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Abstract In this paper we prove that the P(q, �) (q odd prime power and � >

1 odd) commutative semifields constructed by Bierbrauer (Des. Codes Cryptogr.
61:187–196, 2011) are isotopic to some commutative presemifields constructed by
Budaghyan and Helleseth (SETA, pp. 403–414, 2008). Also, we show that they are
strongly isotopic if and only if q ≡ 1(mod 4). Consequently, for each q ≡ −1(mod 4)

there exist isotopic commutative presemifields of order q2� (� > 1 odd) defining
CCZ-inequivalent planar DO polynomials.

Keywords Commutative semifields · Symplectic semifields · Isotopy · Strong
isotopy · Planar DO polynomials

1 Introduction

A finite semifield S is a finite binary algebraic structure satisfying all the axioms for a
skewfield except (possibly) associativity of multiplication. If S satisfies all axioms for
a semifield except the existence of an identity element for the multiplication, then we
call it a presemifield. The additive group of a presemifield is an elementary abelian
p-group, for some prime p called the characteristic of S.

The definition of nuclei and center of a semifield can be found, for instance, in
[7, Sect. 5.9]. A finite semifield is a vector space over its nuclei and its center. Two
presemifields, say S1 = (S1,+,•) and S2 = (S2,+, �) of characteristic p, are said to
be isotopic if there exist three Fp-linear permutations M,N,L from S1 to S2 such
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that

M(x) � N(y) = L(x • y)

for all x, y ∈ S1. The triple (M,N,L) is an isotopism between S1 and S2. They are
strongly isotopic if we can choose M = N . From any presemifield, one can naturally
construct a semifield which is isotopic to it (see [10]). The sizes of the nuclei as well
as the size of the center of a semifield are invariant under isotopy. The isotopism rela-
tion between semifields arises from the isomorphism relation between the projective
planes coordinatized by them (semifield planes). For a recent overview on the theory
of finite semifields see Chapter [11] in the collected work [6].

Commutative presemifields in odd characteristic can be equivalently described
by planar DO polynomials [5]. A Dembowski–Ostrom (DO) polynomial f ∈ Fq [x]
(q = pe) is a polynomial of the shape f (x) = ∑e−1

i,j=0 aij x
pi+pj

, whereas a poly-
nomial f ∈ Fq [x] is planar or perfect nonlinear (PN for short) if, for each a ∈ F

∗
q ,

the mapping x �→ f (x + a) − f (x) − f (a) is bijective. If f (x) ∈ Fq [x] is a pla-
nar DO polynomial, then Sf = (Fq,+, �) is a commutative presemifield where
x � y = f (x + y) − f (x) − f (y). Conversely, if S = (Fq,+, �) is a commutative
presemifield of odd order, then the polynomial f (x) = 1

2 (x � x) is a planar DO poly-
nomial and S = Sf .

Two functions F and F ′ from Fpn to itself are called Carlet–Charpin–Zinoviev
equivalent (CCZ-equivalent) if for some affine permutation L of F

2
pn the image of the

graph of F is the graph of F ′, that is, L(GF ) = GF ′ where GF = {(x,F (x))|x ∈ Fpn}
and GF ′ = {(x,F ′(x))|x ∈ Fpn} (see [3]). By [2, Sect. 4], two planar DO polynomi-
als are CCZ-equivalent if and only if the corresponding presemifields are strongly
isotopic. In [4], it has been proven that two presemifields of order pn, with p prime
and n odd integer, are strongly isotopic if and only if they are isotopic. Whereas, for
n = 6 and p = 3, Zhou in [15], by using MAGMA computations, has shown that the
presemifields constructed in [12] and [2] are isotopic but not strongly isotopic. In [1],
the author proved that the two families of commutative presemifields constructed in
[2] are contained, up to isotopy, in a unique family of presemifields, and we refer to
it as the family B H B. Also in [1], the author generalized the commutative semifields
constructed in [12] (L M P T B semifields) proving that each L M P T B semifield is
not isotopic to any previously known semifield with the possible exception of B H B
presemifields.

In this paper we study the isotopy and strong isotopy relations involving the above
commutative presemifields, proving that the L M P T B semifields are contained, up
to isotopy, in the family of B H B presemifields. Precisely, we show that an L M P T B
semifield of order q2� (q odd and � > 1 odd) is isotopic to a B H B presemifield, and
that they are strongly isotopic if and only if q ≡ 1(mod 4). This yields the result that,
for planar DO functions from Fq2� to itself, when q ≡ −1(mod 4) and � > 1 odd, the
isotopy relation is strictly more general than CCZ-equivalence.

