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Abstract We point out that the positivity of a Littlewood–Richardson coefficient
c
γ
α,β for sln can be decided in strongly polynomial time. This means that the number

of arithmetic operations is polynomial in n and independent of the bit lengths of
the specifications of the partitions α,β, and γ , and each operation involves numbers
whose bitlength is polynomial in n and the bit lengths α,β, and γ .

Secondly, we observe that nonvanishing of a generalized Littlewood–Richardson
coefficient of any type can be decided in strongly polynomial time assuming an ana-
logue of the saturation conjecture for these types, and that for weights α,β, γ , the
positivity of c

2γ

2α,2β can (unconditionally) be decided in strongly polynomial time.
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1 Introduction

The fundamental Littlewood–Richardson rule in representation theory [4] states that
the tensor product of two irreducible representations (Weyl modules) Vα and Vβ of a
complex semisimple Lie algebra G decomposes as follows:

Vα ⊗ Vβ =
⊕

γ

C
γ
α,βVγ , (1)

where C
γ
α,β are generalized Littlewood–Richardson coefficients. Here α,β , and γ de-

note highest weights of G . When G = sln(C) (type A), α and β are partitions (Young
diagrams) with at most n rows, and the sum is over all Young diagrams γ of height
at most n and size equal to the sum of the sizes of α and β .

We are interested in finding an efficient algorithm to decide if C
γ
α,β is nonvanishing

(positive). As will be explained below (Sect. 1.1), this problem arises naturally in
the geometric complexity theory approach [14–16] toward the P vs. NP and related
problems.

It has been observed in [11, 12, 17] independently that when G = sln(C) (type A),
nonvanishing of C

γ
α,β can be decided in polynomial time; i.e., in time that is poly-

nomial in n and the bitlengths of the specifications of the partitions α,β , and γ .
Furthermore, the algorithm in [17] is strongly polynomial in the sense of [13]. We
say that an algorithm is strongly polynomial if the number of arithmetic steps in the
algorithm is polynomial in the number of input parameters, independent of their total
bitlength, and the bit length of each intermediate operand that arises in the algorithm
is polynomial in the total bitlength of the input. We shall also use slight variants of
this definition as per the problem. In particular, strong polynomiality here means: (1)
the number of arithmetic steps in the algorithm is polynomial in n. It does not depend
on the bit lengths of αi,βj , and γk’s. (2) The bitlength of every intermediate operand
that arises in the algorithm is polynomial in n and the total bitlength of α,β , and γ .
One crucial ingredient in this algorithm is the saturation theorem in [10], which does
not hold for simple Lie algebras of type B,C, or D [24]. The result in [17] was ex-
tended to other types in [18] assuming a positivity conjecture in [12]. This article
combines the results of [17] and [18]. We now state these results in more detail.

First, we consider type A, i.e., when G = sln(C). Let λ = (λ1, . . . , λn), λ1 ≥ λ2 ≥
· · · ≥ λn ≥ 0, be a partition (Young diagram); here each λi is integral, and λi = 0 for
i higher than the height of λ. By the bitlength 〈λ〉 of λ we mean the total bitlength of
its specification.

Theorem 1.1 Given partitions α,β , and γ , whether C
γ
α,β is positive can be decided

in polynomial time and, in fact, in strongly polynomial time.

For general types, we have:

Theorem 1.2 The positivity of a generalized Littlewood–Richardson coefficient Cν
λ,μ

for any complex semisimple Lie algebra G can be decided in strongly polynomial
time, assuming the following positivity conjecture made in [12].
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Let C̃(n) = C̃
μ
λ,μ(n) = Cnν

nλ,nμ denote the stretching function associated with

Cν
λ,μ. Assume that the type of G is B,C, or D. Then C̃(n) is a quasi-polynomial

of period at most two [12]. That is, there exist polynomials C̃1(n) and C̃2(n) such
that

Cnν
nλ,nμ =

{
C̃1(n) if n is odd;
C̃2(n) if n is even.

Conjecture 1.3 (Positivity conjecture) [12] The quasi-polynomial C̃(n) = C̃ν
λ,μ(n)

is positive, i.e., the coefficients of C̃i(n), i = 1,2, are nonnegative.

This is an extension of an analogous earlier conjecture in [9] for type A. Considerable
experimental evidence for these conjectures has been given in these papers.

Here it is assumed that each highest weight is specified by giving its coordinates in
the basis of fundamental weights. The bitlength 〈λ〉 is defined to be the total bitlength
of all coordinates.

Remark 1.4 For Theorem 1.2 to hold, we do not need the full statement of the Pos-
itivity Conjecture, but only the following analogue of saturation for Lie groups of
types B,C,D:

Cν
λμ = 0 =⇒ ∀ odd n, Cnν

nλ,nμ = 0.

In fact, the following weaker hypothesis suffices: A generalized Littlewood–
Richardson coefficient is nonzero if the affine span of the corresponding BZ-polytope
[1] contains an integer point.

Finally, we observe that the proof of Theorem 1.1 can be extended to general types
using the recent results in [2, 20]:

Theorem 1.5 The positivity of a generalized Littlewood–Richardson coefficient
C2ν

2λ,2μ for any complex semisimple Lie algebra G can be decided in strongly polyno-
mial time.

1.1 Significance in geometric complexity theory

Now we explain the significance of the results in this paper in the context of the geo-
metric complexity theory (GCT) [14–16] approach to the permanent vs. determinant
problem [23], an algebraic prototype of the P vs. NP problem.

The problem is to show that perm(X), the permanent of the n× n variable matrix,
cannot be represented as the determinant of an m × m matrix Y whose each entry
is a rational (or complex) affine combination of the entries of X, if m = poly(n).
The articles [15, 16] reduce this problem to the problem of proving the existence
of a geometric obstruction (proof certificate of hardness) when m = poly(n). A
geometric obstruction is a Weyl module Vλ(G), G = GLm2(C), that occurs as a
G-subrepresentation of the (dual of the) homogeneous coordinate ring of a certain
G-variety Δ[perm, n,m] associated with the permanent but not in the (dual of the)
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homogeneous coordinate ring of a similar G-variety Δ[det,m] associated with the
determinant. The goal (cf. [19]) is to construct the labeling partition λ of some ge-
ometric obstruction explicitly in poly(n,m) time when m = poly(n). The reason we
are going for explicit construction, when proving the existence of an obstruction even
nonconstructively suffices in principle, is the Flip theorem (cf. Theorems 2.3 and 4.6
in [14]), which says that we are essentially forced to construct some proof certificate
of hardness explicitly in the problem under consideration.

In more detail, the explicit proof strategy, called the flip [14, 19] is the following:

(1) [Verification]: Find a (strongly) polynomial-time algorithm for verifying if a
given λ is a geometric obstruction label for given n and m.

(2) [Discovery]: Use this efficient verification criterion to decide if a geometric ob-
struction exists for given n and m in poly(n,m) time. If it does, construct one
such geometric obstruction label explicitly in the same time.

(3) [Program correctness]: Show that the discovery algorithm in (2) always succeeds
if m = poly(n).

The upper bound problems in algebraic geometry and representation theory that
arise in (1) and (2) seem well beyond the reach of the existing techniques. The article
[19], in conjunction with [15, 16], describes an approach to these problems based on
some intermediate upper bound problems in representation theory, such as the prob-
lem of deciding nonvanishing of the Kronecker coefficients [4] in (strongly) poly-
nomial time. Since the Littlewood–Richardson coefficient is a special case of the
Kronecker coefficient, the problem of deciding its nonvanishing is a basic prototype
of the far harder decision problems in algebraic geometry and representation theory
that arise in GCT. This is the main motivation for studying this problem in this paper.
As explained in [14], the (strongly) polynomial time algorithm for this problem in
this paper serves as a basic prototype for the approach in [19] to the harder upper
bound problems in algebraic geometry and representation theory that arise in GCT.

We should also explain why we are going for strongly polynomial-time algorithms
instead of just polynomial-time algorithms. This too is motivated by the (strong) Flip
theorem (cf. Theorem 4.6 in [14]). Assuming the permanent vs. determinant conjec-
ture and an additional derandomization hypothesis in complexity theory, this result
provides a strongly polynomial-time algorithm for generating counterexamples in
the context of this conjecture. Specifically, given any m × m matrix Y , whose en-
tries are rational affine combinations of the entries of the n × n variable matrix X,
m = poly(n), this algorithm generates in strongly polynomial time a set {X0, . . . ,Xa}
of a = O(1) inputs such that the value of perm(X) on some input Xi in this set is
different from the value of det(Y ) at Xi . The strong Flip theorem (in its full stronger
form) is the crux of the justification in [19] for why there should exist (strongly)
polynomial-time algorithms for the various decision problems in algebraic geometry
and representation theory that arise in GCT and why this existence may, in essence, be
implication of the various hardness and derandomization conjectures in complexity
theory. This is why we are going toward strongly polynomial-time algorithms right
from the beginning.

There is also a pragmatic reason for this. For the step (3) above to succeed, it
is not enough if the algorithms in the steps (1) and (2) are just efficient in theory.
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They also have to be simple enough so that they can be used to carry out the step (3)
successfully. The notion of a strongly polynomial-time algorithm was proposed [13]
in complexity theory to develop polynomial-time algorithms that are simple in prac-
tice. As was pointed out in [13], most problems that have strongly polynomial-time
algorithms eventually turn out to have strongly polynomial-time algorithms that are
combinatorial in nature, simple in practice, and do not depend on complicated nu-
merical procedures such as linear programming. In the same spirit, the strategy here
is to find strongly polynomial-time algorithms for the various decision problems that
arise in GCT first and eventually find simpler combinatorial algorithms (not based on
linear programming) that can be used to carry out the step (3) successfully.

Since this paper gives a strongly polynomial-time algorithm for deciding nonvan-
ishing of Littlewood–Richardson coefficient, we expect, as per this general paradigm,
a simpler combinatorial strongly polynomial-time algorithm that does not use linear
programming. The recent article [3] takes an important step in this direction. Moti-
vated by the result in this article, it gives a polynomial-time combinatorial algorithm
based on max-flows for deciding nonvanishing of Littlewood–Richardson coefficients
in type A. But it is still not strongly polynomial.

The rest of this article is organized as follows. Theorem 1.1 is proved in Sect. 2,
Theorem 1.2 in Sect. 3 and Theorem 1.5 in Sect. 4.

2 Littlewood–Richardson coefficient of type A

Here we prove Theorem 1.1. The proof follows easily from the following three re-
sults:

1. Littlewood–Richardson rule: specifically, a polyhedral interpretation of the
Littlewood–Richardson coefficients based on the Hive polytope [10]; one could
also use the BZ-polytope [1] instead.

2. Saturation Theorem [10].
3. Polynomial-time algorithm for linear programming, e.g., the ellipsoid or the inte-

rior point method and the related strongly polynomial-time algorithm for combi-
natorial linear programming in [13].

As per the polyhedral interpretation of the Littlewood–Richardson rule in [10],
the Littlewood–Richardson coefficient C

γ
α,β can be expressed as the number of inte-

ger points in a hive polytope P = P
γ
α,β which can be specified by an explicit linear

program of the form

Ax ≤ b (2)

such that: (1) Given α,β , and γ , this specification can be computed in strongly poly-
nomial time. (2) The linear program is combinatorial in the terminology of [22]. This
means the entries of A have constant bit lengths (in fact, they are just 0,1, or −1).
(3) The entries of b are homogeneous integral linear forms in αi , βj , and γk’s.

Claim 2.1 The polytope P contains an integer point iff it is nonempty.
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Proof One direction is trivial.
Suppose P is nonempty. Since b is homogeneous in α,β , and γ , it follows that, for

any positive integer q , C
qγ
qα,qβ is the number of integer points in the scaled polytope

qP . All vertices of P have rational coefficients. Hence, for some positive integer q ,
the scaled polytope qP has an integer point. It follows that, for this q , C

qγ
qα,qβ is

positive. Saturation Theorem [10] says that, in this case, C
γ
α,β is positive. Hence, P

contains an integer point. �

Whether P is nonempty can be determined in polynomial time using either the
ellipsoid or the interior point algorithm for linear programming. Since the linear pro-
gram (2) is combinatorial, this can also be done in strongly polynomial time using
the combinatorial linear programming algorithm in [22]. This proves Theorem 1.1.

3 Generalized Littlewood–Richardson coefficients

In this section we prove Theorem 1.2.
Let P = P ν

λ,μ denote the BZ-polytope [1] whose Ehrhart quasi-polynomial coin-

cides with C̃ν
λ,μ(n).

Definition 3.1 For any subset B of Q
n, its affine span over rationals, Aff(B), is

{
v
∣∣∃({vi} ⊆ B, {αi} ⊆ Q

)
such that

n∑

i=1

αi = 1 and v =
n∑

i=1

αivi

}
.

Let Z〈2〉 denote the subring of Q obtained by localizing Z at 2, i.e., the subring of
fractions with odd denominators. We will call a point in R

d rational if all its coordi-
nates are rational.

Lemma 3.2 Assume that G is simple of type B,C, or D. If the positivity conjecture
is true, the following are equivalent:

(1) Cν
λμ ≥ 1.

(2) There exists an odd integer n such that Cnν
nλnμ ≥ 1.

(3) P contains a point in Z
d
〈2〉.

(4) Aff(P ) contains a point in Z
d
〈2〉.

Proof Clearly, the first three statements are equivalent, and (3) implies (4). It remains
to show that (4) implies (3). Let z ∈ Z

d
〈2〉 ∩ Aff(P ).

The 0-dimensional case is trivial since {z} = P . Suppose that the dimension of
P is greater than or equal to 1. Since z has rational coordinates and is contained in
Aff(P ), z = ax + (1 − a)y for some distinct rational points x, y ∈ P , and a ∈ Q. Let
q be a positive integer such that 2q(x − y) ∈ Z

d
〈2〉.

The set {z+λ2q(x − y) | λ ∈ Z〈2〉} is a dense subset of Aff({x, y}) in the topology
induced by the standard topology of R

n and is therefore nonempty. Thus, P ∩ Z
d
〈2〉 ∩

{z + λ2q(x − y) | λ ∈ Z〈2〉} = ∅. �
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Now we turn to the proof of Theorem 1.2. First, let us assume that G is simple of
type B,C, or D.

The specification of an explicit linear program of the form Ax ≤ b defining the
BZ-polytope P = P ν

λ,μ can be computed in strongly polynomial time using its de-
scription in [1]. It is also clear from [1] that the entries of A here have constant
bitlengths. In the terminology of [22], this linear program is combinatorial. Hence,
we can determine if P is nonempty in strongly polynomial time by the combinatorial
linear programming algorithm in [22]. If P is nonempty, this algorithm can also be
extended to find an integral matrix C and an integral vector D so that Aff(P ) is de-
fined by the linear system Cx = D. One way of achieving this is the following. Find,
for every constraint hyperplane h of P , a vertex vh of P that is the farthest to h. The
affine span is the intersection of all constraint hyperplanes h such that vh ∈ h. Usual
linear programming algorithms [7, 8] here, in place of the algorithm in [22], will yield
a polynomial-time algorithm, instead of a strongly polynomial-time algorithm.

By Lemma 3.2 (4), it remains to check if Aff(P ) contains a point in Z
d
〈2〉. This

can be done as follows. By padding, if necessary, we can assume that C is square.
Using [5], we find the Smith normal form S of C and unimodular matrices U and
V such that C = USV ; here S is a diagonal integer matrix whose ith diagonal entry
divides the (i + 1)st diagonal entry. Since the entries of C have constant bitlengths,
the algorithm in [5] works in strongly polynomial time. The question now reduces
to checking if USV x = D has a solution x ∈ Z

d
〈2〉. This is so iff Sy = U−1D has a

solution y ∈ Z
d
〈2〉. Since S is diagonal, this can be verified in (strongly) polynomial

time by checking each coordinate.
This proves Theorem 1.2 for types B,C,D.
Now let G be any semisimple algebra. A generalized Littlewood–Richardson co-

efficient for G is the product of corresponding generalized Littlewood–Richardson
coefficients for each of its simple factors. Hence, without loss of generality, we can
assume that G is simple. If it is of type A, then Theorem 1.2 holds uncondition-
ally by Theorem 1.1. If it is an exceptional simple Lie algebra, then a Littlewood–
Richardson coefficient can be computed in O(1) arithmetic steps. This is because,
when the rank of G is constant, the chambers of quasi-polynomiality [21] of the gen-
eralized Littlewood–Richardson coefficient, considered as a vector partition function,
are generated by O(1) constraints.

This proves Theorem 1.2.

4 Proof of Theorem 1.5

Suppose first that G is of type B,C, or D. By [2] and [20], it follows that if there
exists an integer n such that Cnν

nλ,nμ ≥ 1, then C2ν
2λ,2μ ≥ 1. A weaker form of this

result (with 4 in place of 2) was proven in [6]. By the argument in Sect. 3, C2ν
2λ,2μ ≥ 1

if and only if the BZ-polytope P ν
λ,μ is nonempty, which can be checked in strongly

polynomial time. The argument toward the end of Sect. 3 allows the algorithm to be
extended to arbitrary semisimple groups.
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