ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Further Pieri-type formulas for the nonsymmetric Macdonald polynomial

W. Baratta
Department of Mathematics, University of Melbourne, Melbourne, Australia

DOI: 10.1007/s10801-011-0323-3

Abstract

The branching coefficients in the expansion of the elementary symmetric function multiplied by a symmetric Macdonald polynomial P κ  ( z) are known explicitly. These formulas generalise the known r=1 case of the Pieri-type formulas for the nonsymmetric Macdonald polynomials E η  ( z). In this paper, we extend beyond the case r=1 for the nonsymmetric Macdonald polynomials, giving the full generalisation of the Pieri-type formulas for symmetric Macdonald polynomials. The decomposition also allows the evaluation of the generalised binomial coefficients \tbinom h n q, t \tbinom{η}{ν}_{q,t} associated with the nonsymmetric Macdonald polynomials.

Pages: 45–66

Keywords: keywords Macdonald polynomial; Pieri formulas; nonsymmetric; q-binomial coefficients

Full Text: PDF

References

1. Baker, T.H., Forrester, P.J.: A q-analogue of the type A Dunkl operator and integral kernel. Int. Math. Res. Not. 14, 667-686 (1997)
2. Baratta, W.: Pieri-type formulas for nonsymmetric Macdonald polynomials. Int. Math. Res. Not. 15, 2829-2854 (2009)
3. Cherednik, I.: Nonsymmetric Macdonald polynomials. Int. Math. Res. Not. 10, 483-515 (1995)
4. Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Symmetric polynomials vanishing on shifted diagonals and Macdonald polynomials. Int. Math. Res. Not. 18, 1015-1034 (2003)
5. Forrester, P.J., McAnally, D.S.: Pieri-type formulas for the nonsymmetric Jack polynomials. Comment. Math. Helv. 79(1), 1-24 (2004)
6. Forrester, P.J., Rains, E.M.: Interpretations of some parameter dependent generalizations of classical matrix ensembles. Probab. Theory Relat. Fields 131(1), 1-61 (2005)
7. Knop, F.: Symmetric and nonsymmetric quantum Capelli polynomials. Comment. Math. Helv. 72(1), 84-100 (1997)
8. Knop, F., Sahi, S.: Difference equations and symmetric polynomials defined by their zeros. Int. Math. Res. Not. 10, 473-486 (1996)
9. Lascoux, A.: Schubert and Macdonald polynomials, a parallel.
10. Lascoux, A., Schützenberger, M.P.I.: Polynômes de Schubert. C. R. Acad. Sci, Paris Sér. I. Math. 294(13), 447-450 (1982)
11. Macdonald, I.G.: A new class of symmetric functions. Publ. IRMA 20, 131-171 (1988)
12. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. The Clarendon Press/Oxford University Press, New York (1995) J Algebr Comb (2012) 36:45-66
13. Macdonald, I.G.: Affine Hecke Algebras and Orthogonal Polynomials. Cambridge Tracts in Mathematics, vol.
157. Cambridge University Press, Cambridge (2003)
14. Marshall, D.: Symmetric and nonsymmetric Macdonald polynomials. Ann. Comb. 3(2-4), 385-415 (1999) On combinatorics and statistical mechanics
15. Marshall, D.: The product of a nonsymmetric Jack polynomial with a linear function. Proc. Am. Math. Soc. 131(6), 1817-1827 (2003) (electronic)
16. Mimachi, K., Noumi, M.: A reproducing kernel for nonsymmetric Macdonald polynomials. Duke Math. J. 91(3), 621-634 (1998)
17. Okounkov, A.: Binomial formula for Macdonald polynomials and applications. Math. Res. Lett. 4(4), 533-553 (1997)
18. Sahi, S.: A new scalar product for nonsymmetric Jack polynomials. Int. Math. Res. Not. 20, 997-1004 (1996)
19. Sahi, S.: Interpolation, integrality, and a generalization of Macdonald's polynomials. Int. Math. Res.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition