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Abstract This paper presents a classification of vertex-primitive and vertex-biprim-
itive 2-path-transitive graphs which are not 2-arc-transitive. The classification leads
to constructions of new examples of half-arc-transitive graphs.
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1 Introduction

Let Γ = (V ,E) be a graph with vertex set V and edge set E. Recall that an arc is
an ordered pair of adjacent vertices. Each edge {α,β} corresponds to two arcs (α,β)

and (β,α). A 2-arc in Γ is a triple (α,β, γ ) of three distinct vertices such that β is
adjacent to both α and γ . Identifying the 2-arcs (α,β, γ ) and (γ,β,α) gives rise to a
2-path, denoted by [α,β, γ ].

A graph Γ is called G-arc-transitive, (G,2)-arc-transitive, or (G,2)-path-
transitive if G ≤ AutΓ acts transitively on the set of arcs, the set of 2-arcs, or the
set of 2-paths, respectively, in which case Γ is sometimes simply called a symmetric
graph, a 2-arc-transitive graph, or a 2-path-transitive graph.

The study of symmetric graphs forms a significant part of current research efforts
in algebraic graph theory. An important subclass of symmetric graphs is the class of
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2-arc-transitive graphs, the study of which has been a topic of active research for al-
most half a century, see [3, 8, 11, 17, 18] and the references therein. It follows from
the definition that a 2-arc-transitive graph is 2-path-transitive, and 2-arc-transitive
graphs thus form a subclass of the class of 2-path-transitive graphs. In 1996, Conder
and Praeger initiated the study of 2-path-transitive graphs. This study was further de-
veloped in [12]. Apart from being a natural generalization of 2-arc-transitive graphs,
this broader class of graphs is worth studying for several other reasons.

Recall that a graph Γ = (V ,E) is called half-arc-transitive (or half-transitive)
if AutΓ is transitive on V and E, but not on the set of arcs. The class of half-arc-
transitive graphs has been widely studied in the past twenty years, and a substantial
amount of work was devoted to constructing new half-arc-transitive graphs. Our main
motivation for studying 2-path-transitive graphs comes from the fact that there is
a close relationship between 2-path-transitivity and half-arc-transitivity. It is shown
in [12] that the line graphs of 2-path-transitive but not 2-arc-transitive graphs are half-
arc-transitive. This link provides a method of constructing half-arc-transitive graphs.
Furthermore, it naturally leads to investigating the gap between ‘2-path-transitive’
and ‘2-arc-transitive’ in general. It is therefore useful to study 2-path-transitive graphs
which are not 2-arc-transitive.

On the other hand, the concept of 2-path-transitive graphs may also be viewed
as a generalization of cubic arc-regular graphs, another class of graphs that has re-
ceived extensive attention in the literature. Here a graph Γ is called arc-regular (or
1-regular) if AutΓ acts regularly on the set of arcs. It is easy to see that arc-regular cu-
bic graphs are precisely cubic graphs that are 2-path-transitive but not 2-arc-transitive.
Therefore the line graphs of cubic arc-regular graphs are half-arc-transitive of va-
lency 4. Based on this observation, a study of arc-regular cubic graphs was carried out
in [16], which provides a generic method for constructing half-arc-transitive graphs
of valency 4. The process in turn stimulates a further study on arc-regular graphs.

We note that a 2-path-regular graph is not 2-arc-transitive. Here a graph Γ is called
2-path-regular if AutΓ acts regularly on the set of 2-paths of Γ . The concept of 2-arc-
regular graphs is similarly defined, and 2-arc-regular graphs are studied in [8, 13],
for example. As a special case of 2-path-transitive graphs, the study of 2-path-regular
graphs is clearly an extension of that of 2-arc-regular graphs.

The aim of this paper is to classify vertex-primitive and vertex-biprimitive 2-path-
transitive graphs which are not 2-arc-transitive, and then to apply the classification to
construct new examples of half-arc-transitive graphs.

In this paper our conventions for expressing the structure of groups run as follows.
If H and K are groups, then H.K denotes any extension of H by K , H :K denotes a
split extension of H by K , and the symbol [m] denotes an arbitrary group of order m.
Furthermore, we use the symbols Th, B and M to denote the Thompson simple group,
the Baby Monster simple group and the Monster simple group, respectively.

For the vertex-primitive case, the result is given in the following theorem. (A graph
Γ = (V ,E) is called G-vertex-primitive if G ≤ AutΓ is primitive on vertex set V .)

Theorem 1.1 Let Γ be a G-vertex-primitive, (G,2)-path-transitive graph of va-
lency k. Assume that Γ is not (G,2)-arc-transitive. Then k = pe ≡ 3 (mod 4) with p

prime, and one of the following holds:
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(i) G = Z
d
2 :Gα , where Gα is a 2-homogeneous permutation group of degree pe.

(ii) G = PSL2(p
e), and Γ = Kpe+1.

(iii) G = Ap , Gα = Zp:Z(p−1)/2, and k = p with p �= 7,11,23. Furthermore, either
AutΓ = Ap and Γ is 2-path-regular, or AutΓ = Sp and Γ is 2-arc-regular.

(iv) AutΓ = G is a sporadic simple group, Γ is 2-path-regular, and (G,Gα) lies in
the following table:

G Th B M

Gα Z31:Z15 Z47:Z23 Z59:Z29 or Z71:Z35

A permutation group G on Ω is said to be biprimitive if Ω has a G-invariant par-
tition Ω = Δ1 ∪ Δ2, such that the setwise stabilizer GΔi

is primitive on Δi . A graph
Γ = (V ,E) is called G-vertex-biprimitive if G ≤ AutΓ is biprimitive on the vertex
set V .

Theorem 1.2 Let Γ be a connected (G,2)-path-transitive graph of valency k which
is not (G,2)-arc-transitive. Assume further that Γ is G-vertex-biprimitive. Then Γ is
bipartite, k = pe ≡ 3(mod 4) with p prime, and one of the following holds:

(1) Γ is the standard double cover of a vertex-primitive graph as given in Theo-
rem 1.1.

(2) G = (Zd
r :Gα):Z2, where r is prime, d ≥ 1, and Gα is a 2-homogeneous permu-

tation group of degree pe and is an irreducible subgroup of GLd(r).
(3) Γ = Kpe,pe , and G = (Ze

p × Z
e
p):Gαβ :Z2, where Gαβ ≤ Γ L1(p

e) × Γ L1(p
e).

