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Abstract In F. Caselli (Involutory reflection groups and their models, J. Algebra
24:370–393, 2010), a uniform Gelfand model is constructed for all nonexceptional
irreducible complex reflection groups which are involutory. Such models can be
naturally decomposed into the direct sum of submodules indexed by Sn-conjugacy
classes, and we present here a general result that relates the irreducible decomposi-
tion of these submodules with the projective Robinson–Schensted correspondence.
This description also reflects, in a very explicit way, the existence of split representa-
tions for these groups.

Keywords Complex reflection groups · Characters and representations of finite
groups · Clifford theory

1 Introduction

Given a finite-dimensional vector space V over the complex field, a reflection group
is a subgroup G < GL(V ) that is generated by reflections, i.e., elements of finite order
fixing a hyperplane of V pointwise. Finite irreducible complex reflection groups were
completely classified in the 1950s [12] by Shephard and Todd. They consist of an
infinite family of groups denoted G(r,p,n), where r,p,n ∈ N and p|r , which are
the main subject of this paper, and 34 more sporadic groups.

This work finds its roots in the introduction of a new family of groups, called
projective reflection groups [4]. They can be roughly described as quotients—modulo
a scalar group—of finite reflection groups. If we quotient a group G(r,p,n) modulo
the cyclic scalar subgroup Cq , we find a new group G(r,p, q,n), so that in this
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notation we have G(r,p,n) = G(r,p,1, n). We define the dual group G(r,p, q,n)∗
as the group G(r, q,p,n) obtained by simply exchanging the parameters p and q . It
turns out that many objects related to the algebraic structure of a projective reflection
group G can be naturally described by means of the combinatorics of its dual G∗ (see
[4, 5]), for example, its representations.

A Gelfand model of a finite group G is a G-module isomorphic to the multiplicity-
free sum of all the irreducible complex representations of G. The study of Gelfand
models originated from [3] and has found a wide interest in the case of reflection
groups and other related groups (see, e.g., [1, 2, 7–10]). In [5], a Gelfand model
(M,�) was constructed (relying on the concept of duality in an essential way) for ev-
ery involutory projective reflection group G(r,p, q,n) satisfying GCD(p,n) = 1,2.

A finite subgroup of GL(V ) is involutory if the number of its absolute involutions,
i.e., elements g such that gḡ = 1, coincides with the dimension of its Gelfand model.
A group G(r,p,n) turns out to be involutory if and only if GCD(p,n) = 1,2 [5,
Theorem 4.5], so that, in particular, all infinite families of finite irreducible Coxeter
groups are involutory.

The model (M,�) provided in [5] is as follows:

• M is a formal vector space generated by all absolute involutions I (r,p,n)∗ of the
dual group G(r,p,n)∗,

M
def=

⊕

v∈I (r,p,n)∗
CCv;

• The group acts via � : G(r,p,n) → GL(M) by means of an absolute conjugation
of G(r,p,n) on the elements indexing the basis of M :

�(g)(Cv)
def= ψ(g, v)C|g|v|g|−1, (1)

where ψ(g, v) is a scalar, and |g| is the natural projection of g in the symmetric
group Sn.

If g,h ∈ G(r,p,n)∗, we say that g and h are Sn-conjugate if there exists σ ∈ Sn

such that g = σhσ−1, and we call Sn-conjugacy classes the corresponding equiva-
lence classes. If c is an Sn-conjugacy class of absolute involutions in I (r,p,n)∗, we
denote by M(c) the subspace of M spanned by the basis elements Cv indexed by the
absolute involutions v belonging to the class c. Then it is clear from (1) that we have
a decomposition

M =
⊕

c

M(c) as G(r,p,n)-modules,

where the sum runs through all Sn-conjugacy classes of absolute involutions in
I (r,p,n)∗. It is natural to ask if we can describe the irreducible decomposition of
the submodules M(c), and the main goal of this paper is to answer this question for
every group G(r,p,n) with GCD(p,n) = 1,2. The special case of this result for the
symmetric group Sn = G(1,1, n) was established in [7], while the corresponding re-
sult for wreath products G(r,1, n) has been recently proved by the authors in [6].
Though the main result of this paper is a generalization of [6], we should mention
that the proof is not, in the sense that we will actually make use here of the main
results of [6].
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The decomposition of the submodules M(c) in this wider setting is much more
subtle. Indeed, when GCD(p,n) = 2, the Gelfand model M splits also in a differ-
ent way as the direct sum of two distinguished modules: the symmetric submodule
MSym, which is spanned by the elements Cv indexed by symmetric absolute invo-
lutions, and the antisymmetric submodule MAsym, which is defined similarly. This
decomposition is compatible with the one described above in the sense that every
submodule M(c) is contained either in the symmetric or in the antisymmetric sub-
module. The existence of the antisymmetric submodule and of the submodules M(c)

contained therein will reflect in a very precise way the existence of split representa-
tions for these groups. The study of the irreducible decomposition of M(c) when c

is made up of antisymmetric elements requires a particular machinery developed in
Sects. 6, 7, and 8 that was not needed in the case of wreath products G(r,n), where
the antisymmetric submodule vanishes, and so the Gelfand model coincides with its
symmetric submodule.

The final description of the irreducible decomposition of the modules M(c) has
a rather elegant formulation due to its compatibility with the projective Robinson–
Schensted correspondence. Namely, the irreducible subrepresentations of M(c) are
indexed by the shapes which are obtained when performing this correspondence to
the elements in c.

Here is a plan of this paper. In Sect. 2 we collect the background of prelimi-
nary results that are needed to afford the topic. Here an introduction to the groups
G(r,p, q,n) can be found, as well as the description of their irreducible representa-
tions and a brief account of the projective Robinson–Schensted correspondence. In
Sect. 3, for the reader’s convenience, we recall the important definition of symmetric
and antisymmetric elements given in [5] and the Gelfand model constructed therein.
Also a brief account of the main result for the case of G(r,n) can be found here.
Section 4 consists of an outline of the proof of the main results of this work for the
special case of Weyl groups of type D. Afterwards, the more general case of all invo-
lutory groups of the form G(r,p,n) is treated in full detail. Section 5 is devoted to the
description of the conjugacy classes of such groups. In Sect. 6 we study the discrete
Fourier transform, a tool which will be used later in Sect. 7, where the irreducible
decomposition of the antisymmetric submodule is treated. Section 8 then provides an
explicit description of the irreducible decomposition of the modules M(c) contained
in the antisymmetric submodule. Section 9 describes the irreducible decomposition
of the submodule M(c), where c is any Sn-conjugacy class of symmetric absolute
involutions, and Sect. 10 contains a general result, Theorem 10.1, that includes all
partial results of the previous sections in a very concise way as well as a further
generalization to all groups G(r,p, q,n) satisfying GCD(p,n) = 1,2.

2 Notation and prerequisites

We let Z and N be the sets of integer numbers and nonnegative integer numbers. For
a, b ∈ Z such that a ≤ b, we denote [a, b] = {a, a + 1, . . . , b}, and, for n ∈ N, we let

[n] def= [1, n]. For r ∈ N, r > 0, we let Zr
def= Z/rZ and we denote by ζr the primitive

r th root of unity, ζr
def= e

2πi
r .
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The group G(r,n) consists of all n × n complex matrices satisfying the following
conditions:

• the nonzero entries are r th roots of unity;
• there is exactly one nonzero entry in every row and every column.

Let now p|r . The group G(r,p,n) is the subgroup of G(r,n) of the elements satis-
fying one extra condition:

• if we write every nonzero element as a power of ζr , the sum of all the exponents
of ζr appearing in the matrix is a multiple of p.

We denote by zi(g) ∈ Zr the exponent of ζr appearing in the ith row of g. We say

that zi(g) is the color of i in g, and the sum z(g)
def= z1(g)+· · ·+ zn(g) will be called

the color of g.
It is sometimes convenient to use an alternative notation to denote an element in

G(r,n), other than the matrix representation. We write g = [σz1
1 , . . . , σ

zn
n ] meaning

that, for all j ∈ [n], the unique nonzero entry in the j th row appears in the σj th col-
umn and equals ζ

zj
r (i.e., zj (g) = zj ). We call this the window notation of g. In this

case we also write gi = σ
zi

i . Observe that [σ1, . . . , σn] is actually a permutation in Sn,
and we denote it by |g|. We also observe that the map g �→ (|g|, (z1(g), . . . , zn(g)))

gives an isomorphism of G(r,n) with the semidirect product Sn � Z
n
r where Sn acts

on Z
n
r be permuting coordinates. Elements of G(r,n) also have a cyclic decompo-

sition which is analogous to the cyclic decomposition of permutations. A cycle c of
g ∈ G(r,n) is an object of the form c = (a

za1
1 , . . . , a

zak

k ), where (a1, . . . , ak) is a cycle
of the permutation |g|, and zai

= zai
(g) for all i ∈ [k]. We let k be the length of c,

z(c)
def= za1 + · · · + zak

be the color of c, and Supp(c)
def= {a1, . . . , ak} be the support

of c. We will sometimes write an element g ∈ G(r,n) as the product of its cycles.
For example, if g ∈ G(3,6) has window notation g = [30,41,61,20,52,12], we have
that the cyclic decomposition of g is given by g = (10,31,62)(21,40)(52). Note that
we use square brackets for the window notation and round brackets for the cyclic
notation.

If ν = (n0, . . . , nk) is a composition of n, we let G(r, ν)
def= G(r,n0) × · · · ×

G(r,nk) be the (Young) subgroup of G(r,n) given by

G(r, ν) = {[
σ

z1
1 , . . . , σ zn

n

] ∈ G(r,n) : σi ≤ n0 + · · · + nj

if and only if i ≤ n0 + · · · + nj

}
.

If S ⊆ [n], we also let

G(r,S) = {[
σ

z1
1 , . . . , σ zn

n

] ∈ G(r,n) : σzi

i = i0 for all i /∈ S
}
.

Consider a partition λ = (λ1, . . . , λl) of n. The Ferrers diagram of shape λ is a
collection of boxes, arranged in left-justified rows, with λi boxes in row i. We de-
note by Fer(r, n) the set of r-tuples (λ(0), . . . , λ(r−1)) of Ferrers diagrams such that∑ |λ(i)| = n.

The set of conjugacy classes of G(r,n) is naturally parameterized by Fer(r, n) in
the following way. If (α(0), . . . , α(r−1)) ∈ Fer(r, n), we let mi,j be the number of parts
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of α(i) equal to j . Then the set

clα(0),...,α(r−1) = {
g ∈ G(r,n) : g has mi,j cycles of color i and length j

}

is a conjugacy class of G(r,n), and all conjugacy classes are of this form.
The set of equivalence classes of irreducible complex representations of G(r,n) is

also parameterized by the elements of Fer(r, n). These representations are described
in the following result (where we use the symbol ⊗ for the internal tensor product of
representations and the symbol 	 for the external tensor product of representations).

Proposition 2.1 Let λ = (λ(0), . . . , λ(r−1)) ∈ Fer(r, n), ni = |λ(i)|, and ν = (n0,

. . . , nr−1). Consider the G(r,n)-representation ρλ given by

ρλ
def= IndG(r,n)

G(r,ν)

(
r−1⊙

i=0

(
γ ⊗i
ni

⊗ ρ̃λ(i)

)
)

,

where:

• ρ̃λ(i) is the natural extension to G(r,ni) of the irreducible (Specht) representation

ρλ(i) of Sni
, i.e., ρ̃λ(i) (g)

def= ρλ(i) (|g|) for all g ∈ G(r,ni).
• γni

is the one-dimensional representation of G(r,ni) given by

γni
: G(r,ni) → C

∗

g �→ ζ
z(g)
r .

Then the set Irr(r, n)
def= {ρ(λ(0),...,λ(r−1)) with (λ(0), . . . , λ(r−1)) ∈ Fer(r, n)} is a set of

representatives of the distinct equivalences classes of irreducible representations of
G(r,n).

Let us now consider a group G(r,p,n). Given q ∈ N such that q|r,pq|rn,
G(r,p,n) contains a unique cyclic scalar subgroup Cq of order q , generated
by [1r/q,2r/q, . . . , nr/q ]. In this case, we can consider the quotient group (see
[4, Sect. 4])

G(r,p, q,n)
def= G(r,p,n)

Cq

.

A group of this form is called a projective reflection group. Since the conditions of
existence of G(r,p, q,n) are symmetric with respect to p and q , we can give the
following

Definition Let G = G(r,p, q,n) as above. Its dual group G∗ is the group obtained
from G by simply exchanging the roles of p and q:

G∗ def= G(r, q,p,n).
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If λ = (λ(0), . . . , λ(r−1)) ∈ Fer(r, n), we define the color of λ by z(λ) = ∑
i i|λ(i)|,

and if p|r , we let Fer(r,p,1, n)
def= {λ ∈ Fer(r, n) : z(λ) ≡ 0 mod p}. The irreducible

representations of the group G(r,1, q, n) = G(r, q,n)∗ are given by those represen-
tations of G(r,n) whose kernels contain the scalar cyclic subgroup Cq . It follows
from this observation and the description in Proposition 2.1 that the set

Irr(r,1, q, n) = {
ρλ : λ ∈ Fer(r, q,1, n)

}

is a set of representatives of the distinct equivalences classes of irreducible represen-
tations of G(r,1, q, n).

The irreducible representations of G(r,p, q,n) can now be deduced essentially by
Clifford theory from those of G(r,1, q, n). We apply this theory in this case as the
final description will be very explicit.

The irreducible representations of G(r,1, q, n) may restrict to reducible rep-
resentations of G(r,p, q,n). Let us see which of them split into more than one
G(r,p, q,n)-module. Consider the color representation γn : G(r,n) → C

∗ given
by g �→ ζ

z(g)
r . We note that γ

r/p
n is a well-defined representation of G(r,1, q, n)

of order p and that the kernel of the cyclic group �p = 〈γ r/p
n 〉 of representations

of G(r,1, q, n) is G(r,p, q,n). The group �p acts on the set of the irreducible
representations of G(r,1, q, n) by internal tensor product. If we let ni = |λ(i)| and
ν = (n0, . . . , nr−1), we have that this action is given by

γ
r/p
n ⊗ ρλ(0),...,λ(r−1) = IndG(r,n)

G(r,ν)

(
(
γ

r/p
n |G(r,ν)

) ⊗
r−1⊙

i=0

(
γ ⊗i
ni

⊗ ρ̃λ(i)

)
)

= ρλ(r−r/p),...,λ(r−1),λ(0),...,λ(r−1−r/p) , (2)

and so it simply corresponds to a shift of r/p of the indexing partitions.
It is now natural to let Fer(r, q,p,n) be the set of orbits in Fer(r, q,1, n) with

respect to the action of �p described in (2). If λ = (λ(0), . . . , λ(r−1)) ∈ Fer(r, q,1, n),
we denote by [λ] or [λ(0), . . . , λ(r−1)] ∈ Fer(r, q,p,n) the corresponding orbit. More-
over, if [λ(0), . . . , λ(r−1)] ∈ Fer(r, q,p,n), we let S T [λ(0),...,λ(r−1)] be the set of stan-
dard multitableaux obtained by filling the boxes of any element in [λ(0), . . . , λ(r−1)]
with all the numbers from 1 to n appearing once, in such a way that rows are
increasing from left to right and columns are increasing from top to bottom (see
[4, Sect. 6]).

We will now state a theorem which applies in full generality to every group
G(r,p, q,n) and fully clarifies the nature of its irreducible representations. Here and
in what follows, if λ ∈ Fer(r, n), we let mp(λ) = |Stab�p(λ)|, and we observe that if
[λ] = [μ] ∈ Fer(r, q,p,n), then mp(λ) = mp(μ).

Theorem 2.2 For every λ ∈ Fer(r, q,1, n), we have that the equivalence class of the
restriction ResG(r,1,q,n)

G(r,p,q,n)
(ρλ) depends only on the class [λ] ∈ Fer(r,p, q,n), and it is

the direct sum of mp(λ) irreducible nonequivalent G(r,p, q,n) representations that
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we denote by ρ0[λ], . . . , ρ
mp(λ)−1
[λ] :

ResG(r,1,q,n)

G(r,p,q,n)(ρλ) =
mp(λ)−1⊕

j=0

ρ
j
[λ].

The set

Irr(r,p, q,n)
def= {

ρ
j
[λ] : [λ] ∈ Fer(r, q,p,n) and j ∈ [

0,mp(λ) − 1
]}

represents the distinct equivalence classes of irreducible representations of
G(r,p, q,n). Moreover, we have that dim(ρ

j
[λ]) = |S T [λ]| for all [λ] ∈ Fer(r, q,p,n)

and j ∈ [0,mp(λ) − 1].

If mp(λ) = 1, we sometimes write ρ[λ] instead of ρ0[λ], and we say that this is
an unsplit representation. On the other hand, whenever mp(λ) > 1, we say that all

representations of the form ρ
j
[λ] are split representations. We will come back to this

description of the irreducible representations in Sect. 6 with more details.
Let us now turn to give a brief account of the projective Robinson–Schensted cor-

respondence, which is an extension of the Robinson–Schensted correspondence for
the symmetric group [14, Sect. 7.11] and wreath products G(r,n) [15] to all groups
of the form G(r,p, q,n). This is a surjective map

G(r,p, q,n) −→
⋃

[λ]∈Fer(r,p,q,n)

S T [λ] × S T [λ]

such that, if P,Q ∈ S T [λ], then the cardinality of the inverse image of (P,Q) is
equal to mq(λ). In particular, we have that this correspondence is a bijection if and
only if GCD(q,n) = 1. We refer the reader to [4, Sect. 10] for the precise definition
and further properties of this correspondence.

Note that while in Theorem 2.2 we use elements [λ] ∈ Fer(r, q,p,n), in the
projective Robinson–Schensted correspondence the elements [λ] involved belong to
Fer(r,p, q,n). This is one of the reasons why it is natural to look at the dual groups
when studying the combinatorial representation theory of any projective reflection
group of the form G(r,p, q,n).

3 The model and its natural decomposition

A Gelfand model for a group G is a G-module affording each irreducible repre-
sentation of G exactly once. A Gelfand model was constructed in [5] for every
G(r,p, q,n) such that GCD(p,n) = 1,2. In order to illustrate it, we need to intro-
duce some new concepts and definitions.

An element g ∈ G(r,p, q,n) is an absolute involution if gḡ = 1, ḡ being the com-
plex conjugate of g (note that this is well defined since complex conjugation stabilizes
the cyclic scalar group Cq ). We denote by I (r, n) the set of the absolute involutions of
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the group G(r,n), and we similarly define I (r,p,n) and I (r,p, q,n). Moreover, we
let I (r,p,n)∗ stand for the set of the absolute involutions of the group G(r,p,n)∗.

The absolute involutions in I (r,p, q,n) can be either symmetric or antisymmetric,
according to the following definition:

Definition Let v ∈ G(r,p, q,n). We say that it is:

• symmetric if every lift of v in G(r,n) is a symmetric matrix;
• antisymmetric if every lift of v in G(r,n) is an antisymmetric matrix.

We observe that while a symmetric element is always an absolute involution, an
antisymmetric element of G(r,p, q,n) is an absolute involution if and only if q is
even (see [5, Lemma 4.2]). Antisymmetric elements can also be characterized in
terms of the projective Robinson–Schensted correspondence (see [5, Lemma 4.3]):

Lemma 3.1 Let v ∈ G(r,n). Then the following are equivalent:

(1) v is antisymmetric;
(2) r is even, and v �→ ((P0, . . . ,Pr−1), (P r

2
, . . . ,Pr−1,P0, . . . ,P r

2 −1)) for some
(P0, . . . ,Pr−1) ∈ S T λ and λ ∈ Fer(r, n) by the Robinson–Schensted correspon-
dence.

Now we can deduce the following combinatorial interpretation for the number of
antisymmetric elements in a projective reflection group. Since we often deal with

even integers, here and in the rest of this paper we let k′ def= k
2 whenever k is an even

integer.

Proposition 3.2 Let asym(r, q,p,n) be the number of antisymmetric elements in
G(r, q,p,n). Then

asym(r, q,p,n) =
∑

[μ,μ]∈Fer(r,q,p,n)

|S T [μ,μ]|,

where [μ,μ] ∈ Fer(r, q,p,n) means that [μ,μ] varies among all elements in
Fer(r, q,p,n) of the form [μ(0), . . . ,μ(r ′−1),μ(0), . . . ,μ(r ′−1)] for some μ = (μ(0),

. . . ,μ(r ′−1)) ∈ Fer(r ′, n′).

Proof Observe that if v ∈ G(r, q,n) is antisymmetric and if (P0, . . . ,Pr−1) and λ

are as in Lemma 3.1, then necessarily λ ∈ Fer(r, q,1, n) is of the form λ = (μ,μ),
for some μ ∈ Fer(r ′, n′). So, if v �→ (P,Q) is antisymmetric, we have that P is an
element in S T (μ,μ) for some μ ∈ Fer(r ′, n′) whilst Q is uniquely determined by P .
So we deduce that

asym(r, q,1, n) =
∑

(μ,μ)∈Fer(r,q,1,n)

|S T (μ,μ)|.

The result now follows since every antisymmetric element in G(r, q,p,n) has
p distinct lifts in G(r, q,n) and any element in S T [μ,μ] has p distinct lifts in
∪(ν,ν)∈[μ,μ]S T (ν,ν). �



J Algebr Comb (2012) 36:175–207 183

Before describing the Gelfand model for the involutory reflection groups, we need
to recall some further notation from [5]. If σ, τ ∈ Sn with τ 2 = 1, we let

• Inv(σ ) = {{i, j} : (j − i)(σ (j) − σ(i)) < 0};
• Pair(τ ) = {{i, j} : τ(i) = j �= i};
• invτ (σ ) = |{Inv(σ ) ∩ Pair(τ )|.

If g ∈ G(r,p, q,n), v ∈ I (r, q,p,n), g̃ any lift of g in G(r,p,n), and ṽ any lift
of v in G(r, q,n), we let

• invv(g) = inv|v|(|g|);
• 〈g, v〉 = ∑n

i=1 zi(g̃)zi(ṽ) ∈ Zr ;
• a(g, v) = z1(ṽ) − z|g|−1(1)(ṽ) ∈ Zr .

The verification that 〈g, v〉 and a(g, v) are well defined is straightforward.
We are now ready to present the Gelfand model constructed in [5].

Theorem 3.3 Let GCD(p,n) = 1,2, and let

M(r, q,p,n)
def=

⊕

v∈I (r,q,p,n)

CCv.

Define � : G(r,p, q,n) → GL(M(r, q,p,n)) by

�(g)(Cv)
def=

{
ζ

〈g,v〉
r (−1)invv(g)C|g|v|g|−1 if v is symmetric,

ζ
〈g,v〉
r ζ

a(g,v)
r C|g|v|g|−1 if v is antisymmetric.

(3)

Then (M(r, q,p,n),�) is a Gelfand model for G(r,p, q,n).

Let us have a short digression to recall what happens for the wreath products
G(r,n). In this case the setting is much simpler since the group G(r,n) coincides with
its dual, there are no split representations, and no antisymmetric absolute involutions.
Moreover, the absolute involutions are characterized as those elements v satisfying

v �→ (P,P )

for some P ∈ S T λ, λ ∈ Fer(r, n), via the Robinson–Schensted correspondence. We

write in this case Sh(v)
def= λ. If c is an Sn-conjugacy class of absolute involutions

in G(r,n), we also let Sh(c) = ∪v∈cSh(v) ⊂ Fer(r, n). The main result in [6] is the
following theorem of compatibility with respect to the Robinson–Schensted corre-
spondence of the irreducible decomposition of the submodules M(c) of M(r,1,1, n)

defined in the introduction.

Theorem 3.4 Let c be an Sn-conjugacy class of absolute involutions in G(r,n). Then
the following decomposition holds:

M(c) ∼=
⊕

λ∈Sh(c)

ρλ.
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An analogous result about the model for G(r,n) constructed by Adin, Postnikov,
and Roichman [1] was conjectured in [1, Conjecture 7.1] and proved by Marberg
in [10].

The main target of this paper is to establish a result analogous to Theorem 3.4
for all groups G(r,p, q,n) satisfying GCD(p,n) = 1,2 (this will be given as Theo-
rem 10.1). In this general context we also have the decomposition

M = MSym ⊕ MAsym,

where MSym is the symmetric submodule of M , i.e., the submodule spanned by all
elements Cv indexed by symmetric absolute involutions, and MAsym is the antisym-
metric submodule defined similarly. In fact, the main step in the description of the
irreducible decomposition of the modules M(c) will be an intermediate result that
provides the irreducible decomposition of the symmetric and the antisymmetric sub-
modules.

4 An outline: the irreducible decomposition of M(c) in type D

In this section we give an outline of the proofs of the main results in the special case
Dn = G(2,2, n). Here we may take advantage of some results which are already
known in the literature, such as the description of the split conjugacy classes and of
the split representations and their characters. Recall that Dn is a subgroup of index 2
of the group Bn = G(2, n) of signed permutations and observe that its dual group is
given by D∗

n = G(2,1,2, n) = Bn/ ± I .
The irreducible representations of Bn are indexed by elements (λ,μ) ∈ Fer(2, n).

If (λ,μ) ∈ Fer(2, n) is such that λ �= μ, then the two representations ρ(λ,μ) and ρ(μ,λ),
when restricted to Dn, are irreducible and isomorphic by Theorem 2.2, and we denote
this representation by ρ[λ,μ]. If n = 2m is even, Theorem 2.2 also implies that the
irreducible representations of B2m of the form ρ(μ,μ), when restricted to Dn, split
into two irreducible representations that we denote by ρ0[μ,μ] and ρ1[μ,μ].

The conjugacy classes of Bn contained in Dn are those indexed by ordered pairs
of partitions (α,β), with |�(β)| ≡ 0 mod 2. They all do not split as Dn-conjugacy
classes with the exception of those indexed by (2α,∅), which split into two Dn-
conjugacy classes that we denote by cl02α and cl12α (and we make the convention that
cl02α is the class containing all the elements g belonging to the Bn-class labeled by
(2α,∅) and satisfying zi(g) = 0 for all i ∈ [n]).

The characters of the unsplit representations are clearly the same as those of the
corresponding representations of the groups Bn (being the corresponding restric-
tions). The characters of the split representations, denoted χε[μ,μ], are given by the
following result (see [11, 13]).

Lemma 4.1 Let g ∈ D2m, and let μ � m. Then

χε[μ,μ](g) =
{ 1

2χ(μ,μ)(2α,∅) + (−1)ε+η2�(α)−1χμ(α) if g ∈ clη2α,

1
2χ(μ,μ)(g) otherwise,
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where ε, η = 0,1, χ(μ,μ) is the character of the B2m-representation ρ(μ,μ), and χμ is
the character of Sm indexed by μ.

In Sect. 5 we prove a generalization of this result for all groups G(r,p,n) such
that GCD(p,n) = 2.

An antisymmetric element in B2m is necessarily the product of cycles of length
2 and color 1, i.e., cycles of the form (a0, b1). It follows that the antisymmetric el-
ements of B2m, and hence also those of B2m/ ± I , are all Sn-conjugate. This is a
special feature of this case and is not true for generic involutory reflection groups
(see Sect. 8). We denote by c1 the unique Sn-conjugacy class of antisymmetric ab-
solute involutions in B2m/ ± I , and we will now find out which of the irreducible
representations of D2m are afforded by the antisymmetric submodule MAsym, which
coincides in this case with M(c1). The crucial observation is the following result,
which is a straightforward consequence of Lemma 4.1.

Remark Let g ∈ D2m. Then

∑

μ�m

(
χ0[μ,μ] − χ1[μ,μ]

)
(g) =

{
(−1)η2�(α)

∑
μ�m χμ(α) if g ∈ clη2α,

0 otherwise.
(4)

The main result here is the following.

Theorem 4.2 Let c1 be the Sn-conjugacy class consisting of the antisymmetric invo-
lutions in D∗

n = Bn/ ± I . Then

M
(
c1) ∼=

⊕

μ�m

ρ1[μ,μ].

Proof We present here a sketch of the proof only since this result will be generalized
and proved in full detail in Sect. 7.

Consider the two representations φ0 and φ1 of D2m on the vector space M(c1)

given by

φ0(g)(Cv)
def= (−1)〈g,v〉C|g|v|g|−1, φ1(g)(Cv)

def= (−1)〈g,v〉(−1)a(g,v)C|g|v|g|−1

(notice that φ1(g) = �(g)|M(c1)). We will simultaneously prove that

χφ0 =
∑

μ�m

χ0[μ,μ] and χφ1 =
∑

μ�m

χ1[μ,μ],

the latter equality being equivalent to the statement that we have to prove. To this end,
we observe that it will be enough to show that

χφ0 − χφ1 =
∑

μ�m

(
χ0[μ,μ] − χ1[μ,μ]

)
. (5)
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In fact if (5) is satisfied, we have

χφ1 +
∑

μ�m

χ0[μ,μ] = χφ0 +
∑

μ�m

χ1[μ,μ]. (6)

Now, since the irreducible characters are linearly independent, it follows that φ0 has
a subrepresentation isomorphic to ⊕ρ0[μ,μ], and similarly for φ1. By Theorem 2.2 and
Proposition 3.2 we also have that

∑

μ�m

dim
(
ρ0[μ,μ]

) =
∑

[μ,μ]∈Fer(2,1,2,2m)

|S T [μ,μ]| =
∣∣c1

∣∣ = dim
(
φ0)

and, analogously,
∑

μ�m dim(ρ1[μ,μ]) = dim(φ1), and we are done.
To prove (5), one has to compute explicitly the difference χφ0 −χφ1 and show that

this agrees with the right-hand side of (4). To this end, we will need to observe that∑
χμ is actually the character of a Gelfand model of the symmetric group Sm, which

has an already known combinatorial interpretation (see, e.g., [5, Proposition 3.6]). �

Let us now consider a class c of symmetric involutions in D∗
n = Bn/ ± I (note

that in this case an absolute involution is actually an involution since all the involved
matrices are real). The lift of c to Bn is the union of two Sn-conjugacy classes c1
and c2 of Bn that may coincide. Since we already know the irreducible decompo-
sitions of M(c1) and of M(c2) as Bn-modules (by Theorem 3.4) and hence also as
Dn-modules (by Theorem 2.2), the main point in the proof of the following result
will be that M(c) is actually isomorphic to a subrepresentation of the restriction of
M(c1) ⊕ M(c2) to Dn, together with straightforward applications of Theorems 3.3
and 4.2.

Theorem 4.3 Let c be an Sn-conjugacy class of symmetric involutions in D∗
n =

Bn/ ± I . Then

M(c) ∼=
⊕

[λ,μ]∈Sh(c)

ρ0[λ,μ].

In Sect. 9 one can find the formal definition and an explicit simple combinatorial
description of the sets Sh(c) for any symmetric Sn-conjugacy class c of absolute
involutions in G(r,p,n)∗. This is illustrated in the following example.

Example 4.4 Let v ∈ B6/ ± I be given by v = [61,40,30,20,51,11]. Then the Sn-
conjugacy class c of v has 90 elements, and the decomposition of the Dn-module
M(c) is given by all representations ρ0[λ,μ], [λ,μ] ∈ Fer(2,1,2,6), where both λ and
μ are partitions of 3 and have exactly one column of odd length. Therefore,

M(c) ∼= ρ[
,

] ⊕ ρ0[
,

] ⊕ ρ0[
,

].

Note in particular that in this case we obtain both unsplit and split representations.
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5 On the split conjugacy classes

In the more general case of any involutory reflection group G(r,p,n), we have
not been able to find the nature of the conjugacy classes that split from G(r,n) to
G(r,p,n) in the literature. This is the content of the present section.

Let r be even, so that it makes sense to talk about even and odd elements in Zr .
Let c be a cycle in G(r,n) of even length and even color. If c = (i

zi1
1 , i

zi2
2 , . . . , i

zi2d

2d ),
we define the signature of c to be

sign(c) = zi1 + zi3 + · · · + zi2d−1 = zi2 + zi4 + · · · + zi2d
∈ Z2,

so that the signature can be either 0 or 1. If g is a product of disjoint cycles of even
length and even color, we define the signature sign(g) of g as the sum of the signa-
tures of its cycles.

Lemma 5.1 Let r be even, and let c be a cycle in G(r,n) of even length and even
color. Let h ∈ G(r,n). Then

sign
(
h−1ch

) = sign(c) +
∑

j∈|h|−1(Supp(c))

zj (h) ∈ Z2.

In particular, if g ∈ G(r,n) is a product of cycles of even length and even color, then

sign
(
h−1gh

) = sign(g) + z(h) ∈ Z2.

Proof Let |c| = (i1, i2, . . . , i2d). We have that h−1ch is a cycle and |h−1ch| =
(τ−1(i1), . . . , τ

−1(i2d)), where τ = |h|. Therefore,

sign
(
h−1ch

) =
∑

j odd

zτ−1(ij )

(
h−1ch

)

=
∑

j odd

zτ−1(ij )(h) + zij (c) − zτ−1(ij+1)
(h)

= sign(c) +
∑

j∈|h|−1(Supp(c))

zj (h),

where the sums in the first two lines are meant to be over all odd integers j ∈ [2d]. �

It follows from Lemma 5.1 that the conjugacy classes clα of G(r,n) contained in
G(r,p,n), where α has the special form α = (2α(0),∅,2α(2),∅, . . . ,2α(r−2),∅), split
in G(r,p,n) into (at least) two conjugacy classes, according to the signature. How
about the G(r,n)-conjugacy classes of a different form? Do they split as G(r,p,n)-
classes?

If G is a group and g ∈ G, we denote by clG(g) the conjugacy class of g and by
CG(g) the centralizer of g in G. If g ∈ G(r,p,n), then the G(r,n)-conjugacy class
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clG(r,n)(g) of g splits into more than one G(r,p,n)-conjugacy class if and only if

|clG(r,n)(g)|
|clG(r,p,n)(g)| =

|G(r,n)|
|CG(r,n)(g)|
|G(r,p,n)|

|CG(r,p,n)(g)|
= [G(r,n) : G(r,p,n)]

[CG(r,n)(g) : CG(r,p,n)(g)]

= p

[CG(r,n)(g) : CG(r,p,n)(g)] > 1,

i.e.,

clG(r,n)(g) splits if and only if
[
CG(r,n)(g) : CG(r,p,n)(g)

]
< p.

The following proposition clarifies which conjugacy classes of G(r,n) split in
G(r,p,n).

Proposition 5.2 Let g ∈ G(r,p,n), and let cl(g) be its conjugacy class in the group
G(r,n). Then the following holds:

(1) if GCD(p,n) = 1, cl(g) does not split as a class of G(r,p,n);
(2) if GCD(p,n) = 2, cl(g) splits into two different classes of G(r,p,n) if and only

if all the cycles of g have:

• even length,
• even color,

i.e., if cl(g) = cl(2α(0),∅,2α(2),∅,...,2α(r−2),∅).

Proof Let G = G(r,n) and H = G(r,p,n). We first make a general observation.
If CG(g) contains an element x such that z(x) ≡ 1 mod p, we can split the group
CG(g) into cosets modulo the subgroup 〈x〉: in each coset there is exactly one element
having color 0 mod p every p elements. Thus,

[
CG(g) : CH (g)

] = p,

and cl(g) does not split in H .
Now let GCD(p,n) = 1. By Bézout’s identity, there exist a, b such that an+bp =

1, i.e., there exists a such that the scalar matrix ζ a
r Id has color 1 mod p, so that cl(g)

does not split thanks to the observation above.
Assume now that GCD(p,n) = 2. Arguing as above, there exist a, b such that

ap + bn = 2, so we know that CG(g) contains at least an element ζ a
r Id with color 2

mod p.
If there exists an element x of odd color in CG(g), the matrix (ζ a

r Id)i · x has color
1 for some i, so again cl(g) does not split in H .

On the other hand, if there are no elements of odd color in CG(g), every coset of
〈ζ a

r Id〉 has exactly 1 element belonging to G(r,p,n) out of p′ elements. Thus,
[
CG(g) : CH (g)

] = p′,

and cl(g) splits into p/p′ = 2 classes.
Let us see when this happens according the cyclic structure of g.
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(1) If g has at least a cycle of odd color, say c, c is in CG(g), and cl(g) does not split.
(2) If g has a cycle of odd length, say (a

z1
1 , . . . , a

z2d+1
2d+1), then (a1

1, . . . , a1
2d+1) has odd

color and is in CG(g), so cl(g) does not split.
(3) We are left to study the case of g being a product of cycles all having even length

and even color. Thanks to Lemma 5.1, every element in CG(g) has even color, so
by the above argument cl(g) splits into exactly two classes, and we are done. �

If 2α = (2α(0),∅,2α(2),∅, . . . ,2α(r−2),∅) is such that cl2α ⊂ G(r,p,n) (i.e., if∑
2i�(α(2i)) ≡ 0 mod p), we denote by cl02α the G(r,p,n)-conjugacy class con-

sisting of all elements in cl2α having signature 0, and we similarly define cl12α .

6 The discrete Fourier transform

Recall from (2) that there is an action of the cyclic group �p generated by γ
r/p
n on

the set of irreducible representations of G(r,n). This action allows us to introduce
the discrete Fourier transform, which will be essential in what follows for the case
GCD(p,n) = 2. We will parallel and generalize in this section an argument due to
Stembridge ([13], Sects. 6 and 7B).

We recall the following definition from [13].

Definition Let λ ∈ Fer(r, n), (V ,ρλ) be a concrete realization of the irreducible
G(r,n)-representation ρλ on the vector space V , and γ be a generator for stab�p(ρλ).
An associator for the pair (V , γ ) is an element S ∈ GL(V ) exhibiting an explicit iso-
morphism of G(r,n)-modules between

(V ,ρλ) and (V , γ ⊗ ρλ).

By Schur’s lemma, Smp(λ) is a scalar, and therefore S can be normalized in such a
way that Smp(λ) = 1.

Recall from Theorem 2.2 that a representation ρλ of G(r,n) splits into exactly
mp(λ) irreducible representations of G(r,p,n).

Definition Let λ ∈ Fer(r, n), and let S be an associator for the G(r,n)-module
(V ,ρλ). Then the discrete Fourier transform with respect to S is the family of
G(r,p,n)-class functions �i

λ : G(r,p,n) → C
∗ given by

�i
λ(h) := tr

(
Si ◦ h

)
, i ∈ [

0,mp(λ) − 1
]
.

A more detailed analysis of the associator shows that the irreducible representa-
tions ρi[λ] are exactly the eigenspaces of the associator S, and we make the convention

that, once an associator S has been fixed, the representation ρi[λ] is the one afforded

by the eigenspace of S of eigenvalue ζ i
mp(λ). Therefore,

�i
λ(h) =

mp(λ)−1∑

j=0

ζ
ij

mp(λ)
χ

j
[λ](h) (7)
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for all h ∈ G(r,p,n), χ
j
[λ] being the character of the split representation ρ

j
[λ] of

G(r,p,n).
Now let us consider a representation ρλ. Looking at the action described in (2), we

see that mp(λ) = |Stab�p(ρλ)| = s only if λ = (λ(0), . . . , λ(r−1)) consists of a smaller
pattern repeated s times. It follows that mp(λ) is necessarily a divisor of both n and p.

In particular, if GCD(p,n) = 2, then mp(λ) = 1,2, and so the stabilizer of a rep-
resentation with respect to �p can either be trivial or be {Id, γ r ′

n }.

Notation From now on, when GCD(p,n) = 2, we use for the representation
γ r ′
n (g) = (−1)z(g) the notation δ(g).

When Stab�p(ρλ) = {Id, δ}, the representation ρλ has the form ρ(μ,μ) with μ ∈
Fer(r ′, n′). Notice that μ may be considered as belonging to Fer(r ′,1,p′, n′): acting
on μ with an element of Cp′ corresponds to acting on (μ,μ) with an element of Cp ,
and we know that elements of Fer(r, n) in the same class modulo Cp parameterize the
same irreducible representation of G(r,p,n). These ρ(μ,μ) are the representations of
G(r,n) that split as G(r,p,n)-modules. As in the case of Dn, they split into two dif-
ferent representations that we denote by ρ0[μ,μ] and ρ1[μ,μ]. We also denote by χ0[μ,μ]
and χ1[μ,μ] the corresponding characters. Then the discrete Fourier transform of ρμ,μ

is given by the two functions

�0
μ,μ(h) = χ0[μ,μ](h) + χ1[μ,μ](h); �1

μ,μ(h) = χ0[μ,μ](h) − χ1[μ,μ](h).

In the rest of this section, we exploit the definition of �1
μ,μ to provide an explicit

computation of the difference character χ0[μ,μ] − χ1[μ,μ] for every G(r,p,n) with
GCD(p,n) = 2. This computation will turn out to be of crucial importance in the
proof of Theorem 7.1.

Recall that when GCD(p,n) = 2, the conjugacy classes of G(r,n) of the
form cl2α split into two distinct G(r,p,n)-classes cl02α and cl12α , where 2α =
(2α(0),∅,2α(2),∅, . . . ,2α(r−2),∅).

Notation In what follows, we often need to compute class functions on G(r,p,n).
For this reason, it will be useful to fix one special element, that we call normal, for
each G(r,p,n)-conjugacy class. If the conjugacy class is not of the form cl12α , the
normal element h is defined as follows:

• the elements of each cycle of h are chosen in increasing order, from the cycles of
smallest color to the cycles of biggest color;

• in every cycle of color i, all the elements have color 0 but the biggest one whose
color is i.

If the class is of the form cl12α the normal element h is defined similarly with the
unique difference that if the cycle containing n has color 2j , then the color of n is
2j − 1, and the color of n − 1 is 1. For example, if

2α =
(

,∅, ,∅, ,∅
)
,
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then the normal element in cl02α is (1,2)(3,4,5,62)(7,8,9,104)(11,124), and the
normal element in cl12α is (1,2)(3,4,5,62)(7,8,9,104)(111,123), where we have
omitted all the exponents equal to 0.

Proposition 6.1 Let g ∈ G(r,p,n) and μ ∈ Fer(r ′, n′). Let χμ denote the character
of the representation of G(r ′, n′) indexed by μ. Then

�1
μ,μ(g) =

{
(−1)η2�(α)χμ(α(0), α(2), . . . , α(r−2)) if g ∈ clη2α,

0 if g belongs to an unsplit conjugacy class,

where, if α = (α(0),∅, α(2),∅, . . . , α(r−2),∅), �(α) = ∑
�(α(i)).

Proof When g does not belong to a split conjugacy class, �1
μ,μ(g) = 0. In fact, χ0[μ,μ]

and χ1[μ,μ] are conjugate characters, so they must coincide on every element belong-
ing to an unsplit class.

When g does belong to a split conjugacy class, this proof consists of three steps:

(1) Provide an explicit description for the G(r,n)-module ρμ,μ.
(2) Build an associator S for the G(r,n)-module ρμ,μ.
(3) Compute the trace tr(S(g)) = �1

μ,μ(g).

Let us start with the first step. For brevity, we set τ = (t0, . . . , tr ′−1), where ti =
|μ(i)|, and G(r, (τ, τ ))

def= G(r, t0)× · · ·×G(r, tr ′−1)×G(r, t0)× · · ·×G(r, tr ′−1) <

G(r,n).
Our representation ρμ,μ looks like this (see Theorem 2.1):

ρμ,μ = IndG(r,n)
G(r,(τ,τ ))

(
ρ̃μ(0) 	 (γn1 ⊗ ρ̃μ(1) ) 	 · · · 	 (

γ ⊗(r ′−1)
nr′−1

⊗ ρ̃
μ(r′−1)

)

	 (
γ ⊗r ′
n0

⊗ ρ̃μ(0)

) 	 (
γ ⊗(r ′+1)
n1

⊗ ρ̃μ(1)

) 	 · · · 	 (
γ ⊗(r−1)
nr′−1

⊗ ρ̃
μ(r′−1)

))

= IndG(r,n)

G(r,n′)×G(r,n′)

(
IndG(r,n′)×G(r,n′)

G(r,(τ,τ ))

(
ρ̃μ(0) 	 (γn1 ⊗ ρ̃μ(1) ) 	 · · ·

	 (
γ ⊗(r ′−1)
nr′−1

⊗ ρ̃
μ(r′−1)

) 	 (
γ ⊗r ′
n0

⊗ ρ̃μ(0)

) 	 (
γ ⊗(r ′+1)
n1

⊗ ρ̃μ(1)

) 	 · · ·

	 (
γ ⊗(r−1)
nr′−1

⊗ ρ̃
μ(r′−1)

)))

= IndG(r,n)

G(r,n′)×G(r,n′)
(
ρμ 	 (δ ⊗ ρμ)

)
.

We need to give an explicit description of this representation of G(r,n). We consider

the set Θ of two-rowed arrays
[

t1 ... tn′
tn′+1 ... tn

]
such that {t1, . . . , tn} = {1, . . . , n} and the

ti ’s increase on each of the two rows. Each element in Θ can be identified with the
permutation whose window notation is [t1, . . . , tn].

Proposition 6.2 Let g ∈ G(r,n). There exists a unique t ′ ∈ Θ : g = t ′(x1, x2) for an
element (x1, x2) ∈ G(r,n′) × G(r,n′).
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Proof Existence. Let g = [σz1
1 , . . . , σ

zn
n ], and let t be an element of Θ whose first and

second lines are filled with the (reordered) integers σ1, . . . , σn′ , and σn′+1, . . . , σn, re-
spectively. Since we need to obtain g = t (x1, x2) with (x1, x2) ∈ G(r,n′) × G(r,n′),
we have to check that t−1g ∈ G(r,n′) × G(r,n′), i.e.,

1 ≤ t−1|g|(i) = t−1σi ≤ n′ if i ∈ [
n′],

n′ < t−1|g|(i)t−1σi ≤ n if i ∈ [
n′ + 1, n

]
,

and this is an immediate consequence of the way t was constructed.
Uniqueness. This is due to cardinality reasons:

|Θ|∣∣G(
r, n′) × G

(
r, n′)∣∣ =

(
n

n′

)(
n′!rn′)2 = ∣∣G(r,n)

∣∣. �

Thanks to Proposition 6.2, a set of coset representatives for

G(r,n)/
(
G(r,n′) × G(r,n′)

)

is given by Θ . Let T be the vector space spanned by the elements of Θ . The vector
space associated to the representation we are dealing with can be identified with T ⊗
V ⊗ V , and the action of ρμ,μ on it is given by

ρμ,μ : G(r,n) −→ GL(T ⊗ V ⊗ V )

x �−→ ρμ,μ(x) : T ⊗ V ⊗ V −→ T ⊗ V ⊗ V

t ⊗ v1 ⊗ v2 �−→ δ(x2)t
′ ⊗ ρμ(x1)(v1) ⊗ ρμ(x2)(v2),

where t ′, x1, and x2 are uniquely determined by the relation xt = t ′(x1, x2) with
t ∈ Θ , (x1, x2) ∈ G(r,n′) × G(r,n′).

We are now ready for the second step.

Proposition 6.3 The automorphism S ∈ GL(T ⊗ V ⊗ V ) defined by

S(t ⊗ v1 ⊗ v2) = t̂ ⊗ v2 ⊗ v1,

where t̂ is the element of Θ obtained from t by exchanging its rows, is an associator
for T ⊗ V ⊗ V .

Proof All we have to show is that S is an isomorphism of representations between
ρμ,μ and δ ⊗ ρμ,μ, i.e.,

S ◦ ρμ,μ(g) = δ(g)ρμ,μ(g) ◦ S.

The set of permutations together with the diagonal matrix [10,20, . . . , n1] generate
G(r,n), so this verification can be accomplished when g is one of these elements
only. Just exploit Proposition 6.2 to write gt as a product t ′(g1, g2), and notice that

t̂ = ts if s is the tabloid
[

n′+1 ... n

1 ... n′
]
. Also, when g = [10,20, . . . , n1], the equality

ĝt = gts = t (g1, g2)s = ts(g2, g1) = t̂ (g2, g1) is used. �
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Finally, the last step: let us compute �1
μ,μ(g) for every g belonging to a split

conjugacy class. Since �1
μ,μ is a class function, we can choose g to be the normal

element of each G(r,p,n)-conjugacy class. In fact, even less is needed: it will be
enough to choose the normal elements of the classes cl02α only, because of the useful
relation (see [13, Proposition 6.2])

�1
μ,μ

(
ghg−1) = δ(g)�1

μ,μ(h) ∀g ∈ G(r,n),h ∈ G(r,p,n). (8)

So we compute �1
μ,μ(h), where h is the normal element of the class cl02α . By def-

inition, �1
μ,μ(h) = tr(S ◦ h). Now, given t ′ ∈ Θ and (h1, h2) ∈ G(r,n′) × G(r,n′)

satisfying ht = t ′(h1, h2), if vi , vj are vectors of a basis of V , then

S
[
h(t ⊗ vi ⊗ vj )

] = S
[
δ(h2)t

′ ⊗ h1vi ⊗ h2vj

]

= δ(h2)t̂
′ ⊗ h2vj ⊗ h1vi

= t̂ ′ ⊗ h2vj ⊗ h1vi,

where the last equality depends on the special way we chose h. Namely, since
(h1, h2) = (t ′)−1ht with t, t ′ ∈ Sn, the colors of (h1, h2) are the same as in h and
they are simply permuted, so in (h1, h2) the colors are all even. So the trace we are
computing is given by

tr(S ◦ h) =
∑

i,j=1,...,n′,t=t̂ ′

(
ρμ(h2)

)
i,j

(
ρμ(h1)

)
j,i

=
∑

t=t̂ ′
χμ(h1h2).

Recall the way t ′ is constructed in the proof of Proposition 6.2: t ′ = t̂ if and only if
|h|(ti ) belongs to {tn′+1, . . . , t2n} for every i ∈ [n′]:

{tn′+1, . . . , t2n} = {|h|(ti )
}

1≤i≤n′ ,

and, vice versa,

{t1, . . . , tn′ } = {|h|(ti)
}
n′<i≤n

.

So the t’s satisfying t = t̂ ′ are those t such that, for every cycle of h, the consecutive
numbers are in opposite rows. We have two possibilities for each cycle, so there are
2�(α) choices for t in total.

Furthermore, suppose that h contains a cycle of length 2k and color 2j . Then,
according to which of the two possible choices is made for t , a cycle of length k and
color j will be contained either in h1 or in h2. Thus, h1h2 belongs to the G(r ′, n′)-
class clα(0),α(2),...,α(r−2) . So our final result is

�1
μ,μ(h) = 2�(α)χμ

(
α(0), α(2), . . . , α(r−2)

)
.

Let us now turn to the elements belonging to the other split conjugacy class cl12α .
If h belongs to cl02α , thanks to Lemma 5.1,

ghg−1 ∈ cl12α ⇒ z(g) = 1 mod 2 ⇒ δ(g) = −1,
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and therefore (see (8))

�1
μ,μ

(
ghg−1) = δ(g)�1

μ,μ(h) = −2�(α)χμ
(
α(0), α(2), . . . , α(r−2)

)
. �

7 The antisymmetric submodule

This section is the real heart of this paper. We study the irreducible decomposition
of the antisymmetric submodule MAsym (and hence also of the symmetric submod-
ule MSym) of the Gelfand model M(r,1,p,n) of the group G(r,p,n) constructed in
Theorem 3.3. More precisely, we will show that MAsym affords exactly one represen-
tation of each pair of split irreducible representations of G(r,p,n); namely, the one
labeled with 1.

If GCD(p,n) = 1, the antisymmetric submodule vanishes (and there are no split
representations), so in this section we can always assume that GCD(p,n) = 2.

Theorem 7.1 Let MAsym be the antisymmetric submodule of the Gelfand model
M(r,1,p,n) of G(r,p,n). Then

(MAsym, �) ∼=
⊕

[μ,μ]∈Fer(r,1,p,n)

ρ1[μ,μ].

Proof The strategy in this proof is the one outlined for the case of Weyl groups of
type D. So we consider the two representations of G(r,p,n),

(
MAsym, φ0) and

(
MAsym, φ1),

given by

φ0(g)(Cv)
def= ζ

〈g,v〉
r C|g|v|g|−1 , φ1(g)(Cv)

def= ζ
〈g,v〉
r ζ

a(g,v)
r C|g|v|g|−1

(notice that φ1(g) = �(g)|MAsym ). The main idea of this proof is to exploit Proposi-
tion 6.1 to show that

χφ0(g) − χφ1(g) =
∑

[μ]∈Fer(r ′,1,p′,n′)
χ0[μ,μ](g) −

∑

[μ]∈Fer(r ′,1,p′,n′)
χ1[μ,μ](g), (9)

where we observe that if [μ] ranges in Fer(r ′,1,p′, n′), then [μ,μ] ranges in
Fer(r,1,p,n). First of all, we will compute the right-hand side of (9). We already
know that it vanishes on every g belonging to an unsplit conjugacy class. So, let
g ∈ clη2α .

Let χM denote the character of a model for the group G(r ′, n′). Then
∑

[μ]∈Fer(r ′,1,p′,n′)

(
χ0[μ,μ] − χ1[μ,μ]

)
(g) = 1

p′
∑

μ∈Fer(r ′,n′)

(
χ0[μ,μ] − χ1[μ,μ]

)
(g)

= 1

p′ (−1)η
∑

μ∈Fer(r ′,n′)
2�(α)χμ(α)

= 1

p′ (−1)η2�(α)χM(α), (10)
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where the first equality holds because the contribution of every μ ∈ Fer(r ′, n′) pro-
vides p′ copies of the same irreducible representation of G(r,p,n), the second one
follows from Proposition 6.1, and χM(α) denotes the value of the character χM of a
Gelfand model of G(r ′, n′) on any element of the conjugacy class clα .