2 Preliminary results

If S = (S,+,•) is a presemifield, then S
∗ = (S,+,•∗), where x •∗ y = y • x is a pre-

semifield as well, and it is called the dual of S. If S be a presemifield of order pn, then



J Algebr Comb (2012) 36:247–261 249

we may assume that S = (Fpn,+,•), where x • y = F(x, y) = ∑n−1
i,j=0 aij x

pi
ypj

,
with aij ∈ Fpn . The set

S = {
ϕy : x ∈ Fpn �→ F(x, y) ∈ Fpn | y ∈ Fpn

} ⊆ V = End(Fpn,Fp)

is the spread set associated with S and

S∗ = {
ϕx : y ∈ Fpn �→ F(x, y) ∈ Fpn | x ∈ Fpn

} ⊆ V = End(Fpn,Fp)

is the spread set associated with S
∗. Both S and S∗ are subgroups of order pn of the

additive group of V and each nonzero element of S and S∗ is invertible.
For each x ∈ Fpn , the conjugate ϕ̄ of the element ϕ(x) = ∑n−1

i=0 βix
pi

of V is

defined by ϕ̄(x) = ∑n−1
i=0 β

pn−i

i xpn−i
. The map

T : ϕ ∈ V �→ ϕ̄ ∈ V

is a Fp-linear permutation of V. Straightforward computations show that

ϕ ◦ ψ = ψ ◦ ϕ, ϕ−1 = (ϕ)−1. (1)

The algebraic structure S
t = (Fpn,+,•t ), where x •t y = ϕy(x), is a presemifield and

it is called the transpose of S (see e.g. [12, Lemma 2]). The set St = {ϕy | y ∈ Fpn} is
the spread set associated with S

t .
In what follows we want to point out the relationship between spread sets associ-

ated with two isotopic presemifields.

Proposition 2.1 Let S1 = (Fpn,+,•) and S2 = (Fpn,+, �) be two presemifields and
let S1 = {ϕy : x �→ x • y| y ∈ Fpn} and S2 = {ϕ′

y : x �→ x � y| y ∈ Fpn} be the corre-
sponding spread sets. Then S1 and S2 are isotopic under the isotopism (M,N,L) if
and only if S2 = LS1M

−1 = {L ◦ ϕy ◦ M−1| y ∈ Fpn}.

Proof The necessary condition can be easily proven. Indeed, if (M,N,L) is an
isotopism between S1 and S2, then L(ϕy(x)) = ϕ′

N(y)(M(x)) for each x, y ∈ Fpn .

Hence, ϕ′
N(y)

= L ◦ ϕy ◦ M−1 for each y ∈ Fpn and the statement follows taking into
account that S2 = {ϕ′

N(y)| y ∈ Fpn}.
Conversely, let S2 = {L ◦ ϕy ◦ M−1| y ∈ Fpn}, where M and L are two Fp-linear

permutations of Fpn . It is easy to see that the map N , sending each element y ∈ Fpn

to the unique element z ∈ Fpn such that ϕ′
z = L ◦ ϕy ◦ M−1 (where ϕ′

z ∈ S2), is
an Fp-linear permutations of Fpn . Hence, for each x, y ∈ Fpn we get ϕ′

N(y)(x) =
L(ϕy(M

−1(x))), i.e. x � N(y) = L(M−1(x) • y) and putting x′ = M−1(x) we have
the assertion. �

Let S = (Fpn,+, �) be a presemifield, where x �y = F(x, y) = ∑n−1
i,j=0 aij x

pi
ypj

,
with aij ∈ Fpn , and let S and S∗ be the spread sets associated with S and S

∗, respec-
tively.

The middle (respectively, right) nucleus of each semifield isotopic to S is isomor-
phic to the largest field Nm(S) (respectively, Nr (S)) contained in V = End(Fpn,Fp)
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such that SNm(S) ⊆ S1 (respectively, Nr (S)S ⊆ S), whereas the left nucleus of each
semifield isotopic to S is isomorphic to the largest field Nl (S) contained in V such
that Nl (S)S∗ ⊆ S∗ (see [14, Theorem 2.1] and [13]).

Also, if Fq is a subfield of Fpn and F(x, y) is a q-polynomial with respect to the
variable x, i.e. S ⊂ End(Fpn,Fq), then Fq = {tλ : x ∈ Fpn �→ λx ∈ Fpn |λ ∈ Fq} ⊂
Nl (S) [13].

If (M,N,L) is an isotopism between two presemifields S1 and S2, we have
Nr (S2) = LNr (S1)L

−1, Nm(S2) = MNm(S1)M
−1 and Nl(S2) = LNl (S1)L

−1 (see
e.g. [8] and [13]).

From these results we can prove

Theorem 2.2 If (M,N,L) is an isotopism between two presemifields S1 and S2 of
order pn, whose associated spread sets S1 and S2 are contained in End(Fpn,Fq)

(Fq a subfield of Fpn ), then L and M are Fq -semilinear maps of Fpn with the same
companion automorphism.