(4) AutΓ = G = Sp , Gα = Zp:Z(p−1)/2, where p ≡ 3(mod 4) is prime, p �= 7, 11,
23, and Γ is 2-path-regular.

(5) G = PGL3(4).Z2, Gα = (Z7:Z3)×Z3, k = 7, AutΓ = Aut(PSL3(4)) = G.2, and
Γ is 2-arc-transitive.

(6) AutΓ = G = PΓ U3(5), Gα = (Z7:Z3) × Z3, and k = 7.

Applying the classification result of Theorems 1.1 and 1.2, we construct half-arc-
transitive graphs in Theorem 1.3. Some of these graphs are new.

Theorem 1.3 For each group G and a subgroup H < G in Table 1, there exists a
half-arc-transitive graph Σ of valency m such that AutΣ = G and H is the stabilizer
in G of some vertex of Σ .

This paper is organised as follows: examples of the graphs given in these three
theorems are constructed in Sect. 2. A reduction is given in Sect. 3 for the proofs of
Theorems 1.1 and 1.2, and finally Theorems 1.1 and 1.2 are proved in Sect. 4.

2 Examples

In this section, we construct and study examples of 2-path-transitive graphs given in
Theorems 1.1 and 1.2. Recall that a permutation group G on Ω is called 2-transitive
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Table 1 Pairs (G,H)

associated with half-transitive-
graphs

G H m

PΓ U3(5) Z
2
3:Z2 12

Th Z15:Z2 60

B Z23:Z2 92

M Z29:Z2 116

Z35:Z2 140

Ap Dp−1 2(p − 1), where p ≡ 3 (mod 4) is prime, and

p �= 7,11 or 23

Sp Dp−1 2(p − 1), p is as above

or 2-homogeneous if G induces a transitive action on the set of ordered pairs or on
the set of 2-subsets of Ω , respectively.

Let G be a finite group, and let H be a core-free subgroup of G. Denote by [G : H ]
the set of right cosets of H in G, namely [G : H ] = {Hx | x ∈ G}. For an element
g ∈ G with g2 ∈ H , the Sabidussi coset graph of G with respect to H and g is the
graph with vertex set [G : H ], such that Hx and Hy are adjacent if and only if yx−1 ∈
HgH . This coset graph is G-arc-transitive and is denoted by Cos(G,H,HgH).

Assume that Γ = Cos(G,H,HgH) is a (G,2)-path-transitive graph which is not
(G,2)-arc-transitive. Denote by α, β the vertices corresponding to H and Hg, re-
spectively. Then (α,β)g = (β,α), and g2 ∈ Gα . By [4, Theorem 2], Gα = H is 2-
homogeneous but not 2-transitive on the neighborhood of α, and furthermore, |Gα|
is odd. Thus g2 = 1, that is, g is an involution. Also Γ is connected if and only if
〈H,g〉 = G.

To construct 2-path-transitive graphs which are not 2-arc-transitive, we need the
following result, the proof of which is straightforward.

Lemma 2.1 Let G be a finite group with a core-free subgroup H and an involution g.
Assume further that 〈H,g〉 = G, and the coset action of H on [H : H ∩ Hg] is 2-
homogeneous but not 2-transitive. Then the coset graph Cos(G,H,HgH) is (G,2)-
path-transitive but not (G,2)-arc-transitive.

Example 2.2 Let Γ = Kq+1, where q = pe ≡ 3(mod 4), with p prime. Then
Aut(Γ ) = Sq+1 contains a subgroup G = PSL2(q). For a vertex α of Γ , we have
Gα = Z

e
p:Z(pe−1)/2, which is a maximal subgroup of G. Thus by Lemma 2.1,

the graph Γ is G-vertex-primitive, and (G,2)-path-transitive but not (G,2)-arc-
transitive.

Example 2.3 Let Γ = Kpe,pe , where pe ≡ 3(mod 4), be the complete bipartite graph
of order 2pe. Then Aut(Γ ) = Spe � Z2. Let G = ((Ze

p × Z
e
p):H):Z2 < Aut(Γ ),

where Z(pe−1)/2 ≤ H ≤ Γ L1(p
e), and |H | is odd. Then the graph Γ is G-vertex-

biprimitive, (G,2)-path-transitive but not (G,2)-arc-transitive. The index two sub-
group G+ of G fixes both parts of Γ , and is primitive of affine type.

Next, we study a family of 2-path-transitive graphs associated with alternating
groups.
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Example 2.4 Let G = Sp , and T = Ap , both acting naturally on the set {1,2, . . . , p},
where p is prime, such that p ≡ 3(mod 4), with p �= 7,11,23. Let H be a subgroup
of T isomorphic to K:L, where K = Zp and L = Z(p−1)/2. Then H is a maximal
subgroup of T . Since subgroups which are isomorphic to H are conjugate in T , it
follows that L is conjugate to 〈t2〉, where t is a (p − 1)-cycle. Let g ∈ NT (L)\L, and
f ∈ NG(L)\Ap be involutions. Define

Γ = Cos(T ,H,HgH) and Σ = Cos(G,H,Hf H).

For example, we may choose t = (1,2, . . . , p − 1). Then

t2 = (1,3, . . . , p − 2)(2,4, . . . , p − 1),

and g and f can be defined as follows:

g = (3,p − 2)(5,p − 4) . . .

(
p − 1

2
,
p + 3

2

)
(4,p − 1)(6,p − 3) . . .

(
p + 1

2
,
p + 5

2

)
∈ Aq,

f = (1,2)(3,4) . . . (p − 2,p − 1) ∈ Sq \ Aq .

The graph Γ is connected, (T ,2)-path-transitive but not (T ,2)-arc-transitive, and
AutΓ = T or G; see [12] for details. Further, since H is a maximal subgroup of T ,
Γ is also T -vertex-primitive.

For the graph Σ , we have the following conclusion.

Lemma 2.5 Let Σ be the graph constructed in Example 2.4. Then Σ is connected,
vertex-biprimitive, and 2-path-regular; furthermore, AutΣ = Sp .

Proof By definition, f ∈ G \ T normalizes L. Since H < T , and G/T ∼= Z2, T has
exactly two orbits on [G : H ], say Δ1 and Δ2, such that G+: = GΔi

= T . More-
over, the setwise stabilizer G+ is primitive on Δi , and Σ is a bipartite graph with
parts Δ1 and Δ2. Since f does not normalize H , it follows that Σ is connected.
Since H ∩ Hf = L, and the action of H on [H : H ∩ Hf ] is 2-homogeneous but not
2-transitive, we conclude that Σ is a (G,2)-path-transitive graph of valency p, which
is not (G,2)-arc-transitive. Further, Γ is G-vertex-biprimitive.

