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Abstract Let W be an arbitrary Coxeter group. If two elements have expressions
that are cyclic shifts of each other (as words), then they are conjugate (as group el-
ements) in W . We say that w is cyclically fully commutative (CFC) if every cyclic
shift of any reduced expression for w is fully commutative (i.e., avoids long braid
relations). These generalize Coxeter elements in that their reduced expressions can
be described combinatorially by acyclic directed graphs, and cyclically shifting cor-
responds to source-to-sink conversions. In this paper, we explore the combinatorics
of the CFC elements and enumerate them in all Coxeter groups. Additionally, we
characterize precisely which CFC elements have the property that powers of them
remain fully commutative, via the presence of a simple combinatorial feature called
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a band. This allows us to give necessary and sufficient conditions for a CFC element
w to be logarithmic, that is, �(wk) = k · �(w) for all k ≥ 1, for a large class of Cox-
eter groups that includes all affine Weyl groups and simply laced Coxeter groups.
Finally, we give a simple non-CFC element that fails to be logarithmic under these
conditions.

Keywords Coxeter groups · Cyclic words · Fully commutative elements · Root
automaton

1 Introduction

A classic result of Coxeter groups, known as Matsumoto’s theorem [12], states that
any two reduced expressions of the same element differ by a sequence of braid rela-
tions. If two elements have expressions that are cyclic shifts of each other (as words),
then they are conjugate (as group elements). We say that an expression is cyclically
reduced if every cyclic shift of it is reduced, and ask the following question, where
an affirmative answer would be a “cyclic version” of Matsumoto’s theorem.

Do two cyclically reduced expressions of conjugate elements differ by a se-
quence of braid relations and cyclic shifts?

While the answer to this question is, in general, “no,” it seems to “often be true,”
and understanding when the answer is “yes” is a central focus of a broad ongoing
research project of the last three authors. It was recently shown to hold for all Coxeter
elements [6, 14], though the result was not stated in this manner. Key to this was
establishing necessary and sufficient conditions for a Coxeter element w ∈ W to be
logarithmic, that is, for �(wk) = k · �(w) to hold for all k ≥ 1. Trying to understand
which elements in a Coxeter group are logarithmic motivated this work. Here, we
introduce and study a class of elements that generalize the Coxeter elements, in that
they share certain key combinatorial properties.

A Coxeter element is a special case of a fully commutative (FC) element [16],
which is any element with the property that any two reduced expressions are equiv-
alent by only short braid relations (i.e., iterated commutations of commuting gener-
ators). In this paper, we introduce the cyclically fully commutative (CFC) elements.
These are the elements for which every cyclic shift of any reduced expression is a
reduced expression of an FC element. If we write a reduced expression for a cycli-
cally reduced element in a circle, thereby allowing braid relations to “wrap around
the end of the word,” the CFC elements are those where only short braid relations
can be applied. In this light, the CFC elements are the “cyclic version” of the FC ele-
ments. In particular, the cyclic version of Matsumoto’s theorem for the CFC elements
asks when two reduced expressions for conjugate elements w and w′ are equivalent
via only short braid relations and cyclic shifts. As with Coxeter elements, the first
step in attacking this problem is to find necessary and sufficient conditions for a CFC
element to be logarithmic.

This paper is organized as follows. After necessary background material on Cox-
eter groups is presented in Sect. 2, we introduce the CFC elements in Sect. 3. We
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motivate them as a natural generalization of Coxeter elements, in the sense that like
Coxeter elements, they can be associated with canonical acyclic directed graphs, and
a cyclic shift (i.e., conjugation by a generator) of a reduced expression corresponds
on the graph level to converting a source into a sink. In Sect. 4, we prove a number
of combinatorial properties of CFC elements and introduce the concept of a band,
which tells us precisely when powers of a CFC element remain fully commutative
(Theorem 4.9). In Sect. 5, we enumerate the CFC elements in all Coxeter groups, and
we give a complete characterization of the CFC elements in groups that contain only
finitely many. In Sect. 6, we formalize the root automaton of a Coxeter group in a new
way. We then use it to prove a new result on reducibility, which we utilize in Sect. 7
to establish necessary and sufficient conditions for CFC elements to be logarithmic,
as long as they have no “large bands” (Theorem 7.1). We conclude that in any Cox-
eter group without “large odd endpoints” (a class of groups includes all affine Weyl
groups and simply laced Coxeter groups) a CFC element is logarithmic if and only
if it is torsion-free (Corollary 7.2). The CFC assumption is indeed crucial for being
logarithmic, as we conclude with a simple counterexample in ˜C2 by dropping only
the CFC condition.

2 Coxeter groups

A Coxeter group is a group W with a distinguished set of generating involutions S

with presentation
〈

s1, . . . , sn
∣

∣ (sisj )
mi,j = 1

〉

,

where mi,j := m(si, sj ) = 1 if and only if si = sj . The exponents m(s, t) are called
bond strengths, and it is well known that m(s, t) = |st |. We define m(s, t) to be ∞
if there is no exponent k > 0 such that (st)k = 1. A Coxeter group is simply laced
if each m(s, t) ≤ 3. If S = {s1, . . . , sn}, the pair (W,S) is called a Coxeter system of
rank n. A Coxeter system can be encoded by a unique Coxeter graph Γ having vertex
set S and edges {s, t} for each m(s, t) ≥ 3. Moreover, each edge is labeled with its
corresponding bond strength, although typically the labels of 3 are omitted because
they are the most common. If Γ is connected, then W is called irreducible.

Let S∗ denote the free monoid over S. If a word w = sx1sx2 · · · sxm ∈ S∗ is equal to
w when considered as an element of W , we say that w is an expression for w. (Ex-
pressions will be written in sans serif font for clarity.) If furthermore, m is minimal,
we say that w is a reduced expression for w, and we call m the length of w, denoted
�(w). If every cyclic shift of w is a reduced expression for some element in W , then
we say that w is cyclically reduced. A group element w ∈ W is cyclically reduced if
every reduced expression for w is cyclically reduced.

The left descent set of w ∈ W is the set DL(w) = {s ∈ S | �(sw) < �(w)}, and
the right descent set is defined analogously as DR(w) = {s ∈ S | �(ws) < �(w)}. If
s ∈ DL(w) (respectively, DR(w)), then s is said to be initial (respectively, terminal).
It is well known that if s ∈ S, then �(sw) = �(w) ± 1, and so �(wk) ≤ k · �(w). If
equality holds for all k ∈ N, we say that w is logarithmic.
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For each integer m ≥ 0 and distinct generators s, t ∈ S, define

〈s, t〉m = stst · · ·
︸ ︷︷ ︸

m

∈ S∗.

The relation 〈s, t〉m(s,t) = 〈t, s〉m(s,t) is called a braid relation, and is additionally
called a short braid relation if m(s, t) = 2. (Some authors call 〈s, t〉m(s,t) = 〈t, s〉m(s,t)

a short braid relation if m(s, t) = 3, and a commutation relation if m(s, t) = 2.) The
short braid relations generate an equivalence relation on S∗, and the resulting equiv-
alence classes are called commutation classes. If two reduced expressions are in the
same commutation class, we say that they are commutation equivalent. An element
w ∈ W is fully commutative (FC) if all of its reduced expressions are commutation
equivalent, and we denote the set of FC elements by FC(W). For consistency, we say
that an expression w ∈ S∗ is FC if it is a reduced expression for some w ∈ FC(W).
If w is not FC, then it is commutation equivalent to a word w′ for which either ss or
〈s, t〉m(s,t) appears as a consecutive subword, with m(s, t) ≥ 3 (this is not immedi-
ately obvious; see Proposition 4.2).

The braid relations generate a coarser equivalence relation on S∗. Matsumoto’s
theorem [7, Theorem 1.2.2] says that an equivalence class containing a reduced ex-
pression must consist entirely of reduced expressions and that the set of all such
equivalence classes under this coarser relation is in 1–1 correspondence with the ele-
ments of W .

Theorem 2.1 (Matsumoto’s theorem) In a Coxeter group W , any two reduced ex-
pressions for the same group element differ by braid relations.

Now, consider an additional equivalence relation ∼κ , generated by cyclic shifts of
words, i.e.,

sx1sx2 · · · sxm �−→ sx2sx3 · · · sxmsx1 . (2.1)

The resulting equivalence classes were studied in [11] and are in general, finer than
conjugacy classes, but they often coincide. Determining conditions for when κ-
equivalence and conjugacy agree would lead to a “cyclic version” of Matsumoto’s
theorem for some class of elements, and is one of the long-term research goals of the
last three authors.

