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Abstract The multivariate Tutte polynomial ẐM of a matroid M is a generalization
of the standard two-variable version, obtained by assigning a separate variable ve

to each element e of the ground set E. It encodes the full structure of M . Let v =
{ve}e∈E , let K be an arbitrary field, and suppose M is connected. We show that ẐM

is irreducible over K(v), and give three self-contained proofs that the Galois group
of ẐM over K(v) is the symmetric group of degree n, where n is the rank of M .
An immediate consequence of this result is that the Galois group of the multivariate
Tutte polynomial of any matroid is a direct product of symmetric groups. Finally, we
conjecture a similar result for the standard Tutte polynomial of a connected matroid.

Keywords Tutte polynomial · Multivariate Tutte polynomial · Matroids · Graphs ·
Galois theory

Let M be a finite matroid on the set E. The rank of M is denoted by r(M), and rM is
the rank function on M . With this notation we have r(M) = rM(E). To avoid degen-
erate examples and exceptions, a connected matroid will be assumed throughout to
have positive rank (our results are trivial for a matroid having zero rank). Following
the usual notation in matroid theory, we will write E \ e instead of E \ {e} for e ∈ E,
and denote by M|A the restriction of M to some A ⊂ E.

A. Bohn (�) · P.J. Cameron
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London
E1 4NS, UK
e-mail: a.bohn@qmul.ac.uk

P. Müller
Institut für Mathematik, Universität Würzburg, Campus Hubland Nord, 97074 Würzburg, Germany

mailto:a.bohn@qmul.ac.uk


224 J Algebr Comb (2012) 36:223–230

For each e ∈ E let ve be a variable, and let v be the collection of these variables.
If A is a subset of E, we will denote by vA the set {ve}e∈A. In [7], Sokal defines the
following multivariate version of the Tutte polynomial of a matroid M .1

For another variable q set

Z̃M(q,v) =
∑

A⊆E

q−rM(A)
∏

e∈A

ve.

Then Z̃M(q,v) is a polynomial in 1
q

with coefficients in Z[v].
For our purpose it is more convenient to use the following minor modification:

ẐM(q,v) =
∑

A⊆E

qr(M)−rM(A)
∏

e∈A

ve.

Then

ẐM(q,v) = qr(M)Z̃M(q,v),

and ẐM(q,v) is a polynomial of degree r(M) in q , which is monic if M contains
no loops. In particular, if M is connected then ẐM(q,v) is monic. Combinatorially,
ẐM(q,v) is a generating function for the content and rank of the subsets of E, and
thus encodes all of the information about M .

By making the substitutions

q ← (x − 1)(y − 1),

ve ← y − 1

for each e ∈ E, and multiplying by a prefactor (y − 1)−r(M), we obtain the standard
bivariate Tutte polynomial:

TM(x, y) =
∑

A⊆E

(x − 1)r(M)−rM(A)(y − 1)|A|−rM(A).

Thus TM is essentially equivalent to a special case of ẐM in which the same vari-
able is assigned to every element of E.

Theorem 1 Let M be a finite connected matroid with positive rank n = r(M), and
let ẐM(q,v) be as defined above. Let K be an arbitrary field. Then the Galois group
of ẐM(q,v) over K(v) is the symmetric group on the n roots of ẐM(q,v).

For e ∈ E, let M \ e be the deletion of e, and M/e the contraction of e. Note that
M \ e and M/e are matroids on the set E \ e. The essential tool for our first proof is a
theorem of Tutte (see [6, Theorem 4.3.1]), which says that connectivity of M implies
that at least one of the matroids M \ e or M/e is connected. Since M is connected, e

1The multivariate Tutte polynomial for matroids has in fact been discovered a number of times; it appears,
for example, in [2] as the “Tugger polynomial”.
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is not a coloop, so r(M \ e) = rM(E \ e) = rM(E) = r(M). By [6, Proposition 3.1.6],
we have that r(M/e) = rM(E) − rM(e). Now rM(e) = 1, since e is not a loop. So
r(M/e) = r(M) − 1.

The proofs will be based on some lemmas.

Lemma 2 Let M be a finite connected matroid and e ∈ E. Then

ẐM = ẐM\e + veẐM/e.

Proof Since M is connected, e is neither a loop nor a coloop. By [7, (4.18a)], Z̃M =
Z̃M\e + ve

q
Z̃M/e, hence

ẐM = qr(M)−r(M\e)ẐM\e + qr(M)−r(M/e) ve

q
ẐM/e.

The claim then follows from the previous determination of the ranks of E \ e and
E/e. �

As an intermediate step in the proof of the theorem, we need to know that ẐM is
irreducible over K(v). As TM is essentially a specialization of ẐM , this would follow
from [4] in the case where K has characteristic zero. However, the multivariate case
allows for a much simpler proof, and one which holds for any characteristic.