Suppose that G+ is not normal in AutΣ . Then there exists a group X such that
T < X ≤ AutΣ , and NAutΣ(T ) is a maximal subgroup of X. Since T is primitive
on Δi , so is X. Since |Δi | = |T : H | = (p − 2)!, by the O’Nan-Scott Theorem, we
conclude that either X is almost simple or X � Ap−2 × Ap−2. Moreover, because
the order |X| is divisible by p, it follows that X is almost simple. Thus we have
X = NAutΓ (T )Xα is a maximal factorisation of the almost simple group X. There-
fore the triple (X,NAutΓ (T ),Xα) should lie in the classification of [15]. However, an
inspection shows that there is no such a triple, which is a contradiction. Thus G+ = T

is normal in AutΣ . Since T is primitive on Δi , the centralizer of T in AutΣ is trivial,
so AutΣ ≤ Aut(T ) = Sp . Since AutΣ ≥ G = Sp , we have AutΣ = Sp . �
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Let Γ = Cos(G,H,HgH), and let Aut(G,H) = {σ ∈ Aut(G) | Hσ = H }. The
following conclusion is well-known, and the proof is easy.

Lemma 2.6 Suppose that σ ∈ Aut(G,H). Then Γ = Cos(G,H,HgH) is isomor-
phic to Σ = Cos(G,H,Hgσ H). Moreover, σ induces an automorphism of Γ if and
only if HgH = Hgσ H .

Let Γ be the graph and t be a (p − 1)-cycle defined in Example 2.4. Let M = 〈t〉.
We point out that the choice of g for defining Γ is not unique. Indeed we can
even choose g such that g ∈ NT (L)\NT (M). This is because NT (L) is an in-
dex two subgroup of NG(L), and further, as NT (M) ≤ NT (L), and (p − 1)/2 is
odd, we have NG(M) = M:Aut(M) ∼= Zp−1:Aut(Zp−1) = Zp−1:Aut(Z(p−1)/2). Since
NT (L) ≥ Zp−1:(Aut(Z(p−1)/2)×Aut(Z(p−1)/2)), we conclude that NT (M) < NT (L),
and a Sylow-2 subgroup of NT (M) is properly contained in a Sylow-2 subgroup of
NT (L). Therefore there exists a 2-element g such that g ∈ NT (L)\NT (M). Actually
the full automorphism group of Γ depends on the choice of g.

The case AutΓ = Sp does occur.

Lemma 2.7 If g ∈ NT (M)\M , then AutΓ = Sp and Γ is 2-arc-regular.

Proof Let H1 = K:M , and let V1 = [G : H1]. Then H is an index 2 subgroup of H1.
Now the graph Γ1 = Cos(G,H1,H1gH1) is 2-arc regular, with full automorphism
group Sp (see [8, Lemma 4.2]). Further, since T is transitive on V1, for any H1x ∈ V1

we may choose x ∈ T . Then it is straightforward to show that the map ψ : V1 → V

defined by ψ(H1x) = Hx is a graph isomorphism between Γ1 and Γ . It follows that
AutΓ = Sp , and Γ is 2-arc-regular. �

The case AutΓ = Ap occurs too.

Lemma 2.8 If g ∈ NT (L)\NT (M), then AutΓ = Ap and Γ is 2-path-regular.

Proof As indicated in Example 2.4, AutΓ = Ap or Sp . Suppose that AutΓ = Sp .
Write M = L × 〈σ 〉, where o(σ ) = 2. Then 〈Ap,σ 〉 = Sp and Hσ = H . Thus by
Lemma 2.6, we have HgH = Hgσ H . Since g /∈ NT (M), we obtain gσ �= g. Since
gσ ∈ HgH and g ∈ NT (L), there exist a, b ∈ K and u ∈ L such that gσ = agbu.
As o(gσ ) = 2, we have (agbu)2 = 1, so (bua)g = (bua)−1. Since bua ∈ H , we
obtain bua ∈ H ∩ Hg = L. As u ∈ NT (K), we have u−1bua = bua ∈ K ∩ L, that is,
bua = 1. Thus gσ = (gu)a

−1
. Since gσ normalizes L, we have (La)gu = La . Notice

that La ∈ H , so La ≤ H ∩Hgu = L, and therefore La = L. If a �= 1, then the order of
a is p, which means that K normalizes L, which is a contradiction. Thus a = b = 1
and gσ = gu. Since both g and σ are involutions, we obtain σg = uσ , that is, g

normalizes M , which is again a contradiction. Thus AutΓ = Ap , as claimed. �

The graphs in the next example arise from three sporadic simple groups: the
Thompson group Th, the Baby Monster B, and the Monster M.
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Example 2.9 Let G = Th, B or M. Then by the Atlas [5], the group G contains a
maximal subgroup H such that H ∼= Zp:Z(p−1)/2, where p = 31 for G = Th, p =
47 for G = B, and p = 59 or 71 for G = M. Let L be a subgroup of H which
is isomorphic to Z(p−1)/2. Then in each case, NG(L) is of even order. This is true
because the Atlas [5] shows that for G = Th, |CG(L)| = 30; for G = B, |CG(L)| =
46; for G = M with p = 59, NG(L) = (Z29:Z14 × 3).2; and for G = M with p = 71,
|CG(L)| = 70 or 2100.

Let g be an involution in NG(L), and let Γ = Cos(G,H,HgH). Then H ∩Hg =
L, hence Γ has valency |H : L| = p. Since H is a maximal subgroup of G, we
have 〈H,g〉 = G, thus Γ is connected. Further, since the action of H on [H : L]
is 2-homogeneous and is not 2-transitive, we conclude that Γ is G-vertex-primitive,
(G,2)-path-transitive but not (G,2)-arc-transitive.

Moreover, for the graphs that we just constructed in Example 2.9, the following
conclusion is true:

Lemma 2.10 If Γ is a graph in Example 2.9, then AutΓ = G, and Γ is 2-path-
regular.