Definition 2.2 Let W be a Coxeter group. We say that a conjugacy class C satisfies
the cyclic version of Matsumoto’s theorem if any two cyclically reduced expressions
of elements in C differ by braid relations and cyclic shifts.

One only needs to look at type An (the symmetric group SYMn+1) to find an
example of where the cyclic version of Matsumoto’s theorem fails. Any two simple
generators in An are conjugate, e.g., s1s2(s1)s2s1 = s2. However, for longer words,
such examples appear to be less common, and we would like to characterize them.

The support of an expression w ∈ S∗ is simply the set of generators that appear in
it. As a consequence of Matsumoto’s theorem, it is also well defined to speak of the
support of a group element w ∈ W , as the set of generators appearing in any reduced
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expression for w. We denote this set by supp(w) and let Wsupp(w) be the (standard
parabolic) subgroup of W that it generates. If Wsupp(w) = W (i.e., supp(w) = S), we
say that w has full support. If Wsupp(w) has no finite factors, or equivalently, if every
connected component of Γsupp(w) (i.e., the subgraph of Γ induced by the support
of w) describes an infinite Coxeter group, then we say that w is torsion-free. The
following result is straightforward.

Proposition 2.3 Let W be a Coxeter group. If w ∈ W is logarithmic, then w is cycli-
cally reduced and torsion-free.

Proof If w is not cyclically reduced, then there exists a sequence of cyclic shifts of
some reduced expression of w that results in a nonreduced expression. In this case,
there exists w1,w2 ∈ W such that w = w1w2 (reduced) while �(w2w1) < �(w). This
implies that

�
(

w2) = �(w1w2w1w2) ≤ �(w1) + �(w2w1) + �(w2) < 2�(w),

and hence w is not logarithmic. If w is not torsion-free, then we can write w = w1w2
with every generator in w1 commuting with every generator in w2, and 0 < |w1| =
k < ∞. Now,

�
(

wk
) = �

(

wk
1w

k
2

) = �
(

wk
2

)

< k · �(w),

and so w is not logarithmic. �

We ask when the converse of Proposition 2.3 holds. In 2009, it was shown to hold
for Coxeter elements [14], and in this paper, we show that it holds for all CFC ele-
ments that lack a certain combinatorial feature called a “large band.” As a corollary,
we can conclude that in any group without “large odd endpoints,” a CFC element is
logarithmic if and only if it is torsion free. This class of groups includes all affine
Weyl groups and simply laced Coxeter groups. Additionally, we give a simple coun-
terexample when the CFC condition is dropped.

3 Coxeter and cyclically fully commutative elements

A common example of an FC element is a Coxeter element, which is an element for
which every generator appears exactly once in each reduced expression. The set of
Coxeter elements of W is denoted by C(W). As mentioned at the end of the previous
section, the converse of Proposition 2.3 holds for Coxeter elements, and this follows
easily from a recent result in [14] together with the simple fact that Coxeter elements
are trivially cyclically reduced.

Theorem 3.1 In any Coxeter group, a Coxeter element is logarithmic if and only if
it is torsion-free.

Proof The forward direction is immediate from Proposition 2.3. For the converse, if
c ∈ C(W) is torsion-free, then c = c1c2 · · · cm, where each ci is a Coxeter element of
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an infinite irreducible parabolic subgroup Wsupp(ci ). Theorem 1 of [14] says that in an
infinite irreducible Coxeter group, Coxeter elements are logarithmic, and it follows
that for any k ∈ N,

�
(

ck
) = �

(

ck
1 · · · ck

m

) = �
(

ck
1

) + · · · + �
(

ck
m

) = k · �(c1) + · · · + k · �(cm) = k · �(c),
and hence c is logarithmic. �

The proof of Theorem 1 of [14] is combinatorial and relies on a natural bijection
between the set C(W) of Coxeter elements and the set Acyc(Γ ) of acyclic orien-
tations of the Coxeter graph. Specifically, if c ∈ C(W), let (Γ, c) denote the graph
where the edge {si, sj } is oriented as (si , sj ) if si appears before sj in c. (Some au-
thors reverse this convention, orienting {si, sj } as (si , sj ) if si appears after sj in c.)
The vertex sxi

is a source (respectively, sink) of (Γ, c) if and only if sxi
is initial (re-

spectively, terminal) in c. Conjugating a Coxeter element c = sx1 · · · sxn by sx1 cycli-
cally shifts the word to sx2 · · · sxnsx1 , and on the level of acyclic orientations, this cor-
responds to converting the source vertex sx1 of (Γ, c) into a sink, which takes the ori-
entation (Γ, c) to (Γ, sx1csx1). This generates an equivalence relation ∼κ on Acyc(Γ )

and on C(W), which has been studied recently in [11]. Two acyclic orientations (Γ, c)

and (Γ, c′) are κ-equivalent if and only if there is a sequence x1, . . . , xk such that
c′ = sxk

· · · sx1csx1 · · · sxk
and sxi+1 is a source vertex of (Γ, sxi

· · · sx1csx1 · · · sxi
) for

each i = 1, . . . , k − 1. Thus, two Coxeter elements c, c′ ∈ C(W) are κ-equivalent if
they differ by a sequence of length-preserving conjugations, i.e., if they are conjugate
by a word w = sx1 · · · sxk

such that

�(c) = �(sxi
· · · sx1csx1 · · · sxi

)

for each i = 1, . . . , k. Though this is in general a stronger condition than just conju-
gacy, the following recent result by H. Eriksson and K. Eriksson shows that they are
equivalent for Coxeter elements, thus establishing the cyclic version of Matsumoto’s
theorem for Coxeter elements.

Theorem 3.2 (Eriksson–Eriksson [6]) Let W be a Coxeter group, and c, c′ ∈ C(W).
Then c and c′ are conjugate if and only if c ∼κ c′.

It is well known (see [15]) that |Acyc(Γ )| = TΓ (2,0), where TΓ is the Tutte poly-
nomial [19] of Γ . In [10], it was shown that for any undirected graph Γ , there are
exactly TΓ (1,0) κ-equivalence classes in Acyc(Γ ). Applying this to Theorem 3.2,
we get the following result.

Corollary 3.3 In any Coxeter group W , the TΓ (2,0) Coxeter elements fall into ex-
actly TΓ (1,0) conjugacy classes, where TΓ is the Tutte polynomial.

The proof of Theorem 3.2 hinges on torsion-free Coxeter elements being loga-
rithmic, and as mentioned, the proof of this involves combinatorial properties of the
acyclic orientation construction and source-to-sink equivalence relation. Thus, we are
motivated to extend these properties to a larger class of elements. Indeed, the acyclic
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Fig. 1 The Coxeter graph of
type ˜E6

orientation construction above generalizes to the FC elements. If w ∈ FC(W), then
(Γ,w) is the graph where the vertices are the disjoint union of letters in any reduced
expression of w, and a directed edge is present for each pair of noncommuting let-
ters, with the orientation denoting which comes first in w. Since w ∈ FC(W), the
graph (Γ,w) is well defined. Though the acyclic orientation construction extends
from C(W) to FC(W), the source-to-sink operation does not. The problem arises be-
cause a cyclic shift of a reduced expression for an FC element need not be FC. This
motivates the following definition.

Definition 3.4 An element w ∈ W is cyclically fully commutative (CFC) if every
cyclic shift of every reduced expression for w is a reduced expression for an FC
element.

We denote the set of CFC elements of W by CFC(W). They are precisely those
whose reduced expressions, when written in a circle, avoid 〈s, t〉m subwords for
m = m(s, t) ≥ 3, and as such they are the elements for which the source-to-sink
operation extends in a well-defined manner. However, acyclic directed graphs are not
convenient to capture this generalization—they are much better handled as periodic
heaps [8].

Example 3.5 Here are some examples and nonexamples of CFC elements. We will
return to Examples (iv) and (v) at the end of Sect. 7.

(i) Any Coxeter element is an example of a CFC element, because Coxeter elements
are FC, and any cyclic shift of a Coxeter element is also a Coxeter element.

(ii) Consider the Coxeter group of type A3 with generators s1, s2, s3 labeled so that
s1 and s3 commute. The element s2s1s3s2 is a reduced expression for an FC
element w. However, w is not cyclically reduced because the above expression
has a cyclic shift s2s2s1s3 that reduces to s1s3, and so w is not CFC.