Proof Since S1, S2 ⊂ End(Fpn,Fq), by the previous arguments we have

Fq = {
tλ : x ∈ Fpn �→ λx ∈ Fpn |λ ∈ Fq

} ⊂ Nl (S1) ∩ Nl(S2).

Also Nl (S2) = LNl (S1)L
−1. Then L−1FqL ⊂ Nl (S2), and since a field contains a

unique subfield of given order, it follows L−1FqL = Fq . Since the map tλ �→ L−1tλL

is an automorphism of the field of maps Fq , there exists i ∈ {0, . . . , n − 1} such that
L−1tλL = t

λpi for each λ ∈ Fq , i.e. L is an Fq -semilinear map of Fpn with companion

automorphism σ(x) = xpi
. Also, by Proposition 2.1, LS1M

−1 = S2, and hence M is
an Fq -semilinear map of Fpn as well, with the same companion automorphism σ . �

Finally, since the dual and the transpose operations are invariant under isotopy
[10], it makes sense to ask which is the isotopism involving the duals and the trans-
poses of two isotopic presemifields. We have the following result.

Proposition 2.3 Let S1 and S2 be two presemifields. Then

(i) (M,N,L) is an isotopism between S1 and S2 if and only if (N,M,L) is an
isotopism between the dual presemifields S

∗
1 and S

∗
2.

(ii) (M,N,L) is an isotopism between S1 and S2 if and only if (L
−1

,N,M−1) is
an isotopism between the transpose presemifields S

t
1 and S

t
2.

(iii) (M,N,L) is an isotopism between S1 and S2 if and only (N,L
−1

,M
−1

) is an
isotopism between S

t∗
1 and S

t∗
2 .

Proof Statement (i) easily follows from the definition of the dual operation, whereas
(iii) follows from (i) and (ii).

1By juxtaposition we will always denote the composition of maps that will be read from right to left.
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Let us prove (ii). Let S1 = (Fpn,+,•) and S2 = (Fpn,+, �) and let S1 = {ϕy | y ∈
Fpn} and S2 = {ϕ′

y | y ∈ Fpn} be the corresponding spread sets. By the previ-
ous arguments the corresponding transpose presemifields are S

t
1 = (Fpn,+,•t ) and

S
t
2 = (Fpn,+, �t ), where x •t y = ϕy(x) and x �t y = ϕ′

y(x), respectively. The triple
(M,N,L) is an isotopism between S1 and S2 if and only if L ◦ ϕy = ϕ′

N(y) ◦ M for

each y ∈ Fpn . By (1), ϕy ◦ L = M ◦ ϕ′
N(y) for each y ∈ Fpn and hence

L(x) •t y = M
(
x �t N(y)

)

for each x, y ∈ Fpn . By (1), this is equivalent to M−1(z •t y) = L−1(z) �t N(y) for
each z, y ∈ Fpn . The assertion follows. �

Finally, by (iii) of Proposition 2.3 and by Proposition 2.1 we immediately get the
following result.

Corollary 2.4 Let S1 = (Fpn,+,•) and S2 = (Fpn,+, �) be two presemifields and
let St∗

1 and St∗
2 be the spread sets associated with the presemifields S

t∗
1 and S

t∗
2 ,

respectively. Then S1 and S2 are strongly isotopic if and only if there exists an Fp-
linear permutation H of Fpn such that St∗

2 = HSt∗
1 H .

3 BHB and LMPT B commutative presemifields

The B H B presemifields and the L M P T B semifields presented in [1] can be de-
scribed as follows.

(B H B) B(p,m, s,β) presemifields [1, 2]: (Fp2m,+, �), p odd prime and
m > 1, with

x � y = xypm + xpm

y + [
β
(
xyps + xps

y
)

+ βpm(
xyps + xps

y
)pm]

ω, (2)

where 0 < s < 2m, ω is an element of Fp2m \ Fpm with ωpm = −ω and
the following conditions are satisfied:

β ∈ F
∗
p2m : β

p2m−1
(pm+1,ps+1) �= 1 and

�∃a ∈ F
∗
p2m : a + apm = a + aps = 0.

(3)

(L M P T B) P(q, �) semifields [1, 12]: (Fq2� ,+,∗), q odd prime power and � =
2k + 1 > 1 odd, with

x ∗ y = 1

2

(
xy + xq�

yq�) + 1

4
G

(
xyq2 + xq2

y
)
,

where G(x) = ∑k
i=1(−1)i(x −xq�

)q
2i +∑k−1

j=1(−1)k+j (x −xq�
)q

2j+1
.