Proof Suppose that G is not normal in AutΓ . Then there exists a group X such that
G < X ≤ AutΓ and NAutΓ (G) is a maximal subgroup of X. Since G is primitive on
V Γ , so is X. Also because Γ is (G,2)-path-transitive, we have either Γ is (X,2)-
arc-transitive, or Γ is (X,2)-path-transitive but not (X,2)-arc-transitive. Thus the
primitive type of X is affine, almost simple, product action or twisted wreath product.
Notice that |V Γ | = |G:H | is not a power of an integer, and |G:H | is exactly divisible
by 19, we conclude that X is almost simple. Thus X = NAutΓ (G)Xα is a maximal
factorisation, and hence the triple (X,NAutΓ (G),Xα) lies in the classification given
in [15]. However, an inspection of the classification shows that there is no such a
triple, which is a contradiction. Therefore G is normal in AutΓ . Since G is primitive
on V , the centralizer of G in AutΓ is trivial. As Out(G) = 1, we conclude that AutΓ =
G, and Γ is 2-path-regular. �

The following two examples arise from classical groups of Lie type.

Example 2.11 Let T = PGL3(4). Then by the Atlas [5], T contains a maximal
subgroup H which is isomorphic to (Z7:Z3) × Z3. Let G = PGL3(4).〈τ 〉, where
τ is a field automorphism or the graph automorphism of PSL3(4), of order 2.
Write H = K : L = (〈x〉:〈y〉) × 〈z〉, where K = 〈x〉, L = 〈y〉 × 〈z〉, o(x) = 7,
o(y) = o(z) = 3, and z is a diagonal automorphism of PSL3(4). Since subgroups
of G which are isomorphic to H are conjugate, we may assume that x, y ∈ PGL3(2).
Then zx = xz and zy = yz. By the Atlas [5], NG(K) = (7:3 × 3).2. Since xy �= yx,
we have |CG(K)| = 21 or 42. If |CG(K)| = 42, then NG(K) contains only three in-
volutions. Assume that |CG(K)| = 21. Then NG(K)/CG(K) = Z6. Thus there are at
most 21 involutions in NG(K). Suppose that a ∈ NG(K) is an involution such that
a ∈ NG(L). We claim that none of the involutions axk

, where 1 ≤ k ≤ 6, is contained
in NG(L). Assume that axk ∈ NG(L). Then aaxk ∈ NG(L). By definition, 〈x, a〉 is a
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dihedral group of order 14, and so aaxk
has order 7. Since |NT (L)| = 27, we have

|NG(L)| is 27 or 54. Since |NG(L)| is even, we have |NG(L)| = 54. But 7 � |NG(L)|,
a contradiction. It follows that among the involutions of NG(K), at most three are
contained in NG(L). Thus there exists an involution g ∈ NG(L)\NG(K), and the
graph Γ = Cos(G,H,HgH) is G-vertex-biprimitive, (G,2)-path-transitive but not
(G,2)-arc-transitive, of valency 7.

Example 2.12 Let T = PGU3(5). Then by the Atlas [5], T contains a maximal sub-
group H which is isomorphic to (Z7:Z3) × Z3. Let G = PΓ U3(5). As in Exam-
ple 2.11, write H = K:L. Then by GAP [9], NG(L) contains nine involutions, three
of which are contained in NG(K). Thus for any 2-element g ∈ NG(L)\NG(K), the
graph Γ = Cos(G,H,HgH) is G-vertex-biprimitive, (G,2)-path-transitive but not
(G,2)-arc-transitive, of valency 7.

For the graphs in Examples 2.11 and 2.12, the full automorphism groups of the
graphs are determined in the next two lemmas.

Lemma 2.13 If Γ is the graph in Example 2.11, then AutΓ = PSL3(4).(2 × S3) and
Γ is 2-arc-transitive.

Proof By definition, G = PGL3(4).〈τ 〉, where τ is a field automorphism or the graph
automorphism of PSL3(4), of order 2. Assume first that τ is the graph automorphism
of PSL3(4) (that is, τ is the transpose inverse map). Now Γ = Cos(G,Gα,GαgGα),
with Gα = 7:3 × 3. Let T = PGL3(4) and consider Gα as a semi-direct product
K:L = (〈x〉:〈y〉) × 〈z〉, where K = 〈x〉, L = 〈y〉 × 〈z〉, o(x) = 7, o(y) = o(z) = 3,
and z is a diagonal automorphism of PSL3(4). Then the 2-element g lies in
NG(L)\NG(K).

Let σ be a field automorphism of PSL3(4). We claim that gσ ∈ HgH .
As observed in Example 2.11, the normaliser NT (L) is a Sylow 3-subgroup of G,

with |NT (L)| = 27 and |NG(L)| = 54. Thus we may write NT (L) = (〈y〉 × 〈z〉):〈t〉,
where o(t) = 3. Then g can be written as g = g1τ , where g1 = yk1zk2 tk3 ∈ T , with
ki = ±1. As both g and τ normalize L, so does g1. Since τ normalizes H , we have
HgH = Hg1τH = Hg1Hτ . Because στ = τσ , we have gσ = gσ

1 τ , and hence gσ ∈
HgH = Hg1Hτ if and only if gσ

1 ∈ Hg1H . By the Atlas [5], σ fixes the Sylow 3-
subgroup NT (L), and thus gσ

1 ∈ NT (L). Assume that gσ
1 = yl1zl2 t l3 = yl1zl2 t l3−k3 tk3 .

Since t normalizes 〈y〉 × 〈z〉, it follows that gσ
1 ∈ Hg1H . Thus σ induces an auto-

morphism of Γ . If we interchange the roles of τ and σ by assuming that τ is a
field automorphism of PSL3(4), and σ is the graph automorphism, then analogously
we have σ ∈ AutΓ . Hence in both cases, we have AutΓ ≥ PGL3(4).(〈τ 〉 × 〈σ 〉) ∼=
PSL3(4).(2 × S3). We will show that equality holds. Let A = PSL3(4).(2 × S3).

Suppose, to the contrary, that X0 := AutΓ > A. Then there exists a subgroup X of
X0 such that A < X ≤ X0 and A is maximal in X. We have two possibilities: X is
primitive or biprimitive on V .

Assume that X is primitive on V . Then Γ is (X,2)-path-transitive. Accordingly,
the primitive type of X is either affine, almost simple, product action, or twisted
wreath product. Assume first that X is of affine type. Then for any α ∈ V , Xa is
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faithful on Γ (α). On the other hand, Aα ≤ Xα , and Aα acts unfaithfully on Γ (α),
we obtain a contradiction. Since |V | = 1920, we know that the primitive type of
X is neither product action nor twisted wreath product. Thus X is almost simple,
and X = AXα is a maximal factorisation. Hence the triple (X,A,Xα) lies in the
classification given in [15]. Notice that |V | = |X:Xα| = 1920. An inspection of the
classification shows that there is no such a triple, which is a contradiction.

Assume that X is biprimitive on V . Then the two invariant blocks of X are the
same as that of G, which we suppose to be Δ and Δ′. Then X induces a primitive
action on both Δ and Δ′. Since |V | = 1920, the primitive type of X is not affine, prod-
uct action, or twisted wreath product. Thus XΔ is almost simple, and once again we
obtain a maximal factorisation XΔ = (A ∩ XΔ)(XΔ)α , where A ∩ XΔ = PGL3(4).2.
An inspection of [15] shows that there is no such a factorisation, a contradiction.

From the above discussion, we come to the conclusion that AutΓ = PSL3(4).(2 ×
S3), and Γ is 2-arc-transitive, as claimed. �

Lemma 2.14 Let Γ be the graph in Example 2.12. Then AutΓ = G, and Γ is 2-
path-transitive but not 2-arc-transitive.

Proof Since AutΓ ≥ G, we only need to show that equality holds. Suppose, on the
contrary, that X0 := AutΓ > G. Then there exists a subgroup X of X0 such that
G < X ≤ X0, and G is maximal in X. In this case we have |V | = 12000, and the
argument in Lemma 2.13 also applies to the current case. Thus AutΓ = G. �

3 A reduction

For a graph Γ = (V ,E) and a vertex α, denote by Γ (α) the neighborhood of α, that
is, the set of vertices to which α is adjacent. For a group G ≤ AutΓ , the stabilizer Gα

induces a natural action on Γ (α). As usual, the permutation group induced by Gα on
Γ (α) is denoted by G

Γ (α)
α , and the kernel of Gα acting on Γ (α) is denoted by G

[1]
α .

Then G
Γ (α)
α

∼= Gα/G
[1]
α . Let Γ be (G,2)-path-transitive. Then by the well-known

Thompson–Wielandt Theorem, for an arc (α,β) of Γ , the subgroup G
[1]
αβ = G

[1]
α ∩

G
[1]
β is a p-group with p prime. Moreover, it follows from a result of Weiss (see [18])

that G
[1]
αβ = 1. A characterisation of the vertex stabilizer for a 2-path-transitive graph

is then easily obtained in [12], restated below. Recall that for a group X and a prime
p, Op(X) is the largest normal p-subgroup of X.

Theorem 3.1 (see [12, Theorem 1.1]) Let Γ be a connected (G,2)-path-transitive
graph which is not (G,2)-arc-transitive. Then Γ has valency pe, where pe ≡
3(mod 4) with p prime, and for each edge {α,β}, G

Γ (α)
α ≤ AΓ L1(p

e) is 2-
homogeneous, and the following hold:

(a) G
[1]
β

∼= (G
[1]
β )Γ (α) � G

Γ (α)
αβ ≤ Z(pe−1)/2:Ze < Γ L1(p

e), and Gαβ = (G
[1]
α ×

G
[1]
β ).O , where O ∼= G

Γ (α)
αβ /(G

[1]
β )Γ (α).

(b) Op(Gα) ∼= Z
e
p is regular on Γ (α), and Gα = Op(Gα):Gαβ , with order |Gα|

dividing pe(
(pe−1)e

2 )2.
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For positive integers q and n, a prime divisor of qn − 1 is called a primitive prime
divisor if it does not divide qi − 1 for all i < n. The following result is due to Zsig-
mondy.

Lemma 3.2 (Refer to [10, p. 508]) For any positive integers q and n, either

(i) qn − 1 has a primitive prime divisor, which is at least n + 1, or
(ii) (n, q) = (6,2) or (2,2b − 1), where b ≥ 2 is an integer.

For a prime-power pe ≡ 3 (mod 4), it is easily shown that pe − 1 has primitive
prime divisors. We thus have the following statement.

Corollary 3.3 If pe is the valency of a 2-path-transitive but not 2-arc-transitive
graph, then pe − 1 has a primitive prime divisor which is at least 5.

Let Γ = (V ,E) be a connected (G,2)-path-transitive graph which is not (G,2)-
arc-transitive. Assume further that G is primitive or biprimitive on V . Let

G+ = 〈Gα | α ∈ V 〉.
Then either G is primitive on V and G+ = G, or G is biprimitive on V , and G+ is
of index 2 in G and has exactly two orbits on V which form the bipartition of V . In
particular, in either case, Gα = G+

α is maximal in G+. The next lemma is a reduction
for proving Theorems 1.1 and 1.2.

Lemma 3.4 Let Γ = (V ,E) be a connected (G,2)-path transitive graph which is
not (G,2)-arc-transitive. Assume that G acts primitively or biprimitively on V . Then
either Γ = Kpe,pe with pe ≡ 3(mod 4), or G+ is a primitive permutation group of
affine type or almost simple type.

Proof Let Ω be an orbit of G+ on V , and let α ∈ Ω . By Theorem 3.1, the valency
|Γ (α)| is pe for some prime p such that pe ≡ 3(mod 4).

Suppose that G+ acts unfaithfully on Ω . Then Γ is bipartite with two parts Ω and
Ωg , where g ∈ G \ G+. Since G+ is faithful on V = Ω ∪ Ωg , the kernel G+

(Ω)
acts

on Ωg non-trivially. Since G+
(Ω) � G+ and G+ is primitive on Ωg , we conclude that

G+
(Ω) is transitive on Ωg . It follows that Γ is a complete bipartite graph K|Ω|,|Ωg |, of

valency |Ω|, and hence |Ω| = pe.
Assume instead that G+ is faithful on Ω . Since G is primitive or biprimitive on

V , we have G+ ≤ Sym(Ω) is primitive. By Theorem 3.1, the point stabilizer G+
α is

soluble, and hence in the language of the O’Nan-Scott Theorem (see [7]), the action
of G+ on Ω is of affine, almost simple, or product action type.