(iii) The Coxeter group of type ˜A2 has generators s1, s2, s3 with m(si, sj ) = 3 for
i 
= j . The element s1s3s1s2 is cyclically reduced but not FC, because s1s3s1s2 =
s3s1s3s2. If we increase the bond strength m(s1, s3) from 3 to ∞, it becomes
FC. However, it is still not CFC because conjugating it by s1 yields the element
s3s1s2s1 = s3s2s1s2.

(iv) Next, consider the affine Weyl group of type ˜E6 (see Fig. 1). The element w =
s1s3s2s4s3s5s4s6s0s3s2s6 is a CFC element of W(˜E6), and it turns out that w is
logarithmic.

(v) Now, consider the affine Weyl group of type ˜C4 (see Fig. 2). Let w1 = s0s2s4s1s3
and w2 = s0s1s2s3s4s3s2s1 be elements in W(˜C4). It is quickly seen that both
elements are CFC with full support, and as we shall be able to prove later, both
w1 and w2 are logarithmic.
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Fig. 2 The Coxeter graph of
type ˜C4

4 Properties of CFC elements

In this section, we will prove a series of results establishing some basic combinatorial
properties of CFC elements. Of particular interest are CFC elements whose powers
are not FC, and we give a complete characterization of these elements in any Coxeter
group. Unless otherwise stated, (W,S) is assumed to be an arbitrary Coxeter system.
Recall that an expression w not being FC means that “w is not a reduced expression
for an FC element,” i.e., it is either nonreduced, or it is a reduced expression of a
non-FC element. By Matsumoto’s theorem, if w ∈ S∗ is a reduced expression for a
logarithmic element w ∈ W , then (the group element) wk is FC if and only if (the
expression) wk is FC.

Proposition 4.1 If w is a reduced expression of a non-CFC element of W , then some
cyclic shift of w is not FC.

Proof If w is a reduced expression for a non-CFC element of w ∈ W , then by defini-
tion, a sequence of i cyclic shifts of some reduced expression w′ = sx1 · · · sxm for w

produces an expression u = sxi+1 · · · sxmsx1 · · · sxi
that is either not reduced or is a re-

duced expression for a non-FC element. We may assume that w itself is FC, otherwise
the result is trivial. Thus, we can obtain w′ from w via a sequence of k commutations,
and we may take k to be minimal. The result we seek amounts to proving that k = 0.
By assumption, the expression u is equivalent via commutations to one containing
either (a) ss or (b) 〈s, t〉m(s,t) as a consecutive subword, where m(s, t) ≥ 3. For sake
of a contradiction, assume that k > 0. If the kth commutation (the one that yields w′)
does not involve a swap of the letters in the ith and (i + 1)th positions, then we can
simply remove this commutation from our sequence, because these two letters will
be consecutive in u, and they can be transposed after the cyclic shifts. But this con-
tradicts the minimality of k. So, the kth commutation occurs in positions i and i + 1,
sending an expression w′′ to w′, that is,

w′′ = sx1 · · · sxi−1sxi+1sxi
sxi+2 · · · sxm �−→ sx1 · · · sxi−1sxi

sxi+1sxi+2 · · · sxm = w′.

Similarly, if this commutation does not involve one of the generators in either case
(a) or (b), then omitting this commutation before cyclically shifting still yields an
expression that is not FC. Again, this contradicts the minimality of k, so it must be
the case that the kth commutation involves s in case (a) or, without loss of generality,
s in case (b). Moreover, we may assume without loss of generality that sxi

= s, which
is in the (i + 1)th position of w′′ (otherwise, we could have considered w−1, which
is reduced if and only if w is reduced). Now, apply i + 1 cyclic shifts to w′′, which
yields the element

sxi+2 · · · sxmsx1 · · · sxi−1sxi+1sxi
= sxi+2 · · · sxmsx1 · · · sxi−1sxi

sxi+1 ∈ W.
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Note that this second expression is a single cyclic shift of u. Since u is commutation
equivalent to an expression containing either ss or 〈s, t〉m(s,t) as a subword, mov-
ing sxi+1 (which cannot be s or t) from the front of u to the back does not destroy
this property. Thus, we can obtain an expression that is not FC from w by applying
k − 1 commutations before cyclically shifting, contradicting the minimality of k and
completing the proof. �

Proposition 4.2 Let w be an expression that is not FC. Then w is commutation equiv-
alent to an expression of the form w1w2w3, where either w2 = ss for some s ∈ S, or
w2 = 〈s, t〉m(s,t) for m(s, t) ≥ 3.

Proof This is a restatement of Stembridge’s [16, Proposition 3.3]. We remark that w1
or w3 could be empty. �

Lemma 4.3 Let w ∈ W be logarithmic. If w2 is FC (respectively, CFC), then wk is
FC (respectively, CFC) for all k > 2.

Proof Assume without loss of generality that W is irreducible and w has full support.
If W has rank 2, then w = (st)j and m(s, t) = ∞, in which case the result is trivial.
Thus, we may assume that W has rank n > 2, and we will prove the contrapositive.
Let w be a reduced expression for w, and suppose that wk is not FC (it is reduced
because w is logarithmic). By Proposition 4.2, wk is commutation equivalent to some
w1w2w3 where w2 = 〈s, t〉m(s,t) with m(s, t) ≥ 3. Since there is some u ∈ supp(w)

that does not commute with both s and t , the letters in w2 can only have come from
at most two consecutive copies of w in wk . Thus, w2 
∈ FC(W).

If wk 
∈ CFC(W), then by Proposition 4.1, some cyclic shift of wk is not FC. Since
every cyclic shift of wk is a subword of wk+1, this means that wk+1 is not FC. From
what we just proved it follows that w2 
∈ FC(W), and hence w2 
∈ CFC(W). �

Observe that the assumption that w is logarithmic is indeed necessary—without
it, the element w = s1s2 in I2(m) for m ≥ 5 would serve as a counterexample.

Lemma 4.4 Let W be an irreducible Coxeter group of rank n ≥ 2. If w is a reduced
expression for w ∈ CFC(W) with full support, then wk is not commutation equivalent
to an expression with ss as a subword, for any s ∈ S.

Proof For sake of contradiction, suppose that wk is commutation equivalent to an
expression with ss as a subword. Since w is CFC, these two s’s must have come from
different copies of w in wk that we may assume consecutive. Thus, we may write

w2 = (u1sw1)(u2sw2), w = u1sw1 = u2sw2,

where the word sw1u2s is also commutation equivalent to an expression with ss as
a subword. There are two cases to consider. If �(u1) > �(u2), then sw1u2s is a sub-
word of some cyclic shift of w. However, this is impossible because w is CFC. Thus,
�(u1) ≤ �(u2). In this case, some cyclic shift of w is contained in sw1u2s as a sub-
word, and since w has full support, every generator appears in this subword. However,
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in order for commutations to make the two s’s consecutive, s must commute with ev-
ery generator in w1u2, which is the required contradiction. �

There is an analogous result to Lemma 4.3 when w is not logarithmic. However,
care is needed in distinguishing between the expression w2 being FC and the actual
element w2 being FC.

Lemma 4.5 Let W be an irreducible Coxeter group of rank n > 2. If w is a reduced
expression for a nonlogarithmic element w ∈ CFC(W) with full support, then w2 
∈
FC(W).

Proof Pick k so that �(wk) < k · �(w). By Proposition 4.2, wk is commutation equiv-
alent to some w1w2w3 where either w2 = ss, or w2 = 〈s, t〉m(s,t) with m(s, t) ≥ 3.
However, the former is impossible by Lemma 4.4. Moreover, there is another gener-
ator u ∈ S appearing in w that does not commute with both s and t . Therefore, the
letters in w2 can only have come from at most two consecutive copies of w in wk .
Thus, w2 
∈ FC(W). �

Proposition 4.6 Let W be an irreducible Coxeter group of rank n > 2. If w is a
reduced expression for w ∈ CFC(W) with full support, then wk ∈ CFC(W) for all
k ∈ N.