In order to prove our results, we start by further investigating Multiplication (2)
and Conditions (3). Set h := gcd(m, s), then m = h� and s = hd , where � and d
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are two positive integers such that 0 < d < 2� and gcd(�, d) = 1. Putting q = ph,
then ω ∈ Fq2� \ Fq� such that ωq� = −ω and the B H B presemifields B(p,m, s,β) =
(Fq2� ,+, �) will be denoted by B(q, �, d,β). Moreover, Multiplication (2) and Con-
ditions (3) can be rewritten as

x � y = xyq� + xq�

y + [
β
(
xyqd + xqd

y
) + βq�(

xyqd + xqd

y
)q�]

ω,

where

β ∈ F
∗
q2� : β

q2�−1
(q�+1,qd+1) �= 1, (4)

and

�∃a ∈ F
∗
q2� : a + aq� = a + aqd = 0. (5)

We get the following preliminary result.

Lemma 3.1

(i) Condition (5) is fulfilled if and only if � + d is odd.
(ii) If Condition (5) is fulfilled, then an element β ∈ F

∗
q2� satisfies Condition (4) if

and only if β is a nonsquare of Fq2� .

Proof

(i) The sufficient condition can be easily proven. Indeed, since gcd(�, d) = 1 then
� and d cannot be both even integers. Moreover, if � and d were both odd, then
each element a ∈ Fq2 such that aq = −a would be a solution of xq� = xqd = −x,
contradicting our assumption. On the other hand, suppose that � + d is odd, then
gcd(2�, � + d) = gcd(�, d) = 1. Hence, if there exists an element a ∈ F

∗
q2� such

that aq� + a = aqd + a = 0, then a satisfies the equation xq�+d−1 = 1, which
admits gcd(q2� − 1, q�+d − 1) = qgcd(2�,�+d) − 1 = q − 1 solutions. It follows
that a ∈ F

∗
q , a contradiction.

(ii) We first suppose � is odd and d is even and prove that gcd(q� + 1, qd + 1) = 2.
If q ≡ 1 (mod 4), then q� + 1 ≡ qd + 1 ≡ 2 (mod 4). On the other hand, if
q ≡ 3 (mod 4), since � is odd and d is even, q� + 1 ≡ 0 (mod 4) and qd + 1 ≡
2 (mod 4). So in both cases 2 is the maximum power of 2 dividing gcd(q� +
1, qd + 1). Now suppose that p′ is an odd prime such that p′|(q� + 1) and
p′|(qd + 1). Hence q� ≡ −1 (mod p′) and qd ≡ −1 (mod p′). Since gcd(�, d) =
1, then 1 = a� + bd , with a an odd integer. From the previous congruences it
follows that q = qa�+bd ≡ (−1)a(−1)b (mod p′) ≡ (−1)b+1 (mod p′) and since
d is even, we have qd ≡ 1 (mod p′), a contradiction.

If � is even and d is odd, arguing as in the previous case we obtain the asser-
tion. �

Remark 3.2 By Lemma 3.1, the algebraic structure B(q, �, d,β) is a presemifield if
and only if � + d is odd and β is a nonsquare in Fq2� .
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In [1], the author proved that the semifields P(q, �) are not isotopic to any pre-
viously known commutative semifield with the possible exception of B H B presemi-
fields. In what follows, using the notation introduced in this section, we study the
isotopy relation involving the families of presemifields P(q, �) and B(q, �, d,β) and
we prove that a P(q, �) semifield of order q2�, with q = pe an odd prime power and
� > 1 an odd integer, is isotopic to a B(q, �,2, β) presemifield for a suitable choice
of β .

4 The isotopism issue

By [9], there is a canonical bijection between commutative and symplectic presemi-
fields. Precisely, if S is a commutative presemifield, then S

t∗ is a symplectic pre-
semifield. Moreover, by (iii) of Proposition 2.3, two commutative presemifields are
isotopic if and only if the corresponding symplectic presemifields are isotopic as
well. So, in the following, we will prove that the symplectic presemifield P(q, �)t∗ is
isotopic to a symplectic presemifield B(q, �,2, β)t∗.

4.1 The symplectic version of P(q, �) semifields

From [1, Sect. 3], the symplectic presemifield arising from the commutative semi-
field P(q, �), q an odd prime power and � = 2k + 1 an odd integer, is P(q, �)t∗ =
(Fq2� ,+,•) with multiplication given by

x • y = y + yq�

2
x + 1

4

(
y − yq� + αy + βy + γy

)
xq2

+ 1

4

(
y − yq� − αy − βy − γy

)
xq2�−2

,

where αy = ∑�−1
i=1 (−1)i+1yq2i

, βy = ∑k−1
j=0(−1)k+j+1yq2j+1

and γy =
∑�−1

t=k+1(−1)k+t yq2t+1
.

Setting g(y) := αy + βy + γy and

f (y) := 1

4

(
y − yq� + g(y)

)
,

direct computations show that

f (y)q
2�−2 = 1

4

(
y − yq� − g(y)

)
. (6)

Indeed, reducing modulo yq2� − y, we have

4f (y)q
2�−2 = yq2�−2 − yq�−2 +

�−1∑

i=1

(−1)i+1yq2(i−1) +
k−1∑

j=0

(−1)k+j+1yq2j−1

+
�−1∑

t=k+1

(−1)k+t yq2t−1
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and setting i′ = i − 1, j ′ = j − 1, t ′ = t − 1, we get

4f (y)q
2�−2 = y − yq� +

�−1∑

i′=1

(−1)i
′
yq2i′ +

k−1∑

j ′=0

(−1)k+j ′+1yq2j ′+1

+
�−1∑

t ′=k+1

(−1)k+t ′yq2t ′+1

= y − yq� − (αy + βy + γy).

Hence

x • y = y + yq�

2
x + f (y)xq2 + f (y)q

2�−2
xq2�−2

. (7)

Let η ∈ Fq2 \ Fq such that ηq = −η. Since q and � = 2k + 1 are odd integers, the

map φ : γ ∈ Fq� �→ γ + γ q2 ∈ Fq� is invertible and

φ−1 : z ∈ Fq� �→ 1

2

(
k∑

i=0

(−1)izq2i +
k−1∑

j=0

(−1)k+j+1zq2j+1

)

∈ Fq� .

Taking into account that {1, η} is an Fq� -basis of Fq2� and that φ is an invertible map,
it follows that any element y ∈ Fq2� can be uniquely written as

y = A + (
Bq2 + B

)
η,

with A,B ∈ Fq� . Also

A = y + yq�

2
(8)

and

Bq2 + B = y − yq�

2η
.

Direct computations show that

B = φ−1
(

y − yq�

2η

)

= 1

2

(
k∑

i=0

(−1)i
(y − yq�

)q
2i

2η
+

k−1∑

j=0

(−1)k+j+1 (y − yq�
)q

2j+1

−2η

)

= 1

4η

(

y − yq� +
k∑

i=1

(−1)iyq2i −
k∑

i=1

(−1)iyq�+2i −
k−1∑

j=0

(−1)k+j+1yq2j+1

+
k−1∑

j=0

(−1)k+j+1yq�+2j+1

)

. (9)
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Putting 2t + 1 := � + 2i, i.e. i = t − k, we have

k∑

i=1

(−1)iyq�+2i =
�−1∑

t=k+1

(−1)t−kyq2t+1 =
�−1∑

t=k+1

(−1)t+kyq2t+1

and putting 2v := � + 2j + 1, i.e. j = v − k − 1, we have

k−1∑

j=0

(−1)k+j+1yq�+2j+1 =
�−1∑

v=k+1

(−1)vyq2v

.

Hence, substituting the last two equalities in (9), we get

B = 1

4η

(

y − yq� +
�−1∑

i=1

(−1)iyq2i −
k−1∑

j=0

(−1)k+j+1yq2j+1 −
�−1∑

t=k+1

(−1)t+kyq2t+1

)

= 1

4η

(
y − yq� − αy − βy − γy

)

and, taking (6) into account, this yields f (y) = Bq2
η. Hence, from (7), (8) and the

last equality, we get the following result.

Proposition 4.1 The symplectic presemifield P(q, �)t∗ = (Fq2� ,+,•) arising from
the commutative semifield P(q, �) has multiplication

x • y = Ax + Bq2
ηxq2 + Bηxq2�−2

,

where η is a given element of Fq2 \ Fq with ηq = −η and y = A + (Bq2 + B)η,
A,B ∈ Fq� . �

4.2 The symplectic version of B(q, �, d,β)-presemifields

Let q be an odd prime power, � and d be integers such that 0 < d < 2�, � + d is
odd and gcd(�, d) = 1. Then a commutative B(q, �, d,β)-presemifield is of type
(Fq2� ,+, �), where

x � y = xyq� + xq�

y + [
β
(
xyqd + xqd

y
) + βq�(

xyqd + xqd

y
)q�]

ω,

with β a nonsquare in Fq2� and ωq� = −ω (see Remark 3.2). By using [12, Lem-

mas 1, 2], the transpose semifield B
t
(q, �, d,β) = (Fq2� ,+, �t ) of B(q, �, d,β) is

defined by

x �t y = (
x + xq�)

yq� + βq2�−d

ωq2�−d (
xq2�−d − xq�−d )

yq2�−d + βω
(
x − xq�)

yqd

.

Hence B
t∗

(q, �, d,β) = (Fq2� ,+, �t∗), where

x �t∗ y = (
y + yq�)

xq� + βq2�−d

ωq2�−d (
yq2�−d − yq�−d )

xq2�−d + βω
(
y − yq�)

xqd

.
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Since {1,ω} is an Fq� -basis of Fq2� , putting y = A + Bω, with A,B ∈ Fq� and re-

calling that ωq� = −ω, and hence ω2 = σ ∈ F
∗
q� , we get

Proposition 4.2 The symplectic presemifield B(q, �, d,β)t∗ = (Fq2� ,+, �′) arising

from the commutative semifield B(q, �, d,β) has multiplication

x �′ y = 2Axq� + 2σq2�−d

βq2�−d

Bq2�−d

xq2�−d + 2σβBxqd

, (10)

where β is a nonsquare in Fq2� and y = A + Bω with A,B ∈ Fq� , σ is a nonsquare

in Fq� and ω2 = σ . �

Remark 4.3 Note that if σ and σ ′ are two nonsquare elements of Fq� , then σ ′ = tσ ,
where t is a nonzero square in Fq� . So, replacing β by tβ in (10), we may substi-
tute σ with σ ′. It follows that, when � is odd, in order to study, up to isotopy, the
B H B presemifields we may suppose wlg that σ is a nonsquare in Fq and hence ω ∈
Fq2 \ Fq .

4.3 The isotopism theorem

Let us start by proving the following.

Theorem 4.4 Let q be an odd prime power, let � and d be odd and even integers,
respectively, such that 0 < d < 2� and gcd(�, d) = 1. The symplectic presemifield
B(q, �, d,β)t∗ = (Fq2� ,+, �′), whose multiplication is given in (10), is isotopic to a
presemifield (Fq2� ,+, �′′) whose multiplication is given by

x �′′ y = 2

(

Ax + σBω
β

ξq�
xqd + σBq2�−d

ω
βq2�−d

ξq�
xq2�−d

)

,

where y = A + Bω with A,B ∈ Fq� , ω ∈ Fq2 \ Fq with ω2 = σ ∈ F
∗
q , and ξ is an

element of Fq2� such that ξq�+d−1 = β1−q�
and ξq�+1 = σ .

Proof By Proposition 4.2 and Remark 4.3, the spread set associated with the sym-
plectic presemifield B(q, �, d,β)t∗ = (Fq2� ,+, �′) is

S = {
ϕy = ϕA,B : x �→ 2Axq� + 2σβq2�−d

Bq2�−d

xq2�−d + 2σβBxqd ∣
∣

y = A + Bω, A,B ∈ Fq�

}
,

where β and σ are nonsquares in Fq2� and Fq , respectively.

Since gcd(q2� − 1, q�+d − 1) = q − 1 and (β1−q�
)

q2�−1
q−1 = 1 , the following equa-

tion:

xq�+d−1 = β1−q�

(11)
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admits q − 1 distinct solutions in Fq2� . Moreover, if ξ and ξ̄ satisfy (11), then

ξ/ξ̄ ∈ F
∗
q . Also, if ξ is a solution of (11), then ξq�+1 is a solution of xq�+d−1 = 1

and since gcd(q2� − 1, q�+d − 1) = q − 1, we get ξq�+1 ∈ F
∗
q . Moreover, taking into

account that β is a nonsquare in Fq2� , it follows that ξq�+1 is a nonsquare in Fq . In-

deed if (ξq�+1)
q−1

2 = 1, then ( 1
β
)

q2�−1
2 = (ξq�+d−1)

q�+1
2 = (ξq�+1)

q�+d−1
2 = 1, a con-

tradiction. Hence the set {ξq�+1 | ξ is a solution of (11)} ⊂ Fq is the set of nonsquares
in Fq . This means that we can choose ξ ∈ Fq2� , satisfying (11) and such that

ξq�+1 = σ = ω2. (12)

Now, consider the invertible maps of Fq2�

ψ : x �→ ω

ξ
x + xq�

and φ : x �→ x − ω

ξq�
xq�

and note that

ψ−1 : x �→ 1

2

(
ω

ξq�
x + xq�

)

and ψ−1(φ(x)q
�) = x.

Since ψ and φ are linear maps over Fq� , for each x ∈ Fq2� we have

ψ−1 ◦ ϕA,B ◦ φ(x)

= 2
(
ψ−1(A

(
φ(x)

)q� + σβq2�−d

Bq2�−d (
φ(x)

)q2�−d + σβB
(
φ(x)

)qd ))

= 2
(
Ax + σBq2�−d

ψ−1(f (x)
) + σBψ−1(g(x)

))
, (13)

where f (x) = (βφ(x))q
2�−d

and g(x) = β(φ(x))q
d
.

Then, taking into account that ωq = −ω, direct computations show that

ψ−1(f (x)
) = 1

2
f1x

q�−d + 1

2
f2x

q2�−d

,

with f1 = − ω2

ξq�+q�−d βq2�−d + βq�−d
and f2 = ω

ξq� βq2�−d + ω

ξq2�−d βq�−d
.

By (11), we get βq� = βξ

ξq�+d and elevating to the q2�−d th power we have

βq�−d = βq2�−d
ξq�(q�−d−1). From (12) it follows βq�−d = βq2�−d

(ω2

ξ
)(q

�−d−1) =
(βq2�−d ω2

ξq�−d )
ξ

ω2 = βq2�−d ω2

ξq�−d+q� ; hence f1 = 0.

Also, f2 = ω(
βq�−d

ξq2�−d + βq2�−d

ξq� ) and by (11) we have f2 = 2ω
βq2�−d

ξq� . Hence,

ψ−1(f (x)) = ω
βq2�−d

ξq� xq2�−d
, and using similar arguments we have ψ−1(g(x)) =
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ω
β

ξq� xqd
. Then, by (13), we get

ψ−1 ◦ ϕA,B ◦ φ(x) = 2Ax + 2σBω
β

ξq�
xqd + 2σBq2�−d

ω
βq2�−d

ξq�
xq2�−d

.

Hence,

ψ−1 ◦ ϕy ◦ φ(x) = x �′′ y,

i.e.

φ(x) �′ y = ψ(x �′′ y). (14)

This means that (φ, id,ψ) is an isotopism between the two presemifields. The theo-
rem is proven. �

Theorem 4.5 Each L M P T B semifield is isotopic to a B H B presemifield.

Proof By Proposition 4.1 the symplectic presemifield P(q, �)t∗ = (Fq2� ,+,•), q odd
and � > 1 odd, arising from the commutative semifield P(q, �) has multiplication

x • y = Ax + Bq2
ηxq2 + Bηxq2�−2

,

where ηq = −η and y = A + (Bq2 + B)η with A,B ∈ Fq� .
Put d = 2 in Theorem 4.4 and choose β = β̄ as a nonsquare in Fq2� belonging to

Fq2 such that β̄q+1 = 1
σ

. Then β̄ −1 is a solution of (11) and since β̄q�+1 = β̄q+1 = 1
σ

,

we can fix ξ = β̄ −1. By Theorem 4.4 the symplectic presemifield B(q, �,2, β̄)t∗ is
isotopic to the presemifield (Fq2� ,+, �′′) whose multiplication is given by

x �′′ y = 2Ax + 2Bωxq2 + 2Bq2�−2
ωxq2�−2

,

where ωq = −ω and y = A+Bω with A,B ∈ Fq� . Let ω = αη and note that α ∈ F
∗
q .

Let h : y = A + Bω ∈ Fq2� �→ 2A + 2(Bq2�−2 + B)ω ∈ Fq2� . Since q and � are
odd, h is an invertible Fq -linear map of Fq2� . Also, since h(y) = h(A + Bω) = 2A +
2((αBq2�−2

)q
2 + (αBq2�−2

))η we have

x • h(y) = x �′′ y

for each x, y ∈ Fq� , hence by (14) we get

φ(x) �′ h−1(z) = ψ(x • z)

for each x, z ∈ Fq� . Then (φ,h−1,ψ) is an isotopism between P(q, �)t∗ and

B(q, �,2, β̄)t∗. The theorem is proven. �

By Theorems 4.4, 4.5 and by (iii) of Proposition 2.3 we can state the following
result.
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Corollary 4.6 The triple (ψ̄−1, φ, h̄) is an isotopism between the commutative semi-
field P(q, �) and the presemifield B(q, �,2, β̄), where β̄ is a nonsquare in Fq2 .

Remark 4.7 Note that, since ψ̄−1 �= φ, the above isotopism is not a strong isotopism.

5 Strong isotopism

In this section we will prove that the isotopic presemifields P(q, �) and B(q, �,2, β̄)

of Corollary 4.6, are strongly isotopic if and only if q ≡ 1(mod 4). Let us start by
proving the following.

Theorem 5.1 If q ≡ 1(mod 4), then the commutative presemifields P(q, �) and
B(q, �,2, β̄) of Corollary 4.6 are strongly isotopic.

Proof By Corollary 2.4, the two involved presemifields are strongly isotopic if and
only if there exists an invertible Fp-linear map H of Fq2� , such that HS1H = S2,

where S1 and S2 are the spread sets associated with P(q, �)t∗ and B(q, �,2, β̄)t∗,
respectively. By the proof of Theorem 4.5 and by Proposition 2.1, we have ψS1φ

−1 =
S2, where

ψ : x �→ ωβ̄x + xq�

and φ−1 : x �→ 1

2

(
x + ωβ̄qxq�)

,

with the choices of β̄ and ξ as in Theorem 4.5. Recall that ωβ̄ ∈ Fq2 \ Fq , β̄ is a

nonsquare in Fq2� , ω2 = σ ∈ Fq and β̄q+1 = 1
σ

.
Let ρ = 2ωβ̄ and note that φ̄−1(ρx) = ψ(x), i.e. φ̄−1 ◦ tρ = ψ , where tρ(x) = ρx.
Since q ≡ 1(mod 4) and ωq−1 = −1, we see that ω is a nonsquare in Fq2 , and

hence ρ = 2ωβ̄ is a square in Fq2 . Let b ∈ Fq2 such that b2 = ρ and let H(x) =
φ̄ −1(bx), i.e. H = φ̄ −1 ◦ tb is an invertible Fp-linear map of Fq2� . Then, by (1), we
get

HS1H = (
φ̄ −1 ◦ tb

)
S1

(
tb ◦ φ −1).

Since the elements of S1 are Fq2 -linear maps of Fq2� and b ∈ Fq2 we have

HS1H = (
φ̄ −1 ◦ tb2

)
S1φ

−1 = (
φ̄ −1 ◦ tρ

)
S1φ

−1 = ψS1φ
−1 = S2.

This proves the theorem. �

Finally, we can prove

Theorem 5.2 If q ≡ −1(mod 4), then the commutative presemifields P(q, �) and
B(q, �,2, β̄) of Corollary 4.6 are not strongly isotopic.

Proof By way of contradiction, suppose that the two involved presemifields are
strongly isotopic. Then by Corollary 2.4, there exists an invertible Fp-linear map
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H of Fq2� , q = ph, such that HS1H = S2, where S1 and S2 are the spread sets asso-
ciated with S

t∗
1 and S

t∗
2 , respectively. In particular

S1 = {
ϕA,B : x �→ Ax + Bq2

ηxq2 + Bηxq2�−2 ∣∣ y = A + (
Bq2 + B

)
η, y ∈ Fq2�

}
.

By Theorem 4.5, ψS1φ
−1 = S2, hence ψ−1HS1Hφ = S1, where

ψ−1 : x �→ 1

2

(
ωβ̄qx + xq�)

, φ : x �→ x − ωβ̄qxq�

and ψ−1 = 1
2ωβ̄q φ. It follows that

δGS1Ḡ = S1, (15)

where δ = 1
2ωβ̄q ∈ Fq2 and G = φH . Since the elements of S1 are Fq2 -linear maps

of Fq2� , by Theorem 2.2 and Proposition 2.1, we find that G is an invertible Fq2 -
semilinear map of Fq2� , with companion automorphism σ = pe.

Let

G(x) =
�−1∑

i=0

aix
p2hi+e =

�−1∑

i=0

aix
σq2i

,

then

G(x) =
�−1∑

i=0

a
p2�h−2hi−e

i xp2�h−2hi−e =
�−1∑

i=0

a
σ−1q2�−2i

i xσ−1q2�−2i

.

By (15), the map δ(G ◦ϕA,0 ◦ Ḡ) belongs to S1 for each A ∈ Fq� . Then there exist
A′,B ′ ∈ Fq� such that δ(G(A(Ḡ(x)))) = ϕA′,B ′(x) for each x ∈ Fq2� .

Since

δ
(
G

(
A

(
Ḡ(x)

))) = δ

(
�−1∑

j=0

�−1∑

i=0

Aσq2j

aj a
q2(�−i+j)

i xq2(�−i+j)

)

= A′x + B ′q2
ηxq2 + B ′ηxq2�−2

,

reducing the above polynomial identity modulo xq2� − x and by comparing the coef-
ficients of first degree, we get

δ
(
Aσ a2

0 + Aσq2
a2

1 + · · · + Aσq2�−2
a2
�−1

) = A′ ∈ Fq�

for each A ∈ Fq� , i.e.

Aσ
(
δa2

0 − δqa
2q�

0

) + Aσq2(
δa2

1 − δqa
2q�

1

) + · · · + Aσq2�−2(
δa2

�−1 − δqa
2q�

�−1

) = 0

for each A ∈ Fq� . This is equivalent to

(
β̄qa2

0 + β̄a
2q�

0

)
x + (

β̄qa2
1 + β̄a

2q�

1

)
xq2 + · · · + (

β̄qa2
�−1 + β̄a

2q�

�−1

)
xq2�−2 = 0
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for each x ∈ Fq� . Reducing the above polynomial identity over Fq� modulo xq� − x,
we get

β̄qa2
i + β̄a

2q�

i = 0

for each i ∈ {0,1, . . . , � − 1}. If ai �= 0, then ai is a solution of

x2q�−2 = −β̄q−1.

However, when q ≡ −1(mod 4), the last equation admits no solution in Fq2� . Hence
the unique Fq2 -semilinear map satisfying (15) is the zero one, a contradiction. �
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