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Abstract A pseudo (v, k, λ)-design is a pair (X, B), where X is a v-set, and B =
{B1, . . . ,Bv−1} is a collection of k-subsets (blocks) of X such that any two distinct
Bi,Bj intersect in λ elements, and 0 ≤ λ < k ≤ v−1. We use the notion of pseudo de-
signs to characterize graphs of order n whose (adjacency) spectrum contains zero and
±θ with multiplicity (n − 3)/2 where 0 < θ ≤ √

2. Meanwhile, partial results con-
firming a conjecture of O. Marrero on a characterization of pseudo (v, k, λ)-designs
are obtained.

Keywords Spectrum of graph · Pseudo design · BIBD · DS graph · Cospectral
graphs · Incidence graph · Subdivision of star

1 Introduction

To study bipartite graphs with four/five distinct (adjacency) eigenvalues, one needs to
investigate combinatorial designs with two singular values (i.e., the matrix NN� has
only two positive eigenvalues, where N is the (0,1)-incidence matrix of the design).
Recently, van Dam and Spence [12] studied bipartite graphs with four eigenvalues
which are precisely the incidence graphs of designs with two singular values with
nonsingular and square N . These designs, called uniform multiplicative designs, were
introduced by Ryser [9]. In [13], bipartite biregular graphs with five distinct eigenval-
ues were investigated. These graphs correspond to designs with two singular values,
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constant block size and constant replication number. These designs are called partial
geometric designs, first introduced by Bose (see [1]). Designs with few distinct sin-
gular values are also of interest from statistical point of view. R.A. Bailey (cf. [3])
recently raised the question of which designs have three eigenvalues. To be more spe-
cific, it was asked for which designs with constant block size, constant replication,
and incidence matrix N , does NN� have three distinct eigenvalues.

In this paper, we continue this line by studying bipartite graphs with five eigen-
values where the second largest eigenvalue is relatively small. To be more precise,

we characterize the graphs with n vertices whose spectrum contains {0, (±θ)
n−3

2 }
with 0 < θ ≤ √

2. The restriction to
√

2 comes from our limited knowledge of the
corresponding designs. Having enough information of related designs, one can char-
acterize the graphs with larger θ . As it will be explained in the next section, it follows
that θ must be a square root of an integer. So the next possible θ is

√
3.

The graphs with n vertices whose spectrum contains (±θ)
n−2

2 with 0 < θ ≤ √
2

were already characterized by van Dam and Spence [12]. Note that the incidence
graphs of symmetric (v, k, λ)-designs are precisely the regular graphs with the re-
quired property and θ = √

k − λ.
The graphs of the subject of the paper have a close connection with a family of

combinatorial designs called pseudo designs. Therefore, we first study pseudo de-
signs following Marrero [5, 6] and Woodall [14]. Our investigation has some im-
plications on a conjecture of Marrero on a characterization of pseudo designs. We
then make use of these results to determine the families of graphs whose spectrum

contains {0, (±θ)
n−3

2 }.
By means of the spectral characterization of the aforementioned graphs, we find

some new families of graphs which are DS (i.e., determined by spectrum). Finding
new families of DS graphs is one of the challenging and very active research subjects
in spectral graph theory. For more about DS graphs, see the surveys [10, 11].

2 Preliminaries

All the graphs we consider in this paper are finite, simple, and undirected. The order
of a graph G is the number of vertices of G. By the eigenvalues of G we mean those
of its adjacency matrix. The spectrum of G is the multiset of eigenvalues of G. The
subdivision of a graph G is the graph obtained by inserting a new vertex on every edge
of G. We denote by S2k+1 the subdivision of the star K1,k . The complete bipartite
graph Kk,k minus a perfect matching is denoted by Lk,k . We denote by Hk,k+1 the
graph resulting from adding a new vertex to Lk,k and joining all vertices of one part
of it to the new vertex. The adjacency matrix of a bipartite graph G can be rearranged
so that it has the form (

O N

N� O

)

with square zero matrices O . We denote by Jr,� the all-1 matrix with r rows and �

columns, and by Jr if it is a square matrix. When the order of the matrix is clear
from the context, we drop the subscripts. The matrix N is called the bipartite adja-
cency matrix of G. The bipartite graphs of order n = 2k + 1 with bipartite adjacency
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Fig. 1 The graphs R13 (left) and Q13 (right)

matrices (
Ik−3 J

O Ĩ3

)
k×(k+1)

,

(
Ĩk−3 J

O J3 − I3

)
k×(k+1)

are denoted by Rn and Qn, respectively, where Ĩ� is the matrix resulting from ex-
tending the identity matrix by an all-1 column vector, i.e.,

Ĩ� = ( I� 1� ).

The graphs R13 and Q13 are depicted in Fig. 1.
A combinatorial design is a pair (X, B), where X is a set of points, and B is a

collection of subsets of X, called blocks, together with an incidence relation between
the points and the blocks. A balanced incomplete block design BIBD(b, v, r, k, λ) is
a combinatorial design with v points and b blocks all of which have the same size
k and the incidence relation that any 2-subset of X is contained in exactly λ blocks
where 0 ≤ λ and k ≤ v − 1. It follows that every element of X is contained in a same
number r of blocks. Necessary conditions for the existence of a BIBD(b, v, r, k, λ)

are

vr = bk, (1)

r(k − 1) = λ(v − 1). (2)

A BIBD(b, v, r, k, λ) with b = v (and so r = k) is called a symmetric (v, k, λ)-
design. It is known that in a symmetric (v, k, λ)-design two distinct blocks Bi,Bj

(1 ≤ i, j ≤ v) intersect in λ elements. A pseudo (v, k, λ)-design is a pair (X, B),
where X is a v-set, and B = {B1, . . . ,Bv−1} is a collection of k-subsets (blocks) of
X such that any two distinct Bi,Bj intersect in λ elements, and 0 ≤ λ < k ≤ v − 1.
Each combinatorial design is completely determined by its corresponding incidence
matrix; this is the (0,1)-matrix A = (aij ) whose rows and columns are indexed by
the blocks and the points of the design, respectively, where aij = 1 if xj ∈ Bi and
aij = 0 if xj �∈ Bi . The incidence graph of a design D is a bipartite graph such that
its bipartite adjacency matrix is the incidence matrix of D.

Remark In order to avoid trivial cases, we assume that the designs considered in this
paper (and so their incidence graphs) are connected. Therefore, the Perron–Frobenius
theorem (cf. [4, p. 178]) can be applied. It follows that the largest singular value has
multiplicity one and a positive eigenvector. Another consequence is that if N is the
bipartite adjacency matrix of a connected bipartite graph of order n with five distinct
eigenvalues where the zero eigenvalue is of multiplicity 1, then the characteristic

polynomial of NN� is of the form x(x2 − a)
n−3

2 (x2 − b). As mentioned in [12], it



212 J Algebr Comb (2012) 36:209–221

turns out that if n > 5, then a and b must be integers. For n = 5, there are only two
such graphs with the following bipartite adjacency matrices:

(
1 1 1
0 0 1

)
and

(
1 1 1
0 1 1

)
.

The spectra of these two graphs are {0,±
√

2 ± √
2} and {0,± 1

2

√
10 ± 2

√
17}, re-

spectively. Therefore, if 0 < θ ≤ √
2 and {0, (±θ)

n−3
2 } is contained in the spectrum

of a graph of order n > 5, then θ = 1 or θ = √
2.

3 Pseudo (v,k,λ)-designs

Pseudo designs were studied by Marrero [5, 6] and Woodall [14]. Woodall used an-
other terminology; he called pseudo designs near-square λ-linked designs.1 We fol-
low the terminology of Marrero.

A pseudo (v, k, λ)-design is called primary if vλ �= k2 and is called nonprimary
when vλ = k2. In [7] it is shown that in a nonprimary pseudo design, v = 2k. Thus, a
pseudo (v, k, λ)-design is nonprimary if and only if v = 4λ and k = 2λ.

The existence of a nonprimary pseudo (v, k, λ)-design is equivalent to the exis-
tence of an Hadamard design:

Theorem 1 (Marrero–Butson [7]) The incidence matrix of a given pseudo
(4λ,2λ,λ)-design can always be obtained from the incidence matrix A of a sym-
metric (4λ − 1,2λ − 1, λ − 1)-design by adjoining one column of all 1s to A and
then possibly complementing some rows of A.

In the theorem, complementing a row means that 0s and 1s are interchanged in
that row. For example, take the Fano plane which is the unique symmetric (7,3,1)-
design with points {1, . . . ,7} and blocks {124,235,346,457,156,267,137}. Now
the theorem asserts that by adding a new point to all the blocks, namely 8, and
complementing any set of blocks we get a pseudo (8,4,2)-design. For exam-
ple, if we do this for the first block, we have the pseudo design with blocks
{3567,2358,3468,4578,1568,2678,1378}. For primary pseudo designs, we have
the following:

Theorem 2 (Marrero [5, 6]) The incidence matrix A of a primary pseudo (v, k, λ)-
design D can be obtained from the incidence matrix of a symmetric (v̄, k̄, λ̄)-design
whenever D satisfies one of the following arithmetical conditions on its parameters.

(i) If (k − 1)(k − 2) = (λ − 1)(v − 2), then A is obtained by adjoining a column of
1s to the incidence matrix of a symmetric (v − 1, k − 1, λ − 1)-design.

(ii) If k(k − 1) = λ(v − 2), then A is obtained by adjoining a column of 0s to the
incidence matrix of a symmetric (v, k, λ)-design.

1A square λ-linked design consists of v points and v blocks such that any two distinct blocks intersect in
λ elements. This configuration is called a λ-design by Ryser [8] if in addition there exist two blocks of
different sizes.
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(iii) If k(k − 1) = λ(v − 1), then A is obtained from discarding a row from the inci-
dence matrix of a symmetric (v, k, λ)-design.

(iv) If k = 2λ, then A is obtained from the incidence matrix B of a symmetric
(v, k, λ)-design as follows: a row is discarded from B and then the k′ columns
of B which had a 1 in the discarded row are complemented (0s and 1s are inter-
changed in these columns).

It was conjectured by Marrero [5, 6] that given a primary pseudo (v, k, λ)-design,
“completion” or “embedding” between the given pseudo design and some symmetric
(v̄, k̄, λ̄)-design is always possible. In other words:

Conjecture 3 (Marrero [5, 6]) The parameters of a given primary pseudo (v, k, λ)-
design satisfy at least one of the four conditions of Theorem 2.

He proved the validity of his conjecture for λ = 1.

Theorem 4 (Marrero [6], Woodall [14]) Let A be the incidence matrix of a given
primary pseudo (v, k, λ)-design, so that A has two distinct column sums s1 and s2.
Let y = (k + λ(v − 2) − ks2)/(s1 − s2), and let f be the number of columns of A

having the column sum s1. Then, after an appropriate permutation of the columns of
A, it must be possible to write A = [Mv−1,f Nv−1,v−f ], where M is the incidence
matrix of a BIBD(b̄ = v − 1, v̄ = f, r̄ = s1, k̄ = y, λ̄ = s1 − k + λ), and N is the
incidence matrix of a BIBD(b̄ = v − 1, v̄ = v −f, r̄ = s2, k̄ = k − y, λ̄ = s2 − k +λ).
(Note that f may take the values 1 or v − 1, too.)

In order to study the graphs of the subject of this paper, we need to characterize
pseudo designs with k − λ = 1 or 2. For this, we need the following lemma.

Lemma 5 Let D be a BIBD(b, v, r, k, λ).

(i) If r = λ + 1, then D is either the symmetric (v,1,0)-design or the symmetric
(v, v − 1, v − 2)-design.

(ii) If r = λ + 2, then D is one of the BIBD(2v, v,2,1,0), BIBD(6,4,3,2,1),
BIBD(6,3,3,2,2), the symmetric (7,3,1)-design, or the symmetric (7,4,2)-
design.

Proof Part (i) is straightforward. We prove (ii). First let b > v. So λ + 1 = r − 1 ≥ k.
By (2), (λ + 2)(k − 1) = λ(v − 1). If λ = 0, then r = 2 and k = 1. So, by (1),
b = 2v, which means that D is BIBD(2v, v,2,1,0). If λ = 1, then r = 3, and so
v = 3k − 2. We have k �= 1 since otherwise v = 1, which is impossible. Thus k = 2.
It turns out that D is BIBD(6,4,3,2,1). If λ = 2, then r = 4, and so v = 2k − 1.
By (1), bk = 4(2k − 1), from which it follows that k = 2 and thus b = 6. Hence D is
BIBD(6,3,3,2,2). Let λ ≥ 3. If λ is odd, then λ | k − 1, and thus λ = k − 1. If λ is
even, then λ

2 | k − 1. Since λ ≥ k − 1, it follows that either k − 1 = λ or k − 1 = λ
2 ;

the latter is impossible due to (2). Therefore (k + 1)(k − 1) = (k − 1)(v − 1), so
v = k + 2. On the other hand, bk = (k + 1)(k + 2), which is impossible since k ≥ 4.
Now let b = v. So r = k = λ + 2. We have (λ + 2)(λ + 1) = λ(v − 1). Clearly λ �= 0.
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If λ = 1, then k = 3 and v = 7. So D is the symmetric (7,3,1)-design. If λ = 2, then
k = 4 and v = 7. So D is the symmetric (7,4,2)-design. �

Theorem 6 Let D be a pseudo (v, k, λ)-design.

(i) If k = λ + 1, then D is obtained from the symmetric (v − 1,1,0)-design or the
symmetric (v − 1, v − 2, v − 3)-design by either adding an isolated point or a
point which belongs to all of the blocks.

(ii) If k = λ + 2, then, up to isomorphism, D is one of the Di = ({1, . . . ,8}, Bi ),
i = 1,2,3,4, where

B1 = {1238,1458,1678,3568,2478,3468,2568},
B2 = {4567,1458,1678,3568,2478,3468,2568},
B3 = {4567,2367,1678,3568,2478,3468,2568},
B4 = {4567,2367,2345,3568,2478,3468,2568};

or is obtained by omitting one block either from the unique symmetric (7,4,2)-
design or the unique symmetric (7,3,1)-design.

Proof (i) First, let D be nonprimary. This is the case only if λ = 1, and so k = 2,
v = 4. By Theorem 1, D is obtained from a symmetric (3,1,0)-design by the tech-
nique described in Theorem 1. Applying this technique, it turns out that D is either
the symmetric (3,1,0)-design with a point added to all of its blocks or the sym-
metric (3,2,1)-design with an extra isolated point. Now, let D be primary. In view
of Theorem 4, D is obtained by “pasting” two BIBD(bi = v − 1, vi, ri , ki , λi) with
ri = λi + 1. Keeping the notation of Theorem 4, we must have f = 1. Thus M is ei-
ther the vector 0 or 1, and by Lemma 5, N is the incidence matrix of either symmetric
(v − 1,1,0)-design or symmetric (v − 1, v − 2, v − 3)-design.

(ii) First, let D be nonprimary. This is the case only if λ = 2, and so k = 4, v = 8.
By Theorem 1, D is obtained from the Fano plane by the technique described in The-
orem 1. Making use of the Maple procedure for checking graph isomorphism, it turns
out that D is isomorphic to one of the pseudo designs D1, D2, D3, or D4. Now, let
D be primary. Thus D is obtained by “pasting” two BIBD(b̄i = v − 1, v̄i , r̄i , k̄i , λ̄i )’s
with r̄i = λ̄i + 2 for i = 1,2. If f = 1, then M is either the vector 0 or 1, and by
Lemma 5, N is the incidence matrix of either symmetric (7,3,1)-design or sym-
metric (7,4,2)-design. If f ≥ 2, then M and N must be chosen from the incidence
matrices of BIBD(6,4,3,2,1), BIBD(6,3,3,2,2), or BIBD(2� − 2, � − 1,2,1,0)

for some � ≥ 2. Since v̄1 + v̄2 = v = b̄1 + 1 = b̄2 + 1, the only possible choices for
M and N are that either

(1) M is the incidence matrix of BIBD(6,4,3,2,1), and N is that of BIBD(6,3,3,

2,2); or
(2) M is the incidence matrix of BIBD(6,4,3,2,1), and N is that of BIBD(2� −

2, � − 1,2,1,0) for � = 3.

If (1) is the case, then v = 7, s1 = 3, s2 = 4, and so 3k − 5λ = y = 2, which, together
with k − λ = 2, gives λ = 2 and k = 4. Now, D satisfies the conditions of parts
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(iii) and (iv) of Theorem 2. From part (iii) it follows that D is obtained from the
symmetric (7,4,2)-design by omitting one of its blocks; and from part (iv) we see
that D = {3567,1467,1257,1236,2347,1345,2456}, which is again the symmetric
(7,4,2)-design with an omitted block. If (2) is the case, then (v, k, λ) = (7,3,1), and
by Theorem 2(iii), D is obtained from the symmetric (7,3,1)-design by omitting one
of its blocks. �

Corollary 7 Conjecture 3 holds for pseudo (v, k, λ)-designs with k = λ + 1 or
k = λ + 2.

4 Graphs with many ±1 eigenvalues

In this section we characterize all graphs of order n whose spectrum contains a zero
and ±1 with multiplicity (n − 3)/2. We show that this family of graphs consists of
S2k+1, Hk,k+1, R2k+1, Q2k+1, where n = 2k + 1, and two graphs of order 13.

We begin by determining the spectrum of Sn, Lk,k , Hk,k+1, Rn, and Qn.

Lemma 8

(i) spec(S2k+1) = {±√
k + 1,0, (±1)k−1},

(ii) spec(Lk,k) = {±(k − 1), (±1)k−1},
(iii) spec(Hk,k+1) = {±√

k2 − k + 1,0, (±1)k−1} for k ≥ 2,
(iv) spec(R2k+1) = spec(Q2k+1) = {±2

√
k − 2,0, (±1)k−1} for k ≥ 3.

Proof If one deletes the vertex of maximum degree from S2k+1, what remain are k

copies of K2. Thus, by interlacing, the spectrum of S2k+1 contains ±1 of multiplicity
at least k−1. Since S2k+1 is a bipartite graph of an odd order, it has a zero eigenvalue.
Let ±θ be the remaining eigenvalues. As the sum of squares of eigenvalues of a graph
is twice the number of edges, we have 2θ2 + 2k − 2 = 4k, implying that θ = √

k + 1.
The spectrum of Lk,k is easily obtained since it has an adjacency matrix of the form

(
O Jk − Ik

Jk − Ik O

)
.

The graph Hk,k+1 possesses an “equitable partition” with three cells in which each
cell consists of the vertices with equal degree. (See [4, pp. 195–198] for more infor-
mation on equitable partitions.) The adjacency matrix of the corresponding quotient
is

B =
⎛
⎝ 0 k − 1 1

k − 1 0 0
k 0 0

⎞
⎠

with eigenvalues ±√
k2 − k + 1,0. Besides these three eigenvalues, by interlacing,

Hk,k+1 has ±1 eigenvalues of multiplicity at least k − 2. Let ±θ be the remaining
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Fig. 2 The only nonregular graphs of order n whose spectra contain (±1)
n−2

2

eigenvalues. Thus, 2(k2 − k + 1) + 2(k − 2) + 2θ2 = 2k2, which implies θ = 1. If N

is the bipartite adjacency matrix of either R2k+1 or Q2k+1, then

NN� − I =
(

4Jk−3 2J

2J� J3

)
.

Thus NN� − I is of rank one, and so both spec(R2k+1) and spec(Q2k+1) con-
tain {0, (±1)k−1}. For the two remaining eigenvalues ±θ , we have the equation
2(k − 1) + 2θ2 = 10(k − 3) + 12, and so θ = 2

√
k − 2. �

Before treating the graphs of the subject of this section, we deal with the graphs

of order n whose spectra contain (±1)
n−2

2 . If such a graph is regular, then it eas-
ily follows that G must be Kn

2 , n
2

minus a perfect matching. If it is regular, by
[12, Proposition 8], G is either the graph G1 or G2 of Fig. 2. So we have the fol-
lowing:

Theorem 9 (van Dam–Spence [12]) Let G be a connected graph of order n. If the

spectrum of G contains (±1)
n−2

2 , then G is either L n
2 , n

2
or the graph G1 or G2

of Fig. 2.

Theorem 10 Let G be a connected graph of order n. If the spectrum of G contains

{0, (±1)
n−3

2 }, then G is one of the graphs Sn, Rn, Qn, H n−1
2 , n+1

2
, G3, or G4 of Fig. 3.

Proof From the spectrum of G it is obvious that G is bipartite of order n = 2k + 1.
Let N be the r × s bipartite adjacency matrix of G where r + s = 2k + 1 and r ≤ s.
Considering the rank of the adjacency matrix of G, we have rank(N) = k. This im-
plies that r = k and s = k + 1. So NN� is nonsingular with two distinct eigenvalues
1, θ , say. Since the multiplicity of eigenvalue 1 is k − 1, NN� − I is a rank-one
matrix, and by the Perron–Frobenius theorem, one may choose a positive eigenvector
x = (x1, . . . , xk) of NN� for θ so that

NN� = I + x�x. (3)

If the vertices corresponding to the rows of N are labeled {1, . . . , k}, from (3) it
follows that

di = 1 + x2
i , (4)

dij = xixj , (5)
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Fig. 3 The graphs G3 and G4

where di and dij for i, j = 1, . . . , k are the degree of the vertex i and the number of
common neighbors of the vertices i, j , respectively. It turns out that x = √

δw, where
w = (w1, . . . ,wk) is a positive integer vector, and δ is a square-free integer.

First let di = d for i = 1, . . . , k. By (4) and (5), dij = d − 1 for all i, j . This
means that N is the incidence matrix of a pseudo (k, d, d − 1)-design. Therefore
from Theorem 6 it follows that G is either S2k+1 or Hk,k+1.

Now let di > dj for some i, j . Thus wi ≥ wj + 1, and

dj ≥ dij = δwiwj ≥ δw2
j + δwj ≥ δw2

j + 1 = dj .

So one must have the equality in all the above inequalities which implies δ = wj = 1,
wi = 2, and so dij = dj = 2, di = 5. Therefore, the vertices of G corresponding to
the rows of N are of degree either 2 or 5, and any vertex of degree 2 has all of its
neighbors in common with any vertex of degree 5. It thus follows that N can be
rearranged so that

N =
(

N1 J

O N2

)
, (6)

where N1 and N2 correspond to the vertices of degrees 5 and 2, respectively. Suppose
that N1 and N2 are k1 × �1 and k2 × �2, respectively. With the above rearrangement,
x = (2, . . . ,2,1, . . . ,1) with k1 2s and k2 1s. So

x�x =
(

4Jk1,k1 2Jk1,k2

2Jk2,k1 Jk2,k2

)
.

If �1 = 0, then

NN� =
(

J

N2

)(
J� N�

2

) =
(

�2Jk1,k1 2Jk1,k2

2Jk2,k1 Jk2,k2 + I

)
.

In view of (3), we must have k1 = 1, which in turn implies that �2 = 5 and k2 = 3.
So the graph G consists of three vertices of degree 2, say v1, v2, v3, and one vertex
of degree 5 in one part and five other vertices in the other part such that each of
these five latter vertices is adjacent to at least one of v1, v2, v3. On the other hand,
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since N2N
�
2 = J + I , each pair of v1, v2, v3 have a common neighbor, which is not

possible. Therefore, �1 > 0. By inspecting NN� and (3) we have

N1N
�
1 = I + (4 − �2)J, (7)

N2N
�
2 = I + J , (8)

and moreover, one of N1 or N2 must be square since otherwise from (6) it is clear
that rank(N) ≤ k − 2, which is a contradiction.

First let N1 be square. Thus N1 is the incidence matrix of a symmetric (k1,3 − �2,

4 − �2)-design D1, and N2 is the incidence matrix of a pseudo (�2,2,1)-design.
Therefore, by Theorem 5, D1 is either the symmetric (k1,1,0)-design or the symmet-
ric (k1, k1 − 1, k1 − 2)-design. If D1 is the symmetric (k1,1,0)-design, then �2 = 4,
and so by Theorem 6, D2 is obtained from the symmetric (3,1,0)-design by adding
a new point to all of its blocks. So we find that N1 = Ik1 and N2 = Ĩ3. Therefore,
G is Rn. If D2 is the symmetric (k1, k1 − 1, k1 − 2)-design, then we must have
4 − �2 = k1 − 2, and so k2 = 5 − k1. As I + (4 − �2)J is a positive semidefinite
matrix, �2 ≤ 4. As k2 ≥ 1, we have also �2 ≥ 2. If �2 = 4, then G is R11. If �2 = 2,3,
then (k1, k2) = (4,1) or (3,2), from which it follows that G is either G3 or G4,
respectively.

Now, let N2 be square. From Theorem 5 it follows that N2 is the incidence matrix
of the symmetric (k2, k2 − 1, k2 − 2)-design. By (8), k2 − 2 = 1. Thus N2 = J3 − I3,
�2 = 3, and N1N

�
1 = I + J . So N1 is the incidence matrix of a pseudo design, which

by Theorem 6 can be obtained in one of the following three ways: (1) From a symmet-
ric (k1,1,0)-design by adding an extra point to all the blocks, i.e., N1 = Ĩk1 , which
means that G is the graph Qn. (2) From a symmetric (k1, k1 − 1, k1 − 2)-design by
adding an extra point to all the blocks, so k1 − 2 = 0, which implies G to be Q5.
(3) From a symmetric (k1, k1 − 1, k1 − 2)-design by adding an isolated point, which
is impossible as this makes G disconnected. �

In the rest of this section we determine the spectral characterization of the graphs
discussed so far. We begin by Lk,k which is readily seen to be DS as it is the only
(k − 1)-regular bipartite graph of order 2k.

For later use, we need to mention the spectrum of the graphs G1,G2,G3, and G4:

spec(G1) = {±3, (±1)4}, spec(G2) = {±4, (±1)5},
spec(G3) = {±3

√
2,0, (±1)4}, spec(G4) = {±√

15,0, (±1)4}.
Corollary 11 The graph Hk,k+1 is DS for k ≥ 2.

Proof Any cospectral mate H of Hk,k+1 for k ≥ 2 must have one of the graphs of
Theorems 9 and 10 as a connected component. Noting that k2 − k + 1 is always odd
and never (unless k = 1) a perfect square, we see that H cannot have one of Lt,t ,
R2t+1, Q2t+1 for any t or G1,G2,G3 as a component. Considering the number of
edges, we see that S2t+1 for any t cannot be a component of H . The same is for G4
as the equation k2 − k + 1 = 15 has no integral solution. �
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The graphs Sn belong to a family of trees called starlike trees (trees with only
one vertex of degree larger than 2). In [11], it was asked to determine which starlike
trees are DS. Partial results are obtained by several authors (cf. [11]). For this specific
starlike trees, Brouwer [2] showed that the graphs Sn are DS among trees. Here, we
completely determine the spectral characterization of the graphs Sn. The proof is the
same as the proof of the above corollary.

Corollary 12 The graph S2k+1 is DS if k �∈ S, where

S = {4� + 3 | � ∈ N} ∪ {
�2 − 1 | � ∈ N

} ∪ {
�2 − � | � ∈ N

} ∪ {14,17}.
Moreover, for k ∈ S, we have:

• S17 has exactly two cospectral mates, which are L4,4 ∪ 4K2 ∪ K1 and G1 ∪
3K2 ∪ K1;

• S29 has exactly one cospectral mate, which is G4 ∪ 9K2;
• S31 has exactly four cospectral mates, which are G2 ∪9K2 ∪K1, L5,5 ∪10K2 ∪K1,

R13 ∪ 9K2, and Q13 ∪ 9K2;
• S35 has exactly one cospectral mates, which is G3 ∪ 12K2;
• if k = 4� + 3 and � is not an integer of the form t2 − 1, then S2k+1 has exactly two

cospectral mates, which are R2�+7 ∪ 3�K2 and Q2�+7 ∪ 3�K2;
• if k = �2 − 1, � = 2t , and k �= 15, then S2k+1 has exactly three cospectral mates,

which are L�+1,�+1 ∪ (k − � − 1)K2 ∪ K1, R2t2+5 ∪ 3(t2 − 1)K2, and Q2t2+5 ∪
3(t2 − 1)K2;

• if k = �2 − 1, � is odd, and k �= 8, then S2k+1 has exactly one cospectral mate,
which is L�+1,�+1 ∪ (k − � − 1)K2 ∪ K1;

• if k = �2 − �, then S2k+1 has exactly one cospectral mate, which is H�,�+1 ∪
(k − �)K2.

Corollary 13 The graph R7 has exactly three cospectral mates, namely Q7, S7, and
L3,3 ∪ K1. If k = �2 + 2, for some � ≥ 2, then the graph R2k+1 has exactly two
cospectral mates, namely Q2k+1 and L2�+1,2�+1 ∪ (�−1)2K2 ∪K1. For other values
of k ≥ 3, the only cospectral mate of R2k+1 is Q2k+1.

In addition to that the graphs Rn and Qn are cospectral, they are related through
switching. We first recall the Seidel switching. Let G be a graph with vertex set V ,
and X ⊆ V . From G we obtain a new graph by leaving adjacency and nonadjacency
inside X and V \X as it was, and interchanging adjacency and nonadjacency between
X and V \ X. This new graph is said to be obtained by Seidel switching with respect
to the set X. Now, in the graph Rn, let X be the set of four vertices corresponding to
the columns of the submatrix J in the bipartite adjacency matrix of Rn. If we apply
the Seidel switching on Rn with respect to X, we obtain Qn.

5 Graphs with many ±√
2 eigenvalues

In this section we characterize all graphs of order n whose spectra contain a zero
and ±√

2 with multiplicity (n − 3)/2. It turns out that, up to isomorphism, there are
exactly six such graphs, all of which are obtained in some way from the Fano plane.
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We start with graphs of order n whose spectra contain (±√
2)

n−2
2 . Let N be the

n
2 × n

2 bipartite adjacency matrix of G. If G is regular of degree k, say, then NN� =
(k − 2)I + 2J , which means that N is the incidence matrix of an (n/2, k, k − 2)-
design. Hence, by Lemma 5, N is the incidence matrix of either the Fano plane or
the complement of the Fano plane. The nonregular ones are characterized in [12,
Proposition 9].

Theorem 14 (van Dam–Spence [12]) Let G be a connected graph of order n. If the

spectrum of G contains (±√
2)

n−2
2 , then the bipartite adjacency matrix of G is one

of the following:

(i) incidence matrix of the Fano plane (i.e., G is the Heawood graph);
(ii) incidence matrix of the complement of the Fano plane;
(iii)

(
N1 J7
O7 N2

)
or

⎛
⎝1 1� 1�

1 I5 I5
1 I5 J5 − I5

⎞
⎠ , (9)

where N1 and N2 are the incidence matrices of the Fano plane and the symmetric
(7,4,2)-design, respectively.

Theorem 15 Let G be a connected graph of order n. If the spectrum of G contains

{0, (±√
2)

n−3
2 }, then G is incidence graph of one of

(i) the pseudo (7,3,1)-design;
(ii) the pseudo (7,4,2)-design; or
(iii) D1, . . . , D4 of Theorem 6.

Proof From the spectrum of G it is clear that G is bipartite of order n = 2k + 1. Let
N and x = (x1, . . . , xk) be the same as in the proof of Theorem 10. Thus NN� =
2I + x�x, and so

di = 2 + x2
i , (10)

dij = xixj . (11)

Again we have x = √
δw, where w = (w1, . . . ,wk) is a positive integer vector, and δ

is a square-free integer.
First assume that there exist some i, j such that di > dj . Then wi ≥ wj + 1, and

dj ≥ dij = δwiwj ≥ δw2
j + δwj .

If δwj = 1, then δ = wj = 1, and so dj = 2, which is impossible. So δwj = 2,
and equalities must occur in all the above inequalities. Hence two cases may oc-
cur: (1) δ = 1 and wj = 2, which implies dj = dij = 6 and di = 11; or (2) δ = 2
and wj = 1, which implies dj = dij = 4 and di = 10. Again, like in the proof of
Theorem 10, N can be rearranged so that

N =
(

N1 J

O N2

)
,
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where N2 with k2 rows, say, correspond to the vertices with smaller degrees. Then
in the same manner as in the proof of Theorem 10, we see that N2N

�
2 = 2I + �J ,

where � is either 16 or 36. As N2 is either k2 × k2 or k2 × (k2 + 1), it is the incidence
matrix of either a symmetric (k2, � + 2, �)-design or a pseudo (k2, � + 2, �)-design.
Such designs do not exist by Lemma 5 and Theorem 6.

Therefore, di = d for i = 1, . . . , k. By (10) and (11), dij = d − 2 for all i, j . So N

is the incidence matrix of a pseudo (k, d, d − 2)-design. Thus the result follows from
Theorem 6. �
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