Lemma 3 Let M be a finite connected matroid. Then ẐM is irreducible over K(v).

Proof The induction proof is most conveniently formulated by considering a coun-
terexample M where r(M) is minimal; among those counterexamples, we pick one
where |E| is minimal. Clearly, the result holds for r(M) = 1, so r(M) ≥ 2. Pick
e ∈ E. By Lemma 2, ẐM = ẐM\e + veẐM/e. Note that ve does not appear in ẐM\e
and ẐM/e . If M \ e is connected, then ẐM\e is irreducible by minimality of |E|. As
ẐM and ẐM\e have the same degree, setting ve = 0 shows that ẐM is irreducible, a
contradiction. So M \ e is not connected, which by Tutte’s theorem means that M/e

is connected. So r(M/e) ≥ 1 (because r(M) ≥ 2), and ẐM/e is monic. Note also that
because M is loopless, so too is M \ e, and hence ẐM\e is also monic.

Now, consider a non-trivial factorization of ẐM . Since ẐM is monic and linear in
ve, we can write ẐM = (U + veV )W , where U,V,W are polynomials in K[v][q] in
which ve does not appear, and where each factor has positive degree in q .

So (U + veV )W = ẐM\e + veẐM/e. Comparing coefficients with respect to ve

gives UW = ẐM\e and V W = ẐM/e. By minimality of the counterexample, ẐM/e is
irreducible. But W has positive degree in q , so V = 1 and W = ẐM/e. Thus UẐM/e =
ẐM\e. Now, ẐM/e and ẐM\e are monic of degrees r(M) − 1 and r(M), respectively.
So U = q + β for some β ∈ K[v]. Let v̄ = v \ {ve}, and note that

ẐM\e(1, v̄) =
∏

i∈E\e
(1 + vi) = ẐM/e(1, v̄),
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so β = 0. Now setting q = 0 gives ẐM\e(0, v̄) = 0. This means that there are no bases
in M \ e, which is only possible if every element of E \ e is a loop. So we have a
contradiction. �

In order to prove the theorem, we need more precise information about how Galois
groups behave under specializations of parameters. The next result is well-known, it
follows, for instance, from [3, Theorem IX.2.9].

Proposition 4 Let R be an integral domain which is integrally closed in its quotient
field F . Let f ∈ R[X] be monic and irreducible over F . Let R → k, r �→ r̄ be a
homomorphism to a field k. If f̄ ∈ k[X] is separable, then Gal(f̄ /k) is a subgroup of
Gal(f/F ).

The following two lemmas can be obtained through applications of this proposi-
tion.

Lemma 5 Let A be a subset of E. Then Gal(ẐM|A/K(vA)) is a subgroup of
Gal(ẐM/K(v)).

Proof Let B be such that A ⊂ B ⊆ E, and let e be an element of B \ A. Note
that removing e from B corresponds to specializing ve to zero in ẐM|B . Let R =
K(vB\e)[ve], and let I be the maximal ideal of R generated by ve. The image of ẐM

in the canonical homomorphism R → R/I is either qẐM|(B\e) or ẐM|(B\e), depend-
ing on whether or not e is a coloop. In both cases, we have a separable polynomial, as
the presence of a repeated irreducible factor would contradict the fact that ẐM|(B\e)
is linear in the elements of vB\e . Furthermore, R is integrally closed in its quotient
field K(v). So we have that Gal(ẐM|(B\e)/K(vB\e)) ≤ Gal(ẐM|B/K(vB)) by Propo-
sition 4, and the result follows by induction. �

Lemma 6 Let y be a variable over the field k, and U,V ∈ k[X] with degV = n − 1,
and U monic of degree n (where n ≥ 2). Suppose that f (X) = U(X) + yV (X) is
irreducible over k(y) (which is equivalent to U and V being relatively prime). If
Gal(U/k) = Sn or Gal(V/k) = Sn−1, then Gal(f/k(y)) = Sn.

Proof First suppose that Gal(U/k) = Sn. Then the assertion follows immediately
from Proposition 4 by setting R = k[y] and considering the homomorphism R → k,
h(y) �→ h(0).

Now assume that Gal(V/k) = Sn−1. Set t = 1/y and replace f (X) = U(X) +
yV (X) = U(X) + 1

t
V (X) with t times the reciprocal of f (X), that is, set f̂ (X) =

Xn(tU(1/X)+V (1/X)). Clearly, k(t) = k(y) and Gal(f/k(y)) = Gal(f̂ /k(t)). The
coefficient of Xn in f̂ is tu + v, where u and v are the constant terms of U and V . If
v = 0, then V has the root 0. However, V is irreducible since Gal(V/k) = Sn−1. So
n = 2. The result clearly holds in this case because f is then irreducible of degree 2.