Now, following [5], for g ∈ G(r,n), we denote by Π2,1(g) the set of partitions of
the set of disjoint cycles of g into:

• singletons;
• pairs of cycles having the same length.

If π ∈ Π2,1(g), we let �(π) be the number of parts of π , and pairj (π) be the number
of parts of π which are pairs of cycles of length j . Moreover, if s ∈ π is a part of π ,
we let z(s) be the sum of the colors of the (either 1 or 2) cycles in s.

If g and g′ belong to the same conjugacy class clα , there is clearly a bijection
between Π2,1(g) and Π2,1(g′) preserving the statistics �(π) and pairj (π), and the
colors z(s) of the parts of π ; therefore we sometimes write Π2,1(α) to mean Π2,1(g)

for some g ∈ clα .
The set Π2,1(α) can be used to describe the character of a Gelfand model of

G(r ′, n′) (see [5, Proposition 3.6]):

χM(α) =
∑

π

(
r ′)�(π)

∏

j

jpairj (π) (11)

for all α ∈ Fer(r ′, n′), where the sum is taken over all elements of Π2,1(α) having no
singletons of even length and such that z(s) = 0 ∈ Zr ′ for all s ∈ π .

Let us now evaluate χφ0(g)−χφ1(g). To this aim, we recall some further notation
used in [5]. Consider, for all g ∈ G(r,p,n) and ε ∈ Z2, the set

Aε(g) := {
w ∈ G(r,n) : w is antisymmetric, and |g|w|g|−1 = (−1)εw

}
.

Any w ∈ Aε(g) determines a partition π(w) ∈ Π2,1(g): a cycle c is a singleton of
π(w) if the restriction of |w| to Supp(c) is a permutation of Supp(c), and {c, c′} is a
pair of π(w) if the restriction of |w| to Supp(c) is a bijection between Supp(c) and

Supp(c′). Finally, if π ∈ Π2,1(g), we let Aε
π

def= {w ∈ Aε(g) : π(w) = π}. Then the
set Aε(g) can be decomposed into the disjoint union

Aε(g) =
⋃

π∈Π2,1(g)

Aε
π . (12)

With the above notation, we have

χφ0(g) − χφ1(g) = 1

p

∑

π∈Π2,1(g)

∑

A0
π∪A1

π

ζ
〈g,w〉
r

(
1 − ζ

a(g,w)
r

)
.

Since (see [5, Proof of Lemma 5.7])

a(g,w) =
{

0 if w ∈ A0
π (g),

r ′ if w ∈ A1
π (g),
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Table 1 The sets A1
s |s| A1

s

{(i1, . . . , id )}
ih �→ ζ k

r (−1)hi
h+ d

2with d ≡ 2 mod 4

{(i1, . . . , id )}
∅with d �≡ 2 mod 4

{(i1, . . . , id ), (j1, . . . , jd )},
∅with d odd

{(i1, . . . , id ), (j1, . . . , jd )}, ih �→ ζ k
r (−1)hjh+l

with d even and jh �→ −ζ k
r (−1)h−l ih−l

we find

χφ0(g) − χφ1(g) = 1

p′
∑

π∈Π2,1(g)

∑

w∈A1
π

ζ
〈g,w〉
r . (13)

It is shown in [5, Sect. 5] that if π = {s1, . . . , sh}, then the set A1
π has a natural

decomposition A1
π = A1

s1
× · · · × A1

sh
, i.e., every w in A1

π can be written as a prod-
uct w = w1 · . . . · wh, with wi ∈ A1

si
. The sets A1

si
depend on the structure of |si |

only and are described in Table 1. In this table the indices of i1, . . . , id , j1, . . . , jd

should be considered in Zd , and in any box of the table the parameters k ∈ Zr and
l ∈ Zd are arbitrary but fixed. For example, if s = {(1,2), (3,4)} and r = 4, then A1

s

consists of eight elements having either the form (1k+2,3k)(2k,4k+2) or the form
(1k+2,4k)(2k,3k+2)} as k varies in {0,1,2,3}. This allows us to focus on the single
sets A1

s via the identity
∑

w∈A1
π

ζ
〈g,w〉
r =

∑

w1∈A1
s1

,...,wh∈A1
sh

ζ
〈g,w1,...,wh〉
r

=
∑

w1∈A1
s1

,...,wh∈A1
sh

ζ

∑
i 〈gi ,wi 〉

r

=
h∏

i=1

∑

wi∈A1
si

ζ
〈gi ,wi 〉
r , (14)

where gi ∈ G(r,Supp(si)) is the restriction of g to Supp(si) (if s ∈ Π2,1(g), we let
Supp(s), the support of s, be the union of the supports of the cycles in s).

Lemma 7.2 If g ∈ G(r,n) has at least one cycle c of odd length, then
∑

w∈A1
π

ζ
〈g,w〉
r = 0

for all π ∈ Π2,1(g).
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Proof This is trivial since in these cases A1
π = ∅ (see Table 1). �

By Lemma 7.2 we can restrict our attention to those elements g having all cycles
of even length.

Lemma 7.3 If g ∈ G(r,p,n) has at least one cycle c of odd color, then
∑

π∈Π2,1(g)

∑

w∈A1
π

ζ
〈g,w〉
r = 0.

Proof Since the left-hand side is a class function (by (13)), we can assume that g is
normal. We prove in this case the stronger statement that

∑
w∈A1

π
ζ

〈g,w〉
r = 0 for all

π ∈ Π2,1(g). By Lemma 7.2, we can assume that the cycle c has even length. We split
this result into two cases. Assume that the cycle c of odd color, say j , is a singleton
si = {c} of π . Then Table 1 displays the structure of A1

si
. In particular, if �(c) �≡ 2

mod 4, A1
si

= ∅, and we are done; if �(c) ≡ 2 mod 4, we find

∑

w∈A1
si

ζ
〈gi ,wi 〉
r =

r−1∑

k=0

ζ
jk
r = 0,

since j is odd and cannot be a multiple of r .
Now assume that the cycle c belongs to a pair si of π . Let us call a and b the two

colors of the cycles in si , with b odd. Again, looking at Table 1, we have

∑

wi∈A1
si

ζ
〈gi ,wi 〉
r =

r−1∑

k=0

d−1∑

l=0

ζ ak+b(k+(l+1)r ′)
r

=
r−1∑

k=0

(
d

2
ζ (a+b)k
r + d

2
ζ ak+b(k+r ′)
r

)

= d

2

r−1∑

k=0

ζ (a+b)k
r

(
1 + ζ br ′

r

)

= d

2

(
1 + ζ br ′

r

) r−1∑

k=0

ζ (a+b)k
r .

Since b is odd, the factor 1 + ζ br ′
r vanishes, and so does the whole sum. �

Lemma 7.4 Let g ∈ G(r,p,n) be normal and such that all cycles of g have even
color and even length. Then, for all π ∈ Π2,1(g),

∑

w∈A1
π

ζ
〈g,w〉
r =

{
(−1)sign(g)|A1

π | if z(s) = 0 for all s ∈ π ;

0 otherwise.
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Proof We first assume that sign(g) = 0. If si is a singleton of π of color 2j and length
�≡ 2 mod 4, then Asi is empty, and the result clearly follows. So we can assume that
�(si) ≡ 2 mod 4, and we can derive the value of 〈gi,wi〉 from Table 1 and obtain

∑

wi∈A1
si

ζ
〈gi ,wi 〉
r =

r−1∑

k=0

ζ
2jk
r =

{
0 if 2j �≡ 0 mod r;
r = |A1

si
| if 2j ≡ 0 mod r.

Let now si = {c1, c2} be a pair of cycles of length d , and colors respectively 2a

and 2b. We have

∑

wi∈A1
si

ζ
〈gi ,wi 〉
r =

r−1∑

k=0

d−1∑

l=0

ζ 2ak+2b(k+(l+1)r ′)
r

= d

r−1∑

k=0

ζ 2ak+2bk
r =

{
0 if 2a + 2b �≡ 0 mod r;
dr = |A1

si
| if 2a + 2b ≡ 0 mod r.

The result follows from these computations together with (14). If sign(g) = 1, the
proof is similar and is left to the reader. �

We are now ready to prove Theorem 7.1. Let first g belong to an unsplit class.
Then g has a cycle of odd length or a cycle of odd color, and then (13) and Lemmas
7.2 and 7.3 ensure that

χφ0(g) − χφ1(g) = 0 =
∑

[μ]∈Fer(r ′,1,p′,n′)
χ0[μ,μ] −

∑

[μ]∈Fer(r ′,1,p′,n′)
χ1[μ,μ](g). (15)

So let g belong to the split conjugacy class of the form c
η
2α . We are interested in

the evaluation of the sum appearing in (13), and so we can assume that g is also a
normal element. Thanks to Lemma 7.4, the only partitions π ∈ Π2,1(g) contributing
to the sum (13) are those satisfying z(s) = 0 mod r for all s ∈ π . Thus,

χφ0(g) − χφ1(g) = 1

p′ (−1)η
∑

π∈Π2,1(g)

∣∣A1
π

∣∣

= 1

p′ (−1)η
∑

π∈Π2,1(g)

r�(π)
∏

j

(2j)pair2j (π),

where, by Table 1, the sum is taken over all partitions of Π2,1(g) such that:

• singletons have length ≡ 2 mod 4;
• pairs have even length;
• z(s) = 0 mod r for all s ∈ π .

Summarizing, if g ∈ clη2α , we have
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χφ0(g) − χφ1(g) = 1

p′ (−1)η
∑

π∈Π2,1(2α)

r�(π)
∏

j

(2j)pair2j (π)

= 1

p′ (−1)η
∑

π∈Π2,1(2α)

(
2r ′)�(π)

∏

j

(2j)pair2j (π)

= 1

p′ (−1)η2�(π)+∑
j pair2j (π)

∑

π∈Π2,1(2α)

(
r ′)�(π)

∏

j

jpair2j (π)

= 1

p′ (−1)η2�(α)
∑

π∈Π2,1(α)

(
r ′)�(π)

∏

j

jpairj (π),

where α has to be considered as an element in Fer(r ′, n′), the last sum is taken over all
partitions of Π2,1(α) whose singletons have odd length (and pairs have any length),
and z(s) = 0 ∈ Zr ′ for all s ∈ π .