Proof Let w be a reduced expression for w ∈ CFC(W). Since w2 ∈ FC(W),
Lemma 4.5 tells us that w is logarithmic. Suppose for sake of contradiction, that
wk 
∈ CFC(W) for some k ≥ 2. By Lemma 4.3, we know that w2 
∈ CFC(W), and
by Proposition 4.1, some cyclic shift of w2 is not FC. Every cyclic shift of w2 is a
subword of w3, thus w3 
∈ FC(W). Applying Lemma 4.3 again gives w2 
∈ FC(W),
the desired contradiction. �

If w is a reduced expression of a CFC element and wk is FC for all k, then w is
clearly logarithmic. Thus, we want to understand which CFC elements have the prop-
erty that powers of their reduced expressions are not FC. Theorem 4.9 gives necessary
and sufficient conditions for this to happen, but first we need more terminology. If a
vertex s in Γ has degree 1, we call it an endpoint. An endpoint vertex (or genera-
tor) s has a unique t ∈ S for which m(s, t) ≥ 3, and we call m(s, t) the weight of
the endpoint. If this weight is greater than 3, we say that the endpoint is large. In
the remainder of this paper, we will pay particular attention to “large odd endpoints,”
that is, endpoints s ∈ S for which m(s, t) is odd and at least 5. (We will say that
m(s, t) = ∞ is large but not odd.) As we shall see, groups with large odd endpoints
have CFC elements with a feature called a “large band,” and these elements have
properties not shared by other CFC elements.

Definition 4.7 Let w ∈ CFC(W) and say that (W ′, S′) is the Coxeter system gener-
ated by supp(w). We say that w has an st-band if for some reduced expression w and
distinct generators s, t ∈ S′, exactly one of which is an odd endpoint of (W ′, S′), the
following two conditions hold:
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1. some cyclic shift of w is commutation equivalent to a reduced expression contain-
ing 〈s, t〉m(s,t)−1 as a subword;

2. neither s nor t appears elsewhere in w.

We analogously define an ts-band (i.e., some cyclic shift of w is commutation equiv-
alent to a reduced expression containing 〈t, s〉m(s,t)−1 as a subword). If we do not
care to specify whether s or t comes first, then we will simply say that w has a band.
An st-band is called small if m(s, t) = 3 and large otherwise.

Remark 4.8 Note that w has an st-band if and only if w−1 has a ts-band. If w has a
band, then we may assume, without loss of generality, that w has an st-band, where
s is the odd endpoint.

The following result highlights the importance of bands and is essential for estab-
lishing our main results on CFC elements.

Theorem 4.9 Let W be an irreducible Coxeter group of rank n > 2, and let w be a
reduced expression for w ∈ CFC(W) with full support. Then wk is FC for all k ∈ N if
and only if w has no bands.

Proof Suppose that wk is not FC for some k > 2. If w is logarithmic, then Lemma 4.3
tells us that w2 is not FC. However, even if w is not logarithmic, we can still conclude
that w2 is not FC, by Lemma 4.5. Thus, to prove the theorem, it suffices to show that
w2 is not FC if and only if w has a band.

First, suppose that w2 is not FC. We will prove that w has a band by establishing
the following properties:

(i) W has an odd endpoint s (say m(s, t) ≥ 3) for which the word w2 is commuta-
tion equivalent to an expression of the form w1〈s, t〉m(s,t)w3;

(ii) some cyclic shift of w is commutation equivalent to a reduced expression con-
taining 〈s, t〉m(s,t)−1 or 〈t, s〉m(s,t)−1 as a subword;

(iii) neither s nor t appears elsewhere in w.

Since w2 is not FC, Proposition 4.2 implies that w2 is commutation equivalent to
an expression of the form w1w2w3 in which w2 = 〈s, t〉m(s,t). (Note that w2 = ss is
forbidden by Lemma 4.4.) To prove (i), we will first show that s must be an endpoint
and then show that m(s, t) must be odd.

First, we claim that because w is CFC, two occurrences of s in w2 must correspond
to the same letter of w. To see why, consider the subword of w2 from the original
position of the initial s in w2 to the original position of the final letter (which is either
s or t). Clearly, the instances of s and t in this subword must alternate. If no two
occurrences of s correspond to the same letter of w, then this subword is a subword
of a cyclic shift of w, contradicting the assumption that w is CFC and establishing
our claim. In particular, we can write w2 = (w′

1sw′
2)(w

′
1sw′

2), where both instances of
s occur in w2, and the first instance of s is the initial letter of w2. This implies that
the letters in w′

2 and w′
1 are either other occurrences of s or t , or commute with s.

Since w = w′
1sw′

2 and has full support and W is irreducible, it must be the case that s

commutes with every other generator of S except t , and so s is an endpoint.
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It remains to show that m(s, t) is odd. For sake of a contradiction, suppose oth-
erwise, so that w2 ends in t . The argument in the previous paragraph using w−1 in
place of w and t in place of s implies that t must be an endpoint as well. However,
we assumed that W is irreducible, and hence W has rank 2. This contradicts our
assumption that W has rank n ≥ 3, and therefore, m(s, t) is odd.

To prove (ii), we first prove that the instance of s sandwiched between w′
1 and w′

2
in w′

1sw′
2 is also the terminal letter of w2. Toward a contradiction, suppose otherwise.

That is, assume that w2 = (w′
1su1su2)(w′

1su1su2), where the fourth instance of s is
the terminal letter of w2. Then it must be the case that every letter between the initial
and terminal s in w2 is either s, t , or a generator that commutes with both s and t .
However, this includes the supports of w′

1, u1, and u2, and since w = w′
1su1su2, we

conclude that every letter in w is either s, t , or commutes with s and t . Again, this
contradicts the assumption of W being irreducible and of rank n ≥ 3, so it follows
that the two instances of s in (w′

1sw′
2)(w

′
1sw′

2) are the initial and terminal letters of
w2, respectively. Now, (ii) follows from the observations that sw′

2w′
1 is a cyclic shift

of w, and every t occurring in w2 must occur in w′
2w′

1. Finally, (iii) follows from the
easy observation that every letter of w is contained in the word sw′

2w′
1s, which has

precisely m(s, t) letters from the set {s, t}. Together, (i), (ii), and (iii) imply that w

has an st-band.
We now turn to the converse. Let w be a CFC element with full support and a band.

By Remark 4.8, we may assume, without loss of generality, that w has an st-band,
where s is the endpoint. That is, some cyclic shift of w is commutation equivalent
to an expression containing 〈s, t〉m(s,t)−1 as a subword. Suppose that w = w1w2 and
the cyclic shift w2w1 is commutation equivalent to a word u = u1〈s, t〉m(s,t)−1u3,
with {s, t} ∩ supp(u1u3) = ∅. Clearly, u2 is not FC, and so (w2w1)

2 is not FC either.
However, (w2w1)

2 is a subword of w3, and so w3 is not FC and hence not CFC. By
Proposition 4.6, w2 is not FC. �

Lemma 4.10 Let W be an irreducible Coxeter group with graph Γ , and let w ∈
CFC(W). Let s, t ∈ S satisfy m(s, t) ≥ 3, and let Γ ′ be the graph obtained from Γ

by removing the edge {s, t}. Suppose that w is a reduced expression for w in which
t occurs exactly once and that Γ ′ is disconnected. Let w′ be the expression obtained
from w by deleting all occurrences of generators corresponding to the connected
component Γ ′

s of Γ ′ containing s. Then w′ is a reduced expression for a CFC element
of W .

Proof Suppose for a contradiction that w′ is not a reduced expression for a CFC
element. Then either w′ is not a reduced expression, or w′ is a reduced expression for a
non-CFC element. In the former case, w′ is commutation equivalent to an expression
w′′ containing either (a) a subword of the form aa or (b) a subword of the form
〈a, b〉m(a,b) with m(a,b) ≥ 3. In the latter case, Proposition 4.1 implies that w′ can
be cyclically shifted to yield a non-FC expression. By Proposition 4.2, this expression
is commutation equivalent to one with a subword equal to either aa or 〈a, b〉m(a,b) as
in cases (a) and (b) above. Regardless, by applying a sequence of commutations or
cyclic shifts to w′, we can obtain a word w′′ containing either aa or 〈a, b〉m(a,b) (but
not 〈b, a〉m(a,b)).
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Since w does not contain such a subword, it follows in case (a) that a = t , which is
a contradiction because w contains a unique occurrence of t . A similar contradiction
arises in case (b), except possibly if b = t and m(a,b) = 3. However, in this case, a

commutes with all generators in Γ ′
s , and so w would be commutation equivalent to

an expression with subword of the form aba. This contradicts the hypothesis that w

is FC, completing the proof. �

Lemma 4.10 has an important corollary: if a CFC element has a small band, then
the corresponding endpoint can be removed to create a shorter CFC element.

Corollary 4.11 Let w be a reduced expression for w ∈ CFC(W). If w has a small
band, then removing the corresponding endpoint from w yields a reduced expression
for a CFC element w′. Moreover, if w has no large bands, then neither does w′.