So assume v 
= 0. Let R ⊂ k(t) be the localization of k[t] with respect to the
ideal (t), so R consists of the fractions p(t)/q(t) with q(0) 
= 0. Note that 1

tu+v
f̂ is

monic with coefficients in R. Also, R (as a local ring) is integrally closed in k(t). Let
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R → k be the homomorphism given by p(t)/q(t) �→ p(0)/q(0). Proposition 4 then
gives Gal(f̂ /k(t)) ≥ Gal(XnV (1/X)/k) = Sn−1. Because Gal(f̂ /k(t)) is transitive
on the n roots of f̂ , we must have Gal(f̂ /k(t)) = Sn. �

We are now ready to prove Theorem 1.

First proof of Theorem 1 Again assume that the matroid M is a counterexample with
rM(E) minimal, and among these cases pick one with |E| minimal. Note that the
statement is trivially true if r(M) = 1, thus r(M) ≥ 2 in the minimal counterexample.

Pick e ∈ E. By Lemma 2, ẐM = ẐM\e + veẐM/e. Let v̄ = v \ {ve}, and set k =
K(v̄). Recall that ẐM is irreducible over k(ve) by Lemma 3. We have seen above that
r(M \ e) = r(M) = n and r(M/e) = n−1. As established previously, either M \ e or
M/e is connected. By assuming a minimal counterexample, we have Gal(ẐM\e/k) =
Sn or Gal(ẐM/e/k) = Sn−1. Theorem 1 then follows from Lemma 6. �

We will now present an alternative proof of Theorem 1. While it is less efficient
than the above proof, it uses a group-theoretical inductive process which is perhaps
more intuitive. We will need to first prove that the theorem holds for circuits.

Lemma 7 Let C ⊆ E be a circuit of a finite matroid M . Then Gal(ẐM|C/K(vC)) =
SrM(C).

Proof The rank of any proper subset of C is the same as its cardinality, and rM(C) =
|C| − 1, so:

ẐM|C(q,v) = qn + σ1q
n−1 + σ2q

n−2 + · · · + σn−1q + (σn + σn+1),

where σi is the ith elementary symmetric polynomial in the {ve}e∈C for each i. The
elementary symmetric polynomials are algebraically independent, and thus so too are
the coefficients of ẐM|C(q,v). It is well known that the Galois group of a polynomial
with algebraically independent coefficients is the full symmetric group. �

Second proof of Theorem 1 Let C be a circuit of maximum cardinality in M . By
Lemma 7, Gal(ẐM|C/K(vC)) = SrM(C). This will serve as the base case for the in-
duction.

Now, let A be any proper subset of E such that C ⊆ A and M|A is connected,
and suppose that Gal(ẐM|A/K(vA)) = SrM(A). Identify a non-empty independent set
B ⊆ E \ A of minimal size such that M|(A ∪ B) is connected, and let A′ = (A ∪ B).
We will show that Gal(ẐM|A′/K(vA′)) = SrM(A′).

By [6, Lemma 1.3.1], rM(A′) ≤ rM(A)+ rM(B). By maximality of C, any circuit
of M|A′ has rank at most rM(C). By minimality of B , any circuit of M|A′ not con-
tained in M|A must include at least one element of A, so rM(B) ≤ rM(C) − 1, and
we have rM(A′) ≤ rM(A) + rM(C) − 1.

By Lemma 5, SrM(A) = Gal(ẐM|A/K(vA)) ≤ Gal(ẐM|A′/K(vA′)). So
Gal(ẐM|A′/K(vA′)) must contain at least one transposition. Let H be the group gen-
erated by all of the transpositions in Gal(ẐM|A′/K(vA′)); then H is a direct product
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of symmetric groups. As Gal(ẐM|A′/K(vA′)) is transitive, each of these symmet-
ric groups must have the same degree i, which must therefore divide the degree of
Gal(ẐM|A′/K(vA′)). By Lemma 3, ẐM|A′ is irreducible, and its Galois group must
therefore be transitive of degree rM(A′). So we have that ji = rM(A′) for some
positive integer j .

Now, SrM(A) contains at least one of the transpositions of H , so must be a subgroup
of one of the Si , which means rM(A) ≤ i. So we have:

jrM(A) ≤ ji = rM(A′) ≤ rM(A) + rM(C) − 1.

Suppose that j ≥ 2. Then 2rM(A) ≤ rM(A)+rM(C)−1, and so rM(A) ≤ rM(C)−1.
This is impossible, as C ⊂ A. So j = 1, and hence i = rM(A′). This means
that H is a direct product of symmetric groups of degree rM(A′). But H is a
subgroup of Gal(ẐM|A′/K(vA′)), which is transitive of degree rM(A′), and so
Gal(ẐM|A′/K(vA′)) = H = SrM(A′). �

Now, in view of the proof of Lemma 7, one might wonder if the coefficients of
ẐM(q,v) are algebraically independent for any finite connected matroid. This does
indeed turn out to be the case, leading us to our third and final proof of Theorem 1.

Third proof of Theorem 1 Let M be a finite connected matroid of rank r(M) = n ≥ 1,
and write ẐM(q,v) = qn + an−1q

n−1 + · · · + a1q + a0 ∈ K[v][q], where K is an ar-
bitrary field. It suffices to show that the coefficients a0, a1, . . . , an−1 are algebraically
independent over K .

If n = 1, then ẐM(q,v) = q − 1 +∏
e∈E(ve + 1), so the claim clearly holds. Thus

we may assume n ≥ 2.
Assume that M is a counterexample in which |E| is minimal. We will use the

deletion–contraction identity ẐM = ẐM\e + veẐM/e of Lemma 2. First consider the
case that M \e is connected. By the assumption of a minimal counterexample, the co-
efficients of ẐM\e (excluding the leading coefficient 1) are algebraically independent
over K . However, these coefficients arise from the coefficients a0, a1, . . . , an−1 upon
setting ve = 0. Of course, an algebraic dependency relation of a0, a1, . . . , an−1 over
K remains an algebraic dependency relation upon setting ve = 0, a contradiction.

Thus M \ e is not connected, so we may assume that M/e is connected. For each
0 ≤ i ≤ n−1, write ai = bi +veci , where bi and ci are polynomials in the elements of
vE\e. Each cj is then the coefficient of qj in ẐM/e, so cn−1 = 1 (as r(M/e) = n − 1)
and c0, c1, . . . , cn−2 are algebraically independent over K . As a0, a1, . . . , an−1 are
algebraically dependent, there is a non-zero polynomial P in n variables over K such
that

P(b0 + vec0, . . . , bn−2 + vecn−2, bn−1 + ve) = 0.

Let Q be the expansion of P with respect to ve, so that Q is a polynomial in ve with
coefficients in K[vE\e]. As the elements of v are algebraically independent, these
coefficients must be identically zero. Let d be the total degree of P . Then Q has
degree d in ve, and the vd

e term must arise from a K-linear sum of products of the
form:

(b0 + vec0)
d0 · · · (bn−2 + vecn−2)

dn−2(bn−1 + ve)
dn−1 ,
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where d0, . . . , dn−1 are non-negative integers which sum to d . This means that the co-
efficient of vd

e in Q is a K-linear combination of monomials of the form c
d0
0 · · · cdn−2

n−2 ,
where di ≥ 0 for each i, and d0 + · · · + dn−2 ≤ d . The vanishing of this coefficient
then implies that the set of such monomials is linearly dependent over K , which
contradicts our assertion that c0, . . . , cn−2 are algebraically dependent over K . �

Remark 8 Sokal showed that the multivariate Tutte polynomial for matroids factor-
izes over summands (see [7, (4.4)]). That is, if M is the direct sum of connected
matroids M1,M2 on the sets E1,E2, respectively (where E1 and E2 are disjoint and
E = E1 ∪ E2) then:

ẐM(q,v) = ẐM1(q,vE1)ẐM2(q,vE2).

As vE1 and vE2 are disjoint, there are clearly no algebraic dependencies between the
roots of ẐM1 and ẐM2 , so we have that

Gal
(
ẐM/K(v)

) = Gal
(
ẐM1/K(vE1)

) × Gal
(
ẐM2/K(vE2)

)
.

Theorem 1 then implies that the Galois group of the multivariate Tutte polynomial of
any matroid is a direct product of symmetric groups corresponding to the connected
direct summands.

Finally, we computed the Galois group of the bivariate Tutte polynomial TG(x, y)

over Q(y) for every biconnected graph G of order n ≤ 10, and found that all were the
symmetric group of degree n − 1. As the Tutte polynomial of any connected matroid
is irreducible over fields of characteristic zero (as noted in [4], this is not necessarily
the case for fields of positive characteristic), this would seem to suggest the following:

Conjecture 9 Let M be a finite connected matroid with positive rank n = r(M), and
let K be a field of characteristic zero. Then the Galois group of the Tutte polynomial
TM(x, y) over K(y) is the symmetric group of degree n.

As remarked previously, the bivariate Tutte polynomial is essentially a special-
ization of the multivariate version. This means that Theorem 1 would follow from a
proof of Conjecture 9 for fields of characteristic zero.

Interestingly, specializing the Tutte polynomial further produces a range of differ-
ent Galois groups. For example, it was shown in [1] that all of the transitive permu-
tation groups of degree at most 5 apart from C5 appear as Galois groups of just one
family of chromatic polynomials. Furthermore, Morgan [5] showed that a range of
transitive groups of higher degree occur for chromatic polynomials of graphs on up
to 10 vertices.
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