The above computation, together with (10), (11), and (15), leads to
∑

[μ]∈Fer(r ′,1,p′,n′)
χ0[μ,μ](g) + χφ1(g)

=
∑

[μ]∈Fer(r ′,1,p′,n′)
χ1[μ,μ](g) + χφ0(g) ∀g ∈ G(r,p,n). (16)

Now,
∑

μ∈Fer(r ′,1,p′,n′) χ
0
μ,μ and

∑
μ∈Fer(r ′,1,p′,n′) χ

1
μ,μ are orthogonal characters.

Therefore, by Theorem 2.2 and Proposition 3.2, we have that
∑

μ∈Fer(r ′,1,p′,n′)
dim

(
ρ0[μ,μ]

) =
∑

μ∈Fer(r ′,1,p′,n′)
|S T [μ,μ]| = dim(MAsym) = dim

(
φ0)

and, analogously,
∑

μ∈Fer(r ′,1,p′,n′) dim(ρ1[μ,μ]) = dim(φ1), so we can conclude that

∑

μ∈Fer(r ′,1,p′,n′)
χ0[μ,μ](g) = χφ0(g) and

∑

μ∈Fer(r ′,1,p′,n′)
χ1[μ,μ](g) = χφ1(g).

Recalling that ρ1(g) = �(g)|MAsym , the above equality means that

(MAsym, �) ∼=
⊕

μ�m

ρ1[μ,μ],

and Theorem 7.1 is proved. �

8 The antisymmetric classes

An antisymmetric element of G(r,n) can be characterized by the structure of its
cycles; namely, an element v ∈ G(r,n) is antisymmetric if and only if every cy-



200 J Algebr Comb (2012) 36:175–207

cle c of v has length 2 and is of the form c = (a
za1
1 , a

za2
2 ) with za2 = za1 + r ′. We

say that the residue class of za1 and za2 modulo r ′ is the type of c. If the number
of disjoint cycles of type i of an antisymmetric element v of G(r,n) is ti , then
the integer vector τ(v) = (t0, . . . , tr ′−1) is called the type of v. It is clear that two
antisymmetric elements in G(r,n) are Sn-conjugate if and only if they have the
same type. We denote by AC(r,n) the set of types of antisymmetric elements in
G(r,n), i.e., the set of vectors (t0, . . . , tr ′) with nonnegative integer entries such that
t0 +· · ·+ tr ′−1 = n′. If GCD(p,n) = 2 we let γ be the cyclic permutation of AC(r,n)

defined by γ (t0, . . . , tr ′−1) = (tr/p, t1+r/p . . . , tr ′−1+r/p) where the indices must be
intended as elements in Zr . We observe that γ has order p′, and so we have an action
of the cyclic group Cp′ generated by γ on AC(r,n). We denote the quotient set by
AC(r,p,n)∗. The type of an antisymmetric element of G(r,p,n)∗ is then an element
of AC(r,p,n)∗, and if [τ ] ∈ AC(r,p,n)∗, we let c1[τ ] be the Sn-conjugacy class con-
sisting of the antisymmetric absolute involutions in G(r,p,n)∗ of type [τ ]. The main
result of this section, Theorem 8.4, provides a compatibility between the coefficients
of τ and the sizes of the indices of the irreducible components of the module M(c1[τ ]).
For this, the following criterion will be helpful.

Proposition 8.1 Let ν = (n0, . . . , nr−1) be a composition of n into r parts, and ρ a
representation of G(r,n). Then the following are equivalent:

(1) The irreducible subrepresentations of ρ are all of the form ρλ(0),...,λ(r−1) with
|λ(i)| = ni for all i ∈ [0, r − 1];

(2) There exists a representation φ of G(r, ν) such that ρ = IndG(r,n)
G(r,ν)(φ) and φ(g) =

ζ

∑
iz(gi )

r φ(|g|) for all g = (g0, . . . , gr−1) ∈ G(r, ν).

Proof In proving that (1) implies (2), we can clearly assume that ρ is irreducible,
and in this case the result is straightforward from the description in Proposition 2.1.
In proving that (2) implies (1), we can assume that φ is irreducible. Then it is clear
that φ ↓Sν is also irreducible, where Sν = Sn0 × · · · × Snr−1 . In particular, there exist
λ(0), . . . , λ(r−1) with |λ(i)| = ni such that φ ↓Sν

∼= ρλ(0) 	 · · · 	 ρλ(r−1) . Now we can
conclude that

φ ∼= (
γ 0
n0

⊗ ρ̃λ(0)

) 	 · · · 	 (
γ r−1
nr−1

⊗ ρ̃λ(0)

)
,

and so the result follows again from Proposition 2.1. �

We now concentrate on the special case p = 2, so that p′ = 1. The general case
will then be a direct consequence. Since the index of G(r,2, n) in G(r,n) is 2,
the induction ψ = IndG(r,n)

G(r,2,n)(M(c1
τ ), �) of the G(r,2, n)-representation M(c1

τ ) to

G(r,n) is a representation on the direct sum V ⊕ V ′ of two copies of V
def= M(c1

τ ).
So a basis of V ⊕ V ′ consists of all the elements Cv , C′

v as v varies in c1
τ . If

x = [1r−1,20, . . . , n0] is taken as a representative of the nontrivial coset of G(r,2, n)

and we impose that x · Cv = C′
v , the representation ψ of G(r,n) on V ⊕ V ′ will be
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as follows:

g · Cv =
⎧
⎨

⎩
ζ

〈g,ṽ〉
r ζ

z1(ṽ)−z|g|−1(1)
(ṽ)

r C|g|v|g|−1 if g ∈ G(r,2, n),

ζ
〈g,ṽ〉
r ζ

z1(ṽ)
r C′

|g|v|g|−1 if g /∈ G(r,2, n),

and

g · C′
v =

⎧
⎨

⎩
ζ

〈g,ṽ〉
r C′

|g|v|g|−1 if g ∈ G(r,2, n),

ζ
〈g,ṽ〉
r ζ

−z|g|−1(1)
(ṽ)

r C|g|v|g|−1 if g /∈ G(r,2, n);
where ṽ is any lift of v in G(r,n). Now we want to show that this representation ψ

of G(r,n) is actually also induced from a particular representation of G(r, (τ, τ )) =
G(r, t0)×· · ·×G(r, tr ′−1)×G(r, t0)×· · ·×G(r, tr ′−1). With this in mind, we let C be
the set of elements v ∈ c1

τ having a lift ṽ in G(r,n) satisfying the following condition:
if (ai, bi+r ′

) is a cycle of ṽ of type i, then a ∈ [t0 + · · · + ti−1 + 1, t0 + · · · + ti] and

b ∈ [n′ + t0 + · · · + ti−1 + 1, n′ + t0 + · · · + ti]. Then, if z
def= min{j : tj �= 0}, we let

W
def=

⊕

v∈C
C

(
Cv + ζ z

r C′
v

) ⊆ V ⊕ V ′.

Lemma 8.2 The subspace W is invariant under the restriction of ψ to G(r, (τ, τ )).

Proof It is clear that if v ∈ C and g ∈ G(r, (τ, τ )), then |g|v|g|−1 ∈ C . We observe
that, by definition, |g| permutes the elements in ṽ having the same color, and in
particular z1(ṽ) = z|g|−1(1)(ṽ). Moreover, by definition, we also have z1(ṽ) = z. In
particular, if g ∈ G(r,2, n) ∩ G(r, (τ, τ )), we have

g · (Cv + ζ z
r C′

v

) = ζ
〈g,ṽ〉
r ζ

z1(ṽ)−z|g|−1(1)
(ṽ)

r C|g|v|g|−1 + ζ z
r ζ

〈g,ṽ〉
r C′

|g|v|g|−1

= ζ
〈g,ṽ〉
r

(
C|g|v|g|−1 + ζ z

r C′
|g|v|g|−1

)
,

and if g ∈ G(r, (τ, τ )), but g /∈ G(r,2, n), we have

g · (Cv + ζ z
r C′

v

) = ζ
〈g,ṽ〉
r ζ z1(ṽ)

r C′
|g|v|g|−1 + ζ z

r ζ
〈g,ṽ〉
r ζ

−z|g|−1(1)
(ṽ)

r C|g|v|g|−1

= ζ
〈g,ṽ〉
r

(
ζ z
r C′

|g|v|g|−1 + C|g|v|g|−1

)
.

The proof is now complete. �

Lemma 8.3 We have V ⊕ V ′ = IndG(r,n)
G(r,(τ,τ ))(W).

Proof For this, we need to prove that

V ⊕ V ′ =
⊕

g∈K

g · W, (17)
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where K is any set of coset representatives of G(r, (τ, τ )) in G(r,n). But

[
G(r,n) : G(

r, (τ, τ )
)] = n!rn

(τ !)2rn
= n!

(τ !)2
,

where τ ! = t0! · · · tr ′−1!. Moreover, dim(V ⊕ V ′) = 2 dimV = 2 (n
2)(

n−2
2 )···(n

2)2n′

τ !2 = n!
τ !

and dimW = τ !, so that [G(r,n) : G(r, (τ, τ ))] = dim(V ⊕V ′)
dimW

, and hence to prove (17)
it is enough to show that V ⊕ V ′ ⊂ G(r,n)W . To show this, we take σ = [n′ +
1, n′ + 2, . . . , n,1,2, . . . , n′] ∈ Sn. Then it follows that conjugation by σ stabilizes C ,
although σ /∈ G(r, (τ, τ )). Then we have

σ · (ζ z
r Cv + C′

v

) = ζ z
r Cσvσ−1 + ζ

z−zn′+1(ṽ)
r C′

σvσ−1

= ζ z
r Cσvσ−1 + ζ r ′(ṽ)

r C′
σvσ−1

= ζ z
r Cσvσ−1 − C′

σvσ−1 .

Since also ζ z
r Cσvσ−1 + C′

σvσ−1 ∈ W , we conclude that both Cσvσ−1 and C′
σvσ−1 be-

long to G(r,n)W for all v ∈ C , and the proof is complete. �

We are now ready to prove the main result of this section.

Theorem 8.4 Let GCD(p,n) = 2 and [τ ] = [t0, . . . , tr ′ ] ∈ AC(r,p,n)∗. Then

M
(
c1[τ ]

) =
⊕

[λ(0),...,λ(r′−1)]∈Fer(r ′,1,p′,n′):
|λ(i)|=ti ∀i∈[0,r ′−1]

ρ1
[λ(0),...,λ(r′−1),λ(0),...,λ(r′−1)].

Proof If p = 2, we need to look closer at the G(r, (τ, τ ))-representation W . From
the proof of Lemma 8.2 we have that gDv = ζ

〈g,v〉
r D|g|v|g|−1 = ∏

i ζ
iz(gi )
r D|g|v|g|−1 ,

where Dv
def= Cv + ζ z

r C′
v for v ∈ C , are the basis elements of W . In particular, condi-

tion (2) of Proposition 8.1 is satisfied, and the result is a straightforward consequence
of Theorem 7.1.

If p > 2, we simply have to observe that the G(r,p,n)-module M(c1[τ ]) is

a quotient of the restriction to G(r,p,n) of the G(r,2, n)-module M(c1
τ ). Since

GCD(p,n) = 2, the irreducible representations of G(r,2, n) restricted to G(r,p,n)

remain irreducible (and are indexed in the “same” way). The result is then a conse-
quence of the case p = 2 and Theorem 7.1. �

9 The symmetric classes

In this section we complete our discussion with the description of the G(r,p,n)-
module M(c), where c is any Sn-conjugacy class of symmetric absolute involutions
in G(r,p,n)∗. Despite the case p = 1 considered in [6] and the case of antisymmetric
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classes treated in Sect. 8, where a self-contained proof of the irreducible decompo-
sition of the module M(c) was given, we will need here to make use of all the main
results that we have obtained so far, namely the construction of the complete Gelfand
model in [5], the study of the submodules M(c) for wreath products in [6], and the
discussion of the antisymmetric submodule in Sect. 7.

We first observe that, by Theorems 3.3 and 7.1, the symmetric submodule has the
following decomposition into irreducible representations:

MSym ∼=
⊕

[λ]∈Fer(r,1,p,n)

ρ0[λ].

If v is a symmetric absolute involution in G(r,p,n)∗, we denote by Sh(v) the
element of Fer(r,1,p,n) which is the shape of the multitableaux of the image of v,
via the projective Robinson–Schensted correspondence. Namely, we let

Sh(v)
def= [λ] ∈ Fer(r,1,p,n),

where

v
RS−→ (P,P )

with P ∈ S T [λ]. For notational convenience, if c is an Sn-conjugacy class of
symmetric absolute involutions in G(r,p,n)∗, we also let Sh(c) = ∪v∈cSh(v) ⊂
Fer(r,1,p,n).

We are now ready to state the main result of this section.

Theorem 9.1 Let c be a Sn-conjugacy class of symmetric absolute involutions in
G(r,p,n)∗, and GCD(p,n) = 1,2. Then the following decomposition holds:

M(c) ∼=
⊕

[λ]∈Sh(c)

ρ0[λ].

Before proving this theorem, we need some further preliminary observations. Fix
an arbitrary Sn-conjugacy class c of symmetric absolute involutions in G(r,p,n)∗,
and let c1, . . . , cs be the Sn-conjugacy classes of G(r,n) which are lifts of c in G(r,n)

(one may observe that s can be either p or p/2, though this is not needed). We
will need to consider the following restriction to G(r,p,n) of the submodule of the
Gelfand model for G(r,n) associated to the classes c1, . . . , cs :

M̃(c)
def= (

M(c1) ⊕ · · · ⊕ M(cs)
) ↓G(r,p,n) .

Now the crucial observation is the following.

Lemma 9.2 The G(r,p,n)-module M(c) is a quotient (and hence is isomorphic to
a subrepresentation) of M̃(c).

Proof Let K(c) be the vector subspace of M̃(c) spanned by the elements Cv −Cζr/pv

as v varies among all elements in c1, . . . , cs . Then it is clear that, as a vector
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space, M(c) is the quotient of M̃(c) by the vector subspace K(c). Moreover, if
g ∈ G(r,p,n), then

�(g)(Cv − Cζr/pv) = ζ
〈g,v〉
r (−1)invv(g)C|g|v|g|−1

− ζ
〈g,ζ r/pv〉
r (−1)

inv
ζ r/pv

(g)
C|g|ζ r/pv|g|−1

= ζ
〈g,v〉
r (−1)invv(g)

(
C|g|v|g|−1 − Cζr/p |g|v|g|−1

)
,

since g ∈ G(r,p,n) implies 〈g, ζ r/pv〉 = 〈g, v〉. In particular, we deduce that K(c) is
also a submodule of M̃(c) (as G(r,p,n)-modules). The fact that M(c) ∼= M̃(c)/K(c)

is now a direct consequence of the definition of the structures of G(r,p,n)-
modules. �

We are now ready to complete the proof of the main result of this section.

Proof of Theorem 9.1 By Theorem 3.4 the G(r,n)-module M(c1) ⊕ · · · ⊕ M(cs)

is the sum of all representations ρλ with λ ∈ Sh(ci) for some i ∈ [s] or, equiva-
lently, with [λ] ∈ Sh(c). It follows that the restriction M̃(c) of this representation
to G(r,p,n) has the following decomposition:

M̃(c) ∼=
⊕

[λ]∈Sh(c):
mp(λ)=1

(
ρ0[λ]

)⊕p ⊕
⊕

[λ]∈Sh(c):
mp(λ)=2

(
ρ0[λ] ⊕ ρ1[λ]

)⊕p/2
. (18)

We recall that M(c) is a submodule of a Gelfand model for G(r,p,n) and also a sub-
module of M̃(c) by Lemma 9.2, and hence, by (18), we have that M(c) is isomorphic
to a subrepresentation of

⊕

[λ]∈Sh(c):
mp(λ)=1

ρ0[λ] ⊕
⊕

[λ]∈Sh(c):
mp(λ)=2

(
ρ0[λ] ⊕ ρ1[λ]

)
.

Furthermore, we already know that the split representations ρ1[λ] appear in the an-
tisymmetric submodule by Theorem 7.1, and so they cannot appear in M(c). To
complete the proof, it is now sufficient to observe that, if c and c′ are two distinct
Sn-conjugacy classes of symmetric absolute involutions in G(r,p,n)∗, then the two
sets Sh(c) and Sh(c′) are disjoint. �

We can also give an explicit combinatorial description of the set Sh(c) for a given
Sn-conjugacy class of symmetric absolute involutions in G(r,p,n)∗. For this, we
let SC(r,n) = {(f0, . . . , fr−1, q0, . . . , qr−1) ∈ N

2r : f0 + · · · + fr−1 + 2(q0 + · · · +
qr−1) = n}. The set SC(r,n) has already been used in [6, Sect. 6] to parameterize the
Sn-conjugacy classes of absolute involutions in G(r,n). Let γ be the permutation of
SC(r,n) defined by

γ (f0, . . . , fr−1, q0, . . . , qr−1)

= (fr/p, f1+r/p . . . , fr−1+r/p, qr/p, q1+r/p . . . , qr−1+r/p),
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where the indices are treated as elements in Zr . We observe that γ has order p, and so
we have an action of the cyclic group Cp generated by γ on SC(r,n). We denote the
quotient set by SC(r,p,n)∗. The set SC(r,p,n)∗ parameterizes the Sn-conjugacy
classes of symmetric absolute involutions in G(r,p,n)∗ in the following way. Let
v ∈ I (r,p,n)∗ be symmetric, and ṽ be any lift of v in I (r, n). Then the type of v is
given by

[
f0(ṽ), . . . , fr−1(ṽ), q0(ṽ), . . . , qr−1(ṽ)

] ∈ SC(r,p,n)∗,

where

fi(ṽ) = ∣∣{j ∈ [n] : ṽj = j i
}∣∣,

qi(ṽ) = ∣∣{(h, k) : 1 ≤ h < k ≤ n, ṽh = ki and ṽk = hi
}∣∣.

It is clear that this is well defined, and we have that two symmetric elements in
I (r,p,n)∗ are Sn-conjugate if and only if they have the same type (see also [6,
Sect. 6] for the special case p = 1).

By [6, Proposition 3.1] we can now conclude that if [ν] = [f0, . . . , fr−1, q0,

. . . , qr−1] ∈ SC(r,p,n)∗ and c = {v ∈ I (r,p,n)∗ : v is symmetric of type [ν]}, then

Sh(c) =
{ [λ(0), . . . , λ(r−1)] ∈ Fer(r,p,n)∗ : for all i ∈ [0, r − 1],

|λi | = fi + 2qi, and λ(i) has exactly fi columns of odd length

}
.

For example, if we consider v = [10,31,21,41,51,72,62,83,104,94,114,124,

145,135, ] ∈ G(6,6,14)∗, then the type of v is [ν] = [1,2,0,1,2,0;0,1,1,0,1,1].
Therefore, if c is the Sn-conjugacy class of v in G(6,6,14)∗, we have that Sh(c) is
given by all elements [λ(0), . . . , λ(5)] ∈ Fer(6,1,6,14) such that λ(0) and λ(3) have 1
box (and 1 column of odd length), λ(1) and λ(4) have 4 boxes and 2 columns of odd
length, and λ(2) and λ(5) have 2 boxes and no columns of odd length, i.e.,

Sh(c) =
{[

�, , ,�, ,

]
,

[
�, , ,�, ,

]
,
[
�, , ,�, ,

]}

Therefore we have the following decomposition of M(c) into irreducible repre-
sentations:

M(c) ∼= ρ[
�, , ,�, ,

] ⊕ ρ0[
�, , ,�, ,

] ⊕ ρ0[
�, , ,�, ,

]

10 A final survey and a further generalization

The aim of this section is to provide a statement containing all the results that we have
collected in this paper and holding for all the groups G(r,p,n) with GCD(p,n) =
1,2. Furthermore, we use this occasion to observe that the above results apply, in
fact, to all the projective groups G(r,p, q,n) with GCD(p,n) = 1,2.
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If v is an absolute involution in G(r, q,p,n) and c is any (symmetric or anti-
symmetric) Sn-conjugacy class of absolute involutions in G(r, q,p,n), we define
Sh(v) ∈ Fer(r, q,p,n) and Sh(c) ⊂ Fer(r, q,p,n) as in Sect. 9. Moreover, we let
ι(c) = 0 if the elements of c are symmetric and ι(c) = 1 if the elements of c are
antisymmetric.

Theorem 10.1 Let G = G(r,p, q,n) with GCD(p,n) = 1,2, and let (M(r, q,

p,n),�) be its Gelfand model defined in Theorem 3.3. Given an Sn-conjugacy class c

of absolute involutions in G∗, let M(c) = C − span{Cv : v ∈ c} so that M(r, q,p,n)

naturally splits as a G-module into the direct sum

M(r, q,p,n) =
⊕

c

M(c).

Then the submodule M(c) has the following decomposition into irreducibles:

M(c) ∼=
⊕

[λ]∈Sh(c)

ρ
ι(c)
[λ] .

Proof We have already established this result for q = 1. In fact, if ι(c) = 0, this is
the content of Theorem 9.1, and, if ι(c) = 1, the result follows directly from The-
orem 8.4 with the further observation that if v is an antisymmetric element of type
[t0, . . . , tr ′−1], then Sh(v) = [λ(0), . . . , λ(r−1)] with |λ(i)| = |λ(i+r ′)| = ti .

If q �= 1, the result is straightforward since an Sn-conjugacy class of absolute
involutions in G(r, q,p,n) is also an Sn-conjugacy class of absolute involutions
in G(r,1,p,n) and the definitions of the Gelfand models for G(r,p, q,n) and
G(r,p,1, n) are compatible with the projection G(r,p,1, n) → G(r,p, q,n). �
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