Proof Suppose that w has a small st-band where s is the endpoint. By definition, s

and t occur uniquely in w. Deleting the edge {s, t} disconnects the Coxeter graph, and
the connected component containing s is Γ ′

s = {s}. We may now apply Lemma 4.10
to conclude that the word w′ formed from deleting the (unique) instance of s is CFC
in W .

If w has no large bands, the only way that w′ could have a large band is if it
involved t . That is, it would have to be a tu-band or a ut-band for some u where
m(t,u) ≥ 5. However, this is impossible because t occurs uniquely in w and hence
in w′. �

It is important to note that Corollary 4.11 does not generalize to large bands.
For example, suppose that s is an endpoint with m(s, t) = 3 and w = w1stw2 (re-
duced) is a CFC element with a small st-band. By Corollary 4.11, we can infer
that w1tw2 is CFC. In contrast, suppose that m(s, t) = 5 and w has a large st-band,
e.g., w = w1ststw2 (reduced). Now, it is not necessarily the case that w1tw2, or even
w1stw2, is CFC. Indeed, it may happen that the last letter of w1 and the first let-
ter of w2 are both a common generator u with m(t,u) = 3. This peculiar quirk has
far-reaching implications—in Sect. 7, we will use this deletion property inductively
to give a complete characterization of the logarithmic CFC elements with no large
bands.

5 Enumeration of CFC elements

In this section, we will enumerate the CFC elements in all Coxeter groups. In the
groups that contain finitely many, we will also completely determine the structure of
the CFC elements. Once again, there is a dichotomy between the groups without large
odd endpoints and those with, as the latter class of groups contain CFC elements with
large bands. In [16], J. Stembridge classified the Coxeter groups that contain finitely
many FC elements, calling them the FC-finite groups. In a similar vein, the CFC-
finite groups can be defined as the Coxeter groups that contain only finitely many
CFC elements. Our next result shows that a group is CFC-finite if and only if it is
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Fig. 3 Coxeter graphs of the irreducible CFC-finite groups

FC-finite. The Coxeter graphs of these (irreducible) groups are shown in Fig. 3, and
they comprise seven infinite families. (The vertex labeled s0 is called the branch
vertex and will be defined later.) Though it is a slight abuse of notation, we will for
clarity use the same symbol for the group type (e.g., An) and the actual group (e.g.,
W(An)) in this section.

Theorem 5.1 The irreducible CFC-finite Coxeter groups are An (n ≥ 1), Bn (n ≥ 2),
Dn (n ≥ 4), En (n ≥ 6), Fn (n ≥ 4), Hn (n ≥ 3), and I2(m) (5 ≤ m < ∞). Thus, a
Coxeter group is CFC-finite if and only if it is FC-finite.

Proof The “if” direction is immediate since CFC(W) ⊆ FC(W), so it suffices to
show that every CFC-finite group is FC-finite. Stembridge classified the FC-finite
groups in [16] by classifying their Coxeter graphs. In particular, he gave a list of ten
forbidden properties that an FC-finite group cannot have. The list of FC-finite groups
is precisely those that avoid all ten of these obstructions. The first five conditions are
easy to state and are listed below.

1. Γ cannot contain a cycle.
2. Γ cannot contain an edge of weight m(s, t) = ∞.
3. Γ cannot contain more than one edge of weight greater than 3.
4. Γ cannot have a vertex of degree greater than 3 or more than one vertex of de-

gree 3.
5. Γ cannot have both a vertex of degree 3 and an edge of weight greater than 3.

The remaining five conditions all require the definition of a heap, and in the interest
of space, will not be stated here. For each of the ten conditions, including the above
five, Stembridge shows that if it fails, one can produce a word w ∈ W such that wk is
FC for all k ∈ N. This, together with Proposition 4.6, implies that if W is CFC-finite,
then it is FC-finite, and the result follows immediately. �

We now turn our attention to enumerating the CFC elements in the CFC-finite
groups. The following lemma is well known, but we are not aware of a suitable ref-
erence, so we provide a proof here.
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Lemma 5.2 Let W be a Coxeter group of type An, and let s be an endpoint generator
of An. If w is a reduced expression for w ∈ FC(W), then s occurs at most once in w.

Proof We may assume that s occurs in w, and by symmetry, we may assume that
s = sn.

In type An, a well-known reduced expression for the longest element w0 is

s1(s2s1)(s3s2s1) · · · (snsn−1 · · · s1).

Every element of w satisfies w ≤ w0 with respect to the Bruhat order, which means
that any such w may be written as a subexpression of the given expression. In par-
ticular, any element w has a reduced expression containing at most one occurrence
of sn. This applies to the case where w ∈ FC(W), in which case one (and hence all)
reduced expressions for w contain at most one occurrence of sn. �

Lemma 5.3 Let W be a Coxeter group of type Hn. Label the elements of S as
s1, s2, . . . , sn in the obvious way such that m(s1, s2) = 5. Let w be a reduced ex-
pression for an element w ∈ CFC(Hn) having full support. Then the following all
hold:

(i) w contains precisely one occurrence of each generator si for i ≥ 3;
(ii) w contains precisely j occurrences of each generator s1 and s2, where j ∈

{1,2};
(iii) if w is not a Coxeter element, then it has a large band.

Proof We prove (i) and (ii) by induction on n. For both, the base case is n = 2,
which follows by a direct check of W(I2(5)). We will prove (i) first and will assume
that n > 2. From Theorem 5.1 we know that W has finitely many CFC elements. It
follows that for some k ∈ N (actually, k = 2 works, but this is unimportant), wk is not
FC, and so by Theorem 4.9, w has a band. Thus, w has a reduced expression w that
can be cyclically shifted to a word that is commutation equivalent to an expression u
containing either s1s2s1s2 or sn−1sn as a subword (by Remark 4.8, we can disregard
the other two cases, s2s1s2s1 and snsn−1).

First, suppose w has an s1s2-band, so u = u1s1s2s1s2u2, and {s1, s2} ∩
supp(u1u2) = ∅. Since w is CFC, u2u1 is FC. This element sits inside a type An−2
parabolic subgroup of W of which s3 is an endpoint. By Lemma 5.2, s3 occurs
uniquely in u2u1. Now consider the word u1u2. By Lemma 4.10 applied to w and
the pair of generators {s2, s3}, we see that u1u2 is CFC, and we already know that it
contains a unique instance of s3. By repeated applications of Corollary 4.11 and the
fact that type A is finite, we deduce that u1u2 contains precisely one occurrence of
each generator in the set {s3, s4, . . . , sn}, and this proves (i).

For (ii), assume again that n > 2 and suppose that w has no large band, meaning
it must have an sn−1sn-band. We may use Corollary 4.11 to delete the (unique) oc-
currence of sn from w to obtain a CFC element of W(Hn−1) also having full support
and no large band. The result now follows by induction.

For (iii), assume that w is CFC but not a Coxeter element, and n > 2. By (i) and
(ii), s1 and s2 must occur in w twice each, and s3 can only occur once. Clearly, w is a
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cyclic shift of a CFC element beginning with s3, and since this is the only occurrence
of s3 (the only generator that does not commute with both s1 and s2), this element is
commutation equivalent to one containing either s1s2s1s2 or s2s1s2s1 as a subword.
Therefore, w has a large band. �

Suppose that Γ is the Coxeter graph for an irreducible CFC-finite Coxeter group.
Define Γ0 to be the type A subgraph of Γ consisting of (a) the generator s0 as labeled
in Fig. 3 and (b) everything to the right of it. We call Γ0 the branch of Γ and refer to
the distinguished vertex s0 as the branch vertex.

The FC elements in the FC-finite groups can be quite complicated to describe
(see [16, 17]). In contrast, the CFC elements have a very restricted form. The fol-
lowing result shows that except in types Hn and I2(m), they are just the Coxeter
elements.

Proposition 5.4 Let W be an irreducible CFC-finite group. Suppose that w ∈
CFC(W) has full support and that some generator s ∈ S appears in w more than
once. Then one of the following situations occurs.

(i) W = I2(m), and w = stst · · · st has even length and satisfies 0 ≤ �(w) < m, or
(ii) W = Hn for n > 2, and w has a large band.

Proof The proof is by induction on |S| = n, the case with n = 1 being trivial. If
n = 2, then W = I2(m). In this case, it is easily checked that the CFC elements are
those of the form w = stst · · · st , where s and t are distinct generators, �(w) is even,
and 0 ≤ �(w) < m = m(s, t).

Suppose now that n > 2. The case where W = Hn follows from Lemma 5.3. For
all other cases, Theorem 5.1 tells us that W has no large odd endpoints. Let w be a
reduced expression for w. Since W is CFC-finite, there exists k ∈ N such that wk is
not FC. In this case, it follows by induction on rank and Corollary 4.11 that w is a
Coxeter element, which is a contradiction. �

Remark 5.5 If w ∈ CFC(W) with full support such that W 
= I2(m),Hn, then w must
be a Coxeter element.

Finally, we can drop the restriction that w should have full support.

Corollary 5.6 Let W be an irreducible CFC-finite group. Suppose that w ∈ CFC(W)

and that some generator s ∈ S appears in w more than once. Then there exists a
unique generator t ∈ S with m(s, t) ≥ 5. Furthermore, the generators s and t occur
j times each, in alternating order (but not necessarily consecutively), where 2j <

m(s, t).

Proof This follows from Proposition 5.4 by considering the parabolic subgroup cor-
responding to supp(w) and by considering each connected component of the resulting
Coxeter graph. �

Corollary 5.6 allows us to enumerate the CFC elements of the CFC-finite groups.
Let Wn denote a rank-n irreducible CFC-finite group of a fixed type, where n ≥ 3, and
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let Wn−1 be the parabolic subgroup generated by all generators except the rightmost
generator of the branch of Wn.

Corollary 5.7 Let n ≥ 4. If αn = |CFC(Wn)|, then αn satisfies the recurrence

αn = 3αn−1 − αn−2. (5.1)

Proof The base cases can be easily checked by hand for each type. Every CFC ele-
ment in Wn−1 is also CFC in Wn, and there are αn−1 of these. Let s be the rightmost
generator of the branch of Wn, and consider the CFC elements that contain s. By
Proposition 5.4, s and the unique generator t such that m(s, t) ≥ 3 occur at most once
each. This implies that every element can be written as sw or ws (both reduced), and
thus we need to compute the cardinality of

{

sw | w ∈ CFC(Wn−1)
} ∪ {

ws | w ∈ CFC(Wn−1)
}

.

Each of these two sets has size αn−1, and sw = ws if and only if sn−1 
∈ supp(w).
Thus, their intersection has size |CFC(Wn−2)| = αn−2, and their union has size
2αn−1 − αn−2. In summary, there are 2αn−1 − αn−2 CFC elements that contain s,
and αn−1 CFC elements that do not, so αn = 3αn−1 − αn−2. �

Remark 5.8 If one restricts attention to CFC elements with full support, then there
is a version of Corollary 5.7 for which the recurrence relation is αn = 2αn−1 for
sufficiently large n.

By Corollary 5.7, to enumerate the CFC elements in Wn for each type, we just
need to count them in the smallest groups of that family. We will denote the number
of CFC elements in the rank-n Coxeter group of a given type by the corresponding
lowercase letter, e.g., bn = |CFC(Bn)|. Table 1 contains a summary of the results
of each (nondihedral) type, up to n = 9. It also lists the number of FC elements in
each type, which was obtained in [17]. It is interesting to note that the enumeration
of the FC elements is quite involved and uses a variety of formulas, recurrences,
and generating functions. In contrast, the CFC elements in these groups can all be
described by the same simple recurrence (except in type I2(m), which is even easier).

5.1 Type A

The elements of A1 = {1, s} have orders 1 and 2, respectively, and the set of CFC
elements in A2 = I2(3) is {1, s, t, st, ts}. It follows that a1 = 2 and a2 = 5. The odd-
index Fibonacci numbers satisfy the recurrence in (5.1) as well as the initial seeds
(see [13, A048575]). Therefore, an = Fib2n−1, where Fibk denotes the kth Fibonacci
number. By Corollary 5.6, the CFC elements in An are precisely those that have no
repeat generators. In the language of [18], these are the Boolean permutations and are
characterized by avoiding the patterns 321 and 3412. (A permutation π avoids 3412
if there is no set {i, j, k, l} with i < j < k < � and π(k) < π(�) < π(i) < π(j).) The
following result is immediate.
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Table 1 The number of FC and CFC elements in the CFC-finite groups, by their rank n

Type n = 1 2 3 4 5 6 7 8 9

# FC A 2 5 14 42 132 429 1430 4862 16796

# FC B 2 7 24 83 293 1055 3860 14299 53481

# FC F 2 5 24 106 464 2003 8560 36333 153584

# CFC A,B,F 2 5 13 34 89 233 610 1597 4181

# FC D 2 4 14 48 167 593 2144 7864 29171

# CFC D 2 4 13 35 92 241 631 1652 4325

# FC E 10 42 167 662 2670 10846 44199

# CFC E 10 34 92 242 634 1660 4346

# FC H 2 9 44 195 804 3185 12368 47607 182720

# CFC H 2 7 21 56 147 385 1008 2639 6909

Corollary 5.9 An element w ∈ An is CFC if and only if w is 321- and 3412-avoiding.

It is worth noting that Fib2n−1 also counts the 1324-avoiding circular permuta-
tions on [n + 1] (see [3]). Roughly speaking, a circular permutation is a circular
arrangement of {1, . . . , n} up to cyclic shift. Though Fib2n−1 counts the circular per-
mutations that avoid 1324, these are set-wise not the same as the CFC elements in
W(An) = SYMn+1. As a simple example, the permutation (2,3) = s2 ∈ W(A3) does
not avoid 1324 since it equals [1324] in 1-line notation, but it is clearly CFC. Also, the
element s2s3s1s2s4s3 ∈ W(A4) (or (1,3,5,2,4) in cycle notation) has no (circular)
occurrence of 1324, but it is not CFC.

5.2 Type B

The two elements of B1 have orders 1 and 2. In B2 = I2(4), the elements sts and tst

are not cyclically reduced. All remaining elements other than the longest element are
CFC, so we have b1 = 2 and b2 = 5.

5.3 Type D

The group D1 is isomorphic to A1, D2 has two commuting Coxeter generators, and
D3 is isomorphic to A3. Therefore, d1 = 2, d2 = 4, and d3 = 13.

5.4 Type E

The groups E4 and E5 are isomorphic to A4 and D5, respectively, and so e4 = 34
and e5 = 92. We note that if we define E3 by removing the branch vertex from the
Coxeter graph of E4, leaving an edge and singleton vertex, then is readily checked
that e3 = 10, and so e5 = 3e4 − e3.
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5.5 Type F

The groups F2 and F3 are isomorphic to A2 and B3, respectively, and so f2 = 5
and f3 = 13. As in Type E, if we define F1 as having a singleton Coxeter graph,
then f1 = 2, and f3 = 3f2 − f1. Thus, these are also counted by the odd-indexed
Fibonacci numbers with a “shifted” seed, yielding fn = Fib2n+1.

5.6 Type H

The group H1 has order 2, and in H2 = I2(5), the elements sts and tst are not cycli-
cally reduced. All other elements except the longest element are CFC, so h1 = 2 and
h2 = 7.

6 The root automaton

In order to prove our main result, Theorem 7.1, we will induct on the size of the
generating set S. A key part in the inductive step is Lemma 6.2, which shows that in
certain circumstances, one can insert occurrences of a new generator into an existing
reduced expression in such a way as to make a new reduced expression. To do this,
we use the root automaton. This technique is described in [1, Chaps. 4.6–4.9] and has
recently been used to tackle problems similar to ours by H. Eriksson and K. Eriks-
son [6]. We formalize it differently, though, in a way that is useful for our purposes,
and should be of general interest in its own right.

For a Coxeter system (W,S) on n generators, let V be an n-dimensional real vec-
tor space with basis {α1, . . . ,αn}, and equip V with a symmetric bilinear form B such
that B(αi ,αj ) = − cos(π/mi,j ). The action of W on V by si : v �→ v − 2B(v,αi )αi

is faithful and preserves B , and the elements of the set Φ = {wαi | w ∈ W } are called
roots. The map

W −→ GL(V ), si �−→ (

v
Fi�→ v − 2B(v,αi )αi

)

is called the standard geometric representation of W . Henceforth, we will let αi =
ei ∈ R

n, the standard unit basis vector, hereby identifying roots of W with vectors in
R

n. Partially ordering the roots by ≤ componentwise yields the root poset of W . For
any z = (z1, . . . , zn) ∈ R

n, the action of W on Φ is given by

z
si�−→ z +

n
∑

j=1

2 cos(π/mi,j )zj ei . (6.1)

In summary, the action of si flips the sign of the ith entry and adds each neighboring
entry zj weighted by 2 cos(π/mi,j ). It is convenient to view this as the image of si
under the standard geometric representation W → GL(Rn), which is a linear map
Fi : R

n → R
n defined by

Fi : (z1, . . . , zn) �−→
(

z1, . . . , zi−1, zi +
n

∑

j=1

2 cos(π/mi,j )zj , zi+1, . . . , zn

)

.

