comb. Theory, Ser. B 97, 627–646 (2007)

14. Feng, Y.-Q., Kwak, J.H., Wang, K.S.: Classifying cubic symmetric graphs of order 8p or 8p2. Eur. J.
Comb. 26, 1033–1052 (2005)

15. Frucht, R.: A one-regular graph of degree three. Can. J. Math. 4, 240–247 (1952)
16. Gorenstein, D.: Finite Groups, 2nd edn. Chelsea, New York (1980)
17. Giudici, M.: Maximal subgroups of almost simple groups with socle PSL(2, q), preprint. Available at

http://front.math.ucdavis.edu/math.GR/0703685
18. Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967)
19. Kwak, J.H., Oh, J.M.: One-regular normal Cayley graphs on dihedral groups of valency 4 or 6 with

cyclic vertex stabilizer. Acta Math. Sin. Engl. Ser. 22, 1305–1320 (2006)
20. Lorimer, P.: Vertex-transitive graphs: symmetric graphs of prime valency. J. Graph Theory 8, 55–68

(1984)
21. Lukacs, A., Seifter, N.: Finite contractions of graphs with polynomial growth. Eur. J. Comb. 22, 85–90

(2001)
22. Macbeath, A.M.: Generators of the linear fractional groups. In: Number Theory (Proc. Sympos. Pure

Math., vol. XII, 1967), pp. 14–32. Am. Math. Soc., Providence (1969)
23. Malnič, A., Marušič, D., Potočnik, P.: Elementary abelian covers of graphs. J. Algebr. Comb. 20,

71–97 (2004)
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