Suppose that G+ is of product action type. Then G+ ≤ (T̃1 × T̃2 × · · · × T̃k):Sk

≤ Sym(Δ) � Sk , and Ω = Δk , where k ≥ 2, T̃i ≤ Sym(Δ) is almost simple with socle
Ti , and T̃i is primitive on Δ. The socle, N = soc(G+) = T1 × · · · × Tk

∼= T k , where
Ti

∼= T , is a minimal normal subgroup of G+. Since G+ = NG+
α , we know that G+

α

induces a transitive action on {T1, T2, . . . , Tk} by conjugation. Since G+
α is of odd

order, it follows that k is odd and so k ≥ 3.
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By Theorem 3.1, the subgroup Op(Gα) ∼= Z
e
p is regular on Γ (α) and is a minimal

normal subgroup of Gα . Thus either Op(Gα) ≤ Nα , or Op(Gα) ∩ Nα = 1. Further,
since Nα is transitive on Γ (α), the order |Nα| is divisible by pe. If Op(Gα) ∩ Nα =
1, then |Gα| is divisible by (pe)2, which is not possible by Theorem 3.1. Thus
Op(Gα) ≤ Nα , and Nα = Op(Gα):Nαβ � Gα .

Note that Z
e
p:Nαβ = Op(Gα):Nαβ = Nα = ∏

Tiδi
, where δi ∈ Δ. Suppose that

Nαβ = 1. Then Tiδi
= Z

m
p (for some m dividing e) is a maximal subgroup of the

almost simple group T̃i , which is impossible. Hence Nαβ �= 1. Since Op(Gα)∩Nαβ =
1, there exists a prime t �= p which divides |Nαβ |. This prime t divides |Tiδi

|, and it
follows that Nα contains a subgroup which is isomorphic to Z

k
t . A Sylow t-subgroup

of Nα is isomorphic to a Sylow t-subgroup of Nα/Op(Gα), which is isomorphic to

a subgroup of Gαβ = (G
[1]
α × G

[1]
β ).O . Since both G

[1]
α and Gαβ/G

[1]
α are subgroups

of Γ L1(p
e) which are metacyclic, it follows that k ≤ 4, and so k = 3.

Let L be the kernel of G+ acting on {T1, T2, T3} by conjugation. Then T1 × T2 ×
T3 = N �L ≤ T̃1 × T̃2 × T̃3, where Ti ≤ T̃i ≤ Aut(Ti) such that T̃i

∼= L/CL(Ti). Since
T1, T2, T3 are conjugate in G+, we have T̃1 ∼= T̃2 ∼= T̃3. Each element g ∈ L can be
written as

g = (t1, t2, t3), for some ti ∈ T̃i .

Let πi be the projection from L to the ith coordinate, namely πi(g) = ti . Then
πi(L) ∼= T̃i .

Now X: = (T̃1 × T̃2 × T̃3) ≤ Sym(Δ) � S3, and hence for a point α = (δ1, δ2, δ3) ∈
Ω , the stabilizer Xα is T̃1δ1 × T̃2δ2 × T̃3δ3 . Since πi(L) = T̃i , we have πi(Lα) = T̃iδi

.
By Lemma 3.2, pe − 1 has a primitive prime divisor r ≥ 5. Since (pe − 1)/2 divides
|Gα|, so does r . Further, as G+

α /Lα
∼= G+/L ≤ S3, we conclude that r | |Lα|, and so

r divides |T̃iδi
|.

By Theorem 3.1, Z
e
p

∼= Op(Gα) � Nα � Gα , and hence

Z
l
p

∼= πi

(
Op(Gα)

)
� πi(Nα) ∼= Tiδi

� T̃iδi
,

where l = e/3. We may write T̃iδi
= Z

l
p:Ki . Then r divides |Ki |.

Let Ci be a Sylow r-subgroup of Ki , and consider the subgroup Mi : =
πi(Op(Gα)):Ci of T̃i . If Ci acts non-trivially on πi(Op(Gα)) ∼= Z

l
p , then Ci <

GLl (p), which contradicts the fact that r � pl − 1. Thus Mi = πi(Op(Gα)) × Ci .
Notice that a Sylow r-subgroup of Gα is contained in a Sylow r-subgroup of
T̃1 × T̃2 × T̃3, it follows that all the r-elements of Gα are in the centralizer of Op(Gα),

which is G
[1]
α by Theorem 3.1. Since r does not divide |GΓ (α)

α |, we again obtain a
contradiction.

Hence G+ is not of product action type, that is, the primitive type of G+ is affine
or almost simple. �

4 Proofs of the main theorems

The remaining part of this paper is devoted to complete the proofs of our main theo-
rems. The proofs of the Theorem 1.1 and Theorem 1.2 depend on the classification,



242 J Algebr Comb (2012) 36:231–246

by Liebeck and Saxl [14], of primitive permutation groups of which the point stabi-
lizer has odd order.

Theorem 4.1 [14, Theorem 2] Let G be an almost simple group with T = soc(G).
Assume that M is a maximal subgroup of G of odd order. Then one of the following
holds:

(i) G = Ap , and M = Zp:Z(p−1)/2, where p ≡ 3 (mod 4) is a prime, and p �= 7,11
or 23;

(ii) T = PSL2(p
e), and T ∩ M = Z

e
p:Z(pe−1)/2, where p is a prime, and pe ≡

3 (mod 4);
(iii) T = PSLr (q), and T ∩ M = Z(qr−1)/(q−1)(r,q−1):Zr , where r is an odd prime;
(iv) G = PSL3(4).3, and M = (Z7:Z3) × Z3;
(v) T = PSUr (q), and T ∩ M = Z(qr+1)/(q+1)(r,q+1):Zr , where r is an odd prime,

and (r, q) �= (3,3), (5,2) or (3,5);
(vi) G = PSU3(5).3, and M = (Z7:Z3) × Z3.
(vii) G and M lie in the following table:

G M23 Th B M

M Z23:Z11 Z31:Z15 Z47:Z23 Z59:Z29, Z71:Z35

As shown in the examples of the last section, almost all of the pairs (G,M) in The-
orem 4.1 do give rise to (G,2)-path-transitive graphs which are G-vertex primitive
or G-vertex biprimitive.

4.1 Proof of Theorem 1.1

Let Γ be a G-vertex-primitive and (G,2)-path-transitive but (G,2)-arc-intransitive
graph, of valency k. Then Gα is primitive on Γ (α), and by Theorem 3.1, k = pe ≡
3(mod 4) with p prime. By Lemma 3.4, the primitive type of G is affine or almost
simple. Assume that G is of affine type, with N : = soc(G) = Z

n
p . Then we may

identify V Γ with N such that α is the zero vector. Let β ∈ Γ (α). Then the pair
{β,−β} is a block of imprimitivity in Γ (α) of Gα . Since Gα is 2-homogeneous on
Gα , we have β = −β , so p = 2, as in (1) of Theorem 1.1. Assume that G is almost
simple, and T ≤ G ≤ Aut(T ), with T a non-abelian simple group. Then the pair
(G,Gα) appears in Theorem 4.1. Thus we need to analyse the pairs of Theorem 4.1
in turn.

(1) Assume that (G,Gα) = (Ap,Zp:Z(p−1)/2), (Th,Z31:Z15), (B,Z47:Z23),
(M,Z59:Z29), or (M,Z71:Z35), or (T ,Tα) = (PSL2(p

e),Z
e
p:Z(pe−1)/2). Then by Ex-

amples 2.2, 2.4, and 2.9, each of these cases corresponds to a G-vertex-primitive,
(G,2)-path-transitive but not (G,2)-arc-transitive graph, as in Theorem 1.1.

(2) Assume that (G,Gα) = (M23,Z23:Z11). We write Gα as K:L, where
K ∼= Z23, L ∼= Z11. Then Gα is the normalizer of a Sylow-23 subgroup of M23.
By the Atlas [5], the cyclic subgroups of order 11 form two conjugacy classes in G.
For L ∼= Z11, assume that the order |NG(L)| is even. Then NG(L) is contained in a
maximal subgroup isomorphic to M11 or M22. Suppose that NG(L) < M , where
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M is M11 or M22. Then it follows that NG(L) = NM(L), and by the Atlas [5],
NM(L) = Z11:Z5, a contradiction. Thus there is no (G,2)-path-transitive but (G,2)-
arc-intransitive graph occurring in this case.

(3) Assume that (T ,Tα) = (PSLr (q),Z(qr−1)/(q−1)(r,q−1):Zr ). Define m = (qr −
1)/(q − 1)(r, q − 1). Then

Gα = (Zm:Zr ).o,

where o = G/T . By Theorem 3.1, the unique minimal normal subgroup of Gα is an
elementary abelian group, so m is a prime, and r = (m − 1)/2. Notice that if q = pe

with p ≥ 3, then r < (m − 1)/2. Thus p = 2 and (r, q) = (3,4), and (G,Gα) =
(PGL3(4),7:3 × 3). If there exists a 2-path-transitive and 2-arc-intransitive graph
Γ , let (α,β) be an arc of Γ . Then Γ = Cos(G,Gα,GαgGα), with the 2-element g

interchanging α and β . Assume that Gα = (〈x〉:〈y〉) × 〈z〉, where o(x) = 7, o(y) =
o(z) = 3, and z is a diagonal automorphism. Then G

[1]
α = 〈z〉, G

[1]
β = 〈y〉, and g

interchanges G
[1]
α with G

[1]
β . Checking the Atlas [5], L := 〈y〉 × 〈z〉 is contained in a

subgroup isomorphic to Z
2
3:2A4. Thus y ∈ Z

2
3, and z ∈ 2A4, but it is easy to see that

no 2-element of 2A4 interchanges 〈y〉 with 〈z〉, a contradiction (actually by GAP [9],
NG(L) = 27). Thus in this case there exists no (G,2)-path-transitive but (G,2)-arc-
intransitive graph.

(4) Assume that (T ,Tα) = (PSUr (q),Z(qr+1)/(q+1)(r,q+1):Zr ). Then by a similar
argument to the one above, the only possibility is (G,Gα) = (PGU3(5),7:3 × 3).
Denote by (〈x〉:〈y〉) × 〈z〉 the subgroup 7:3 × 3, where o(x) = 7, o(y) = o(z) = 3,
and let L = 〈y〉 × 〈z〉. Using the “pq-package” of GAP [2], then calculation shows
that |NG(L)| = 27. Thus there exists no 2-element g which satisfies the conditions of
Lemma 2.1, so no such graph exists.

This completes the proof of Theorem 1.1. �

Let Γ be a (directed or undirected) graph with vertex set V . Then the standard
double cover of Γ is defined to be the undirected bipartite graph Γ̃ with parts V0 and
V1, where Vi = {(v, i) | v ∈ V }, such that two vertices (x, i) and (y, j) are adjacent
if and only if i �= j , and x, y are adjacent in Γ .

Lemma 4.2 Let Γ = Cos(G,H,HgH) be a G-vertex-primitive, and (G,2)-path-
transitive but (G,2)-arc-intransitive graph. Let Σ = Cos(K,H1,H1(g, z)H1), where
K = G × 〈z〉, H1 = H × {1}, and z is an involution. Then

(1) Σ is isomorphic to the standard double cover of Γ .
(2) Σ is K-vertex-biprimitive, (K,2)-path-transitive and (K,2)-arc-intransitive.

Proof (1) We have V Γ = [G:H ] = {Hx | x ∈ G}. Let Γ̃ denote the standard double
cover of Γ . Then V Γ̃ = {(Hx, i) | x ∈ G, i = 0 or 1}. Define a map ψ : V Γ̃ → V Σ

as follows:

ψ
(
(Hx, i)

) = H1
(
x, zi

)
.
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This map is clearly one-to-one. Notice that z−i = zi , for x, y ∈ G and i, j ∈ {0,1},
we have

{
(Hx, i), (Hy, j)

} ∈ EΓ̃ ⇐⇒ yx−1 ∈ HgH, and i + j = 1

⇐⇒ (
yx−1, zi+j

) ∈ H1(g, z)H1

⇐⇒ (
y, zj

)(
x, zi

)−1 ∈ H1(g, z)H1

⇐⇒ {
H1

(
x, zi

)
,H1

(
y, zj

)} ∈ EΣ.

Therefore Γ̃ ∼= Σ .
(2) Let α = H ∈ V Γ , and let α1 = H1 ∈ V Σ . Then it is easy to show that G

Γ (α)
α

is permutationally isomorphic to K
Σ(α1)
α1 . It follows that Σ is K-vertex-biprimitive,

and (K,2)-path-transitive but not (K,2)-arc-transitive. �

4.2 Proof of Theorem 1.2

Let Γ be a G-vertex-biprimitive, (G,2)-path-transitive but (G,2)-arc-intransitive
graph, with two parts Δ and Δ′. Then by Lemma 3.4, the primitive type of GΔ is
affine, or almost simple. If CG(GΔ) is non-trivial, then since |G : GΔ| = 2, we have
G = GΔ × Z2. Therefore Γ is the standard double cover of one of the graphs in
Theorem 1.1. Combining this with Lemma 4.2, we come to the conclusion (1) of
Theorem 1.2. Thus we assume that CG(GΔ) = 1.

Assume first that GΔ is of affine type. We consider two cases: GΔ is faithful on
Δ, and GΔ is unfaithful on Δ.

Suppose that GΔ is faithful on Δ. Since GΔ is not regular on Δ, and CG(GΔ) = 1,
we have soc(G) = soc(GΔ) ∼= Z

d
r with r prime. Therefore for α ∈ Δ, there exist a

prime number p and an odd number e, such that pe ≡ 3(mod 4), and Gα = (GΔ)α <

AΓ L1(p
e) is 2-homogeneous but not 2-transitive of degree pe, and is an irreducible

subgroup of GLd(r), as in (2) of Theorem 1.2.
Suppose that GΔ is unfaithful on Δ. Since Γ is G-vertex-biprimitive, the kernel

G(Δ) is transitive on Δ′, it follows that Γ = Kpe,pe , where pe = |Δ| = |Δ′|, with p

prime, e odd. For α ∈ Δ, we have Γ (α) = Δ′, and GΔ′
α is 2-homogeneous but not 2-

transitive, so GΔ′
α = Z

e
p:Gαβ . By Theorem 3.1, we have Gαβ ≤ Γ L1(p

e)×Γ L1(p
e).

It follows that G = (Ze
p × Z

e
p):Gαβ :Z2, as in (3) of Theorem 1.2.

Assume next that GΔ is almost simple. Then the pair (GΔ, (GΔ)α) = (GΔ,Gα)

is given in Theorem 4.1. Thus we need to consider all the candidates in Theorem 4.1.
(a) Assume that soc(GΔ) = Ap with p ≥ 5. Then (G,Gα) = (Sp,Zp:Z(p−1)/2),

with p prime, p ≡ 3(mod 4) and p �= 7,11,23. By Example 2.4 and Lemma 2.5,
there exists a graph Σ = Cos(G,Gα,Gαf Gα), which is G-vertex-biprimitive,
(G,2)-path-transitive but not (G,2)-arc-transitive, with valency k = p. Further,
AutΣ = Sp , as indicated in Theorem 1.2.

(b) Assume that soc(GΔ) is a sporadic almost simple group. Then by Theo-
rem 4.1, soc(GΔ) = M23,Th,B or M. For each case, since CG(GΔ) = 1, and
Out(soc(GΔ)) = 1, we obtain a contradiction. Thus there is no G-vertex-biprimitive,
and (G,2)-path-transitive but (G,2)-arc-intransitive graph arising in this case.
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(c) Assume that soc(GΔ) is a classical group of Lie type. Then by Theorem 4.1,
we need to consider the following cases:

either (soc(GΔ), soc(GΔ)α) = (PSL2(q),Z
e
p:Z(pe−1)/2), where q = pe ≡

3(mod 4), or (G,Gα) = (PGL3(4).〈τ 〉,7:3 × 3) or (PGU3(5).〈τ 〉,7:3 × 3), where
τ is an involution.

Assume that (soc(GΔ), soc(GΔ)α) = (PSL2(q),Z
e
p:Z(pe−1)/2). Then G =

PSL2(q).2 and Gα = soc(GΔ)α = Z
e
p:Z(pe−1)/2 = K:L, say. Let T := PSL2(q).

Then by a result of Dickson in 1901 (see [6, p. 263]), NG(K) ∼= Z
e
p:Z(pe−1),

NG(L) ∼= D2(q−1), and NT (L) ∼= D(q−1). Write NG(L) = 〈x〉:〈δ〉, where o(x) =
q − 1, and o(δ) = 2. Let g := x

q−1
2 δ. Since δ ∈ T and δ does not normalize

K , we have g ∈ G\T is a 2-element, and g ∈ NG(L)\NG(K). Thus the graph
Γ = Cos(G,Gα,GαgGα) is G-vertex-biprimitive, (G,2)-path-transitive but (G,2)-
arc-intransitive. Since the order of Γ is 2(q + 1), and the valency of Γ is q , we
conclude that Γ = Kq+1,q+1 − (q + 1)K2. Thus Γ is the standard double cover of the
complete graph Kq+1, and therefore (1) holds.

Assume that (G,Gα) = (PGL3(4).〈τ 〉,7:3 × 3). Then by Example 2.11, there ex-
ists a graph Γ = Cos(G,Gα,GαgGα) which is G-vertex-biprimitive, (G,2)-path-
transitive but (G,2)-arc-intransitive. Further, by Lemma 2.13, AutΓ = G.2, as shown
in (5) of Theorem 1.2.

Assume that (G,Gα) = (PGU3(5).〈τ 〉,7:3 × 3). Then by Example 2.12, there
exists a graph Γ = Cos(G,Gα,GαgGα) which is G-vertex-biprimitive, (G,2)-path-
transitive but (G,2)-arc-intransitive, with AutΓ = G, as shown in (6) of Theorem 1.2.

This completes the proof of Theorem 1.2. �
Recall that the line-graph L(Γ ) of a graph Γ = (V ,E) is the graph with vertex set

E such that two vertices in L(Γ ) are adjacent if and only if they are incident in Γ . It
was shown in [12] that a graph is 2-path-transitive but 2-arc-intransitive if and only
if its line-graph is half-arc-transitive.

4.3 Proof of Theorem 1.3

Let G be a group given in the first column of Table 1. Then by Theorems 1.1 and 1.2,
there exists a connected (G,2)-path-transitive graph Γ such that AutΓ = G, the
vertex-stabilizer Gα , and the valency k lie in the following table, where p ≡ 3(mod 4)

and p �= 7,11 or 23:

G PΓ U3(5) Th B M Ap Sp

Gα (Z7:Z3) × Z3 Z31:Z15 Z47:Z23 Z59:Z29, Z71:Z35 Zp:Z(p−1)/2 Zp:Z(p−1)/2
k 7 31 47 59, 71 p p

Let Σ be the line graph of Γ . Then the valency of Σ equals 2(k − 1), which
is the value of m given in the third column of Table 1. By [12, Theorem 1.3], a
graph is 2-path-transitive but not 2-arc-transitive if and only if its line graph is half-
arc-transitive. Since the graph Γ has more than five vertices, a result of Whitney
(1932) (see [1]) implies that AutΣ ∼= AutΓ = G. It follows that the line graph Σ
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is half-arc-transitive. An edge {α,β} of Γ is a vertex of Σ , denoted by v. Thus the
vertex-stabilizer Gv for Σ is the stabilizer of the edge {α,β}. In particular, the vertex-
stabilizer Gv is the subgroup H listed in the second column of Table 1. �
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