(6.2)
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Similarly, for any w = sx1 · · · sxk
∈ S∗, let Fw = Fsxk

◦ · · · ◦ Fsx1
. It is well known that

for every root, all nonzero entries have the same sign, thus the root poset consists of
positive roots Φ+ and negative roots Φ−, with Φ = Φ+ ∪ Φ−. In 1993, Brink and
Howlett [2] proved that Coxeter groups are automatic, guaranteeing the existence of
an automaton for detecting reduced expressions (see also [1, 5]). This root automaton
has vertex set Φ and edge set {(z, siz) | z ∈ Φ, si ∈ S}. For convenience, label each
edge (z, siz) with the corresponding generator si . It is clear that upon disregarding
loops and edge orientations (all edges are bidirectional anyways), we are left with
the Hasse diagram of the root poset. We represent a word w = sx1sx2 · · · sxm in the
root automaton by starting at the unit vector ex1 ∈ Φ+ and traversing the edges la-
beled sx2 , sx3 , . . . , sxm in sequence. Denote the root reached in the root poset upon
performing these steps by r(w). The sequence

ex1 = r(sx1), r(sx1sx2), . . . , r(sx1sx2 · · · sxm) = r(w)

is called the root sequence of w. If r(sx1sx2 · · · sxi
) is the first negative root in the

root sequence for w, then a shorter expression for w can be obtained by removing
sx1 and sxi

. By the exchange property of Coxeter groups (see [1]), every nonreduced
word w ∈ S∗ can be made into a reduced expression by iteratively removing pairs of
letters in this manner. Clearly, the word w = sx1 · · · sxm ∈ S∗ is reduced if and only if
r(sxi

sxi+1 · · · sxj
) ∈ Φ+ for all i < j .

We say that a Coxeter system (W ′, S) dominates (W,S) if each bond strength in
(W ′, S) is at least as large as the corresponding bond strength in (W,S).

Lemma 6.1 Suppose that (W ′, S) dominates (W,S) and let w be a reduced expres-
sion for w ∈ W . Then w is reduced in W ′ as well.

Proof This is a consequence of Matsumoto’s theorem. �

The following lemma is reminiscent of [6, Proposition 3.3].

Lemma 6.2 Suppose that W ′ is obtained from W by adding a new generator s to
S, setting m(s, t) ≥ 3 for some t ∈ S and m(s, s′) = 2 for all s′ 
= t . Let wi be a
reduced expression for wi ∈ W , and suppose that w1w2 · · ·wn is reduced and that
each of w2, . . . ,wn−1 contains at least one occurrence of t . Then w1sw2sw3 · · · swn

is a reduced expression for an element of W ′.

Proof It suffices to show that r(w1sw2sw3 · · · swn) is a positive root, and we will
induct on n. Moreover, by Lemma 6.1, we only need to prove it for the case where
m(s, t) = 3.

The base case is where n = 3, because this guarantees at least one instance of t

in w1sw2sw3. First, observe that sw2s is reduced because s 
∈ DR(sw2). Also, note
that r(w1s) = r(w1) + c1es = r(w1) + c1r(s) for some nonnegative constant c1. By
linearity,

r(w1sw2sw3) = Fw3 ◦ Fs ◦ Fw2

[

r(w1s)
]

= Fw3 ◦ Fs ◦ Fw2

[

r(w1) + c1r(s)
]

= r(w1w2sw3) + c1r(sw2sw3).
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It suffices to show that both of these roots are positive or, equivalently, that the corre-
sponding words are reduced. First off, w1w2sw3 is clearly reduced in the Coxeter
group formed by setting m(s, t) = 2, and so it is reduced in W ′ by Lemma 6.1.
We now turn our attention to r(sw2sw3). Suppose that w2 = u0tu1tu2 · · · tuk with
t 
∈ supp(ui ) for each i (by assumption, i ≥ 1). Since s is disjoint from all vertices
in each ui , we have r(sui ) = r(s). Thus, we may omit u0 from w2 when computing
r(sw2sw3). Since m(s, t) = 3, we have r(st) = r(t) + r(s), and so

r(sw2s) = r(stu1tu2 · · · tuks) = Fu1tu2···tuks

[

r(t) + r(s)
]

= r(tu1tu2 · · · tuks) + r(su1tu2 · · · tuks)

= r(tu1tu2 · · · tuks) + r(stu2 · · · tuks).

Applying this same technique to r(stu2 · · · tuks) yields

r(stu2 · · · tuks) = Fu2tu3···tuks

[

r(t) + r(s)
] = r(tu2tu3 · · · tuks) + r(stu3 · · · tuks).

We can continue this process and successively pick off roots of the form r(tui · · · tuks)

for i = 1,2, . . . . At the last step, we get

r(stuks) = Fuks

[

r(t) + r(s)
] = r(tuks) − r(s) = [

r(tuk) + r(s)
] − r(s) = r(tuk).

Putting this together, we have

r(sw2s) = r(su0tu1 · · · tuks)

= r(stu1 · · · tuks)

= [

r(tu1 · · · tuks) + · · · + r(tuk−1tuks) + r(tuks)
] − r(s)

= [

r(tu1 · · · tuks) + · · · + r(tuk−1tuks)
] + r(tuk).

Finally, we get r(sw2sw3) from this by applying the map Fw3 to each term, yielding

r(sw2sw3) = [

r(tu1 · · · tuksw3) + · · · + r(tuk−1tuksw3)
] + r(tukw3). (6.3)

Each of the roots on the right-hand side of (6.3) are roots of expressions that are
subwords of w2sw3 or w2w3, both of which are reduced. Thus, r(sw2sw3) is a positive
root, and this establishes the base case.

For the inductive step, we need to show that r(w1sw2 · · · swn) is positive. By lin-
earity,

r(w1sw2sw3 · · · swn) = Fwn ◦ Fs ◦ · · · ◦ Fw3 ◦ Fs ◦ Fw2

[

r(w1) + c1r(s)
]

= r(w1w2sw3 · · · swn) + c1r(sw2sw3 · · · swn).

The first root is positive by the induction hypothesis, so to prove the lemma, it suffices
to show that r(sw2sw3 · · · swn) is positive. Using (6.3), we get
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r(sw2sw3 · · · swn) = Fsw4···swn

[

r(sw2sw3)
]

= [

r(tu1 · · · tuksw3sw4 · · · swn) + · · ·
+ r(tuk−1tuksw3sw4 · · · swn)

] + r(tukw3sw4 · · · swn).

Each of these are roots of expressions that are subwords of either w2sw3sw4 · · · swn

or w2w3sw4 · · · swn, both of which are reduced by the induction hypothesis. �

7 Logarithmic CFC elements

Recall Theorem 3.1, which said that Coxeter elements are logarithmic if and only if
they are torsion-free. The following theorem generalizes this to CFC elements with-
out large bands.

Theorem 7.1 Let w be a CFC element of W with no large bands. Then w is loga-
rithmic if and only if w is torsion-free.

Proof The forward direction is trivially handled by Proposition 2.3, so we will only
consider the reverse direction. Moreover, it suffices to consider the case where W is
irreducible and w has full support. This means that either |S| ≥ 3, or W is the free
Coxeter group on two generators (i.e., m(s1, s2) = ∞). The latter case is trivial, and
so we will ignore it and assume that |S| ≥ 3.

Let w be a reduced expression for w. If wk is FC for all k, then we are done. As-
sume otherwise. By Theorem 4.9, with the assumption that w has no large bands, w

must have a small st-band for some s, t ∈ S, meaning that the occurrences of s and t

in w are both unique. Assume without loss of generality that s (and not t) is the end-
point, and let W ′ be the parabolic subgroup of W obtained by removing s. By Corol-
lary 4.11, deleting the unique occurrence of s from w yields a reduced expression w′
for a CFC element w′ of W ′ that has no large bands. From here we have two potential
ways to show that w is logarithmic. If W ′ is infinite and w′ is a Coxeter element, then
w is a Coxeter element of W and hence logarithmic by Theorem 3.1. Alternatively, if
w′ is logarithmic, then (w′)k is reduced for all k, and so by Lemma 6.2, wk is reduced
as well.

We will proceed by induction on |S|. For the base case, suppose that |S| = 3,
meaning that W ′ is of type I2(m). Since t occurs exactly once in w, the remaining
generator of I2(m) occurs precisely once. Thus, w′ is a Coxeter element, and we are
done.

For the inductive step, assume that |S| ≥ 4. If W ′ is infinite, then by induction,
(w′)k is reduced in W ′, and so w must be logarithmic. Thus, suppose that W ′ is
finite. We have two cases. If W ′ has no large odd endpoints, then it follows from
Corollary 5.6 that w′ is a Coxeter element. Now, suppose that W ′ has a large odd
endpoint. Since W ′ is finite and of rank at least 3, it must be of type H3 or H4.
In this case, the only possibilities for the Coxeter graph of W are shown in Fig. 4.
For each of these six Coxeter graphs, we may assume that s and t are the indicated
vertices. (Note that any other choice would result in either an isomorphic copy of W ′
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Fig. 4 The last remaining
obstructions to Theorem 7.1

or an infinite group.) These six graphs fall into two cases. In the top four graphs, t is
involved in a strength 5 bond, and so the uniqueness of the occurrence of t forces w′
to be a Coxeter element (of H3 or H4) because we have j = 1 in Lemma 5.3(ii). In
the bottom two graphs, t is not involved in a strength 5 bond, so w′ has a large band
if and only if w does, and by Lemma 5.3(iii), w′ is a Coxeter element. In either case,
it follows that w is also a Coxeter element, and hence w is logarithmic. �

Corollary 7.2 Let (W,S) be a Coxeter system without large odd endpoints. An ele-
ment w ∈ CFC(W) is logarithmic if and only if it is torsion-free.

Proof The forward direction is handled by Proposition 2.3. For the converse, let w

be torsion-free with reduced expression w. We may assume that it has full support
and W is irreducible. Since W has no large odd endpoints, w has no large bands and
hence is logarithmic by Theorem 7.1. �

The class of Coxeter groups without large odd endpoints includes all affine Weyl
groups and simply laced Coxeter groups. In fact, we can say even more about CFC
elements in affine Weyl groups. The following corollary says that the only logarithmic
CFC elements with bands in an affine Weyl group are the Coxeter elements.

Corollary 7.3 Let W be an affine Weyl group, and w a reduced expression for w ∈
CFC(W) with full support. Then w is logarithmic, and either

(i) w is a Coxeter element, or
(ii) wk ∈ FC(W) for all k ∈ N.

Proof Since W is an affine Weyl group, each m(s, t) ∈ {1,2,3,4,6,∞}, which
means that W has no large odd endpoints, and none of its CFC elements have large
bands. The proof of Theorem 7.1 carries through, except that the only situation where
(i) and (ii) do not occur is the case where it is possible to remove an element of S

and still be left with an infinite Coxeter group. The proof follows from a well-known
(and easily checked) property of affine Weyl groups, which is that all of their proper
parabolic subgroups are finite. �

Example 7.4 Here are some examples of CFC elements in affine Weyl groups, and
what our results tell us about their properties.
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(i) Consider the affine Weyl group of type ˜An for n ≥ 2. The corresponding Coxeter
graph is an (n + 1)-gon, all of whose edges have bond strength three. Let c be a
Coxeter element of W(˜An). Then c is CFC and is logarithmic by Theorem 3.1.
Since ˜An has no endpoints and c has full support, c cannot have any bands. By
Theorem 4.9, ck is FC for all k, and now we can use Proposition 4.6 to deduce
that ck is CFC for all k.

(ii) Consider the affine Weyl group of type ˜E8, or in other words, type E9, and let
c be a Coxeter element of W(˜E8). Again, by Theorem 3.1, c is logarithmic.
However, ˜E8 is FC-finite, so it cannot be the case that ck is FC (and hence CFC)
for all k. By Lemma 4.3, c2 is not FC, and by Theorem 4.9, c must have a band.

(iii) Recall from Example 3.5(iv) that w = s1s3s2s4s3s5s4s6s0s3s2s6 is a CFC ele-
ment in the affine Weyl group of type ˜E6. Though the Coxeter graph has three
odd endpoints, w has no bands, which is easily verified from the observation
that each generator adjacent to an endpoint occurs twice in w. By Theorem 4.9,
wk is FC for all k, and by Proposition 4.6, wk is CFC for all k.

(iv) As in Example 3.5(v), let w1 = s0s2s4s1s3 and w2 = s0s1s2s3s4s3s2s1 be el-
ements in W(˜C4). Since w1 and w2 are CFC elements with full support, by
Corollary 7.2, both are logarithmic. Moreover, since W(˜C4) has no odd end-
points, CFC elements with full support in W(˜C4) have no bands, so powers of
w1 and w2 remain FC (Theorem 4.9) and CFC (Proposition 4.6).

8 Conclusions and future work

Our motivation for defining and studying the CFC elements arose from recent work
on Coxeter elements described in Sect. 3, in which the source-to-sink operation arose.
It seemed that certain properties of Coxeter elements were not due to the fact that ev-
ery generator appears once, but rather that conjugation is described combinatorially
by this source-to-sink operation. Thus, CFC elements seemed like the natural gener-
alization, because they are the largest class of elements for which the source-to-sink
operation extends. Indeed, we showed that for any CFC element w (without large
bands), w is logarithmic iff w is torsion-free. This generalizes Speyer’s recent result
that says the same for the special case of Coxeter elements. If the source-to-sink op-
eration is indeed crucial to this logarithmic property, then there should be a simple
example of a cyclically reduced non-CFC element that fails to be logarithmic. The
following example of this was pointed out recently by Dyer [4], where W is the affine
Weyl group ˜C2, and w the following non-CFC element:

w = s0s1s0s1s2.

Clearly, w is cyclically reduced and torsion-free, but

w2 = (s0s1s0s1s0)(s2s1s0s1s2) = (s1s0s1s0s0)(s2s1s0s1s2) = (s1s0s1)(s2s1s0s1s2),

and so �(w2) < 2�(w). Obviously, such a counterexample works for any m(s1, s2)

≥ 4. Thus, being cyclically reduced and torsion-free together are not sufficient for a
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non-CFC element to be logarithmic. So, what are the necessary and sufficient con-
ditions for an arbitrary element in a Coxeter group to be logarithmic? In this paper,
we formalized the root automaton of a Coxeter group in a new way, and it led to
a new technique for proving reducibility. We expect this approach to be useful for
other questions about reducibility. However, new geometric tools would need to be
developed to attack this general question for non-CFC elements. In [9], D. Krammer
defines the “axis” of an element, which generalizes the property of being logarith-
mic (which Krammer calls straight). Krammer proves some results on the axis but
does not use these to draw conclusions about combinatorial properties of logarithmic
elements. We do not know yet whether these techniques will help, but it remains a
possibility.

Another natural question is whether torsion-free CFC elements with large bands
are necessarily logarithmic. Consider the following sets of elements:

{

Coxeter
elements

}

⊂
{

CFC elements
w/o large bands

}

⊂ {

CFC elements
} ⊂

{

cyclically reduced
elements

}

The source-to-sink operation holds for these first three sets but breaks down for the
fourth. Being torsion-free implies being logarithmic for elements in the first two sets
but not for elements in the fourth. Is it also sufficient for elements in the third set?
If so, that would imply that in any Coxeter group, a CFC element is logarithmic if
and only if it is torsion-free (recall that in Corollary 7.2, we proved that this is true
for all Coxeter groups without large odd endpoints), and this would give even more
evidence that the combinatorics behind the source-to-sink operation is governing the
logarithmic property. It is tempting to conjecture this for purely aesthetic reasons, and
it may in fact be true. However, we do not have any firm mathematical evidence.

As mentioned earlier, we expect that these results will be useful in better under-
standing the conjugacy problem in Coxeter groups. Since the logarithmic property
was key to establishing the cyclic version of Matsumoto’s theorem (as mentioned in
the introduction) for Coxeter elements, we expect that it will be necessary for CFC
elements. We conjecture that the cyclic version of Matsumoto’s theorem holds for at
least the CFC elements (and likely much more), and once again, the combinatorial
techniques involving the source-to-sink operation should play a central role. But does
it hold for general torsion-free cyclically reduced elements? If there is a counterex-
ample, it is certainly not obvious. In the meantime, progress toward this goal should
lead to valuable new developments in the combinatorial understanding of reducibility
and conjugacy. Understanding any obstacles to this conjecture would also be of con-
siderable interest, and even if it were shown to be false, understanding when it fails
(and proving a modified version) would surely bring new insight.
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