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Abstract An abstract polytope of rank n is said to be chiral if its automorphism
group has two orbits on the flags, such that adjacent flags belong to distinct orbits.
Examples of chiral polytopes have been difficult to find. A “mixing” construction
lets us combine polytopes to build new regular and chiral polytopes. By using the
chirality group of a polytope, we are able to give simple criteria for when the mix of
two polytopes is chiral.

Keywords Abstract regular polytope · Chiral polytope · Chiral maps · Chirality
group

1 Introduction

The study of abstract polytopes is a growing field, uniting combinatorics with geom-
etry and group theory. At the forefront are the (abstract) regular polytopes, including
the regular convex polytopes, regular tessellations of space-forms, and many new
combinatorial structures with maximal symmetry. Recently, the study of chiral poly-
topes has flourished. Chiral polytopes are “half-regular”; the action of the automor-
phism group on the flags has two orbits, and adjacent flags belong to distinct orbits.
A chiral polytope occurs in two enantiomorphic (mirror-image) forms, and though
these forms are isomorphic as polytopes, the particular orientation chosen is usually
relevant.

Chiral maps (also called irreflexible maps) have been studied for some time (see
[8]), and the study of chiral maps and hypermaps continues to yield interesting devel-
opments (for example, see [1]). However, it was only with the introduction of abstract
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polytopes that the notion of chirality was defined for polytopes in ranks 4 and higher
[15].

Examples of chiral polytopes have been hard to find. A few families have been
found in ranks 3 and 4, but only a handful of examples are known in ranks 5 and
higher. There are several impediments to constructing new examples. Foremost is
that the (n − 2)-faces and the co-faces at the edges of a chiral polytope must be
regular. Therefore, it is not possible to repeatedly extend a chiral polytope to higher
and higher ranks—we need genuinely new examples in each rank. So far, nobody
has found a “nice” family of chiral polytopes of arbitrary rank. Indeed, it was only
recently that Pellicer demonstrated conclusively for the first time that there are chiral
polytopes in every rank [14].

Since it is so difficult to extend chiral polytopes to higher ranks, we need another
tactic for building new chiral polytopes. In [4], the authors adapted the mixing tech-
nique used in [12] to chiral polytopes. Two main difficulties arise. The first is that the
mix of two polytopes is not necessarily polytopal: specifically, the resulting group
does not necessarily have the required intersection property. However, under some
fairly mild conditions on the polytopes being mixed, we can ensure that the mix is, in
fact, polytopal. The second difficulty is that we need a way of determining whether
the mix is chiral or not, which can be difficult to do directly. We would like to have
simple combinatorial criteria which will tell us when the mix is chiral.

By using the idea of the chirality group of a polytope, introduced in [3] for hyper-
maps and in [4] for polytopes, we are able to outline such criteria. We then apply these
results to construct new examples of chiral 5-polytopes. We also see how to construct
infinitely many chiral n-polytopes given a single chiral n-polytope satisfying some
mild conditions.

We start by giving some background information on regular and chiral abstract
polytopes in Sect. 2. In Sect. 3, we introduce the mixing operation for chiral and
directly regular polytopes, and we give a few results (including one new one) for
when the mix of two polytopes is again a polytope. In Sect. 4, we define the chirality
group of a polytope, which we then use to give several simple criteria for when the
mix of two or more polytopes is chiral. Finally, in Sect. 5 we highlight the main
results with several constructions that build new chiral polytopes.

2 Polytopes

General background information on abstract polytopes can be found in [12,
Chaps. 2, 3], and information on chiral polytopes specifically can be found in [10, 15].
Here we review the concepts essential for this paper.

2.1 Definition of a polytope

Let P be a ranked partially ordered set whose elements will be called faces. The
faces of P will range in rank from −1 to n, and a face of rank j is called a j -face.
The 0-faces, 1-faces, and (n − 1)-faces are also called vertices, edges, and facets,
respectively. A flag of P is a maximal chain. We say that two flags are adjacent (j -
adjacent) if they differ in exactly one face (their j -face, respectively). If F and G are
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faces of P such that F < G, then the section G/F consists of those faces H such that
F ≤ H ≤ G.

We say that P is an (abstract) polytope of rank n, also called an n-polytope, if it
satisfies the following four properties:

(1) There is a unique greatest face Fn of rank n and a unique least face F−1 of rank
−1.

(2) Each flag of P has n + 2 faces.
(3) P is strongly flag-connected, meaning that if Φ and Ψ are two flags of P , then

there is a sequence of flags Φ = Φ0,Φ1, . . . ,Φk = Ψ such that for i = 0, . . . ,

k − 1, the flags Φi and Φi+1 are adjacent, and each Φi contains Φ ∩ Ψ .
(4) (Diamond condition): Whenever F < G, where F is a (j − 1)-face and G is a

(j + 1)-face for some j , then there are exactly two j -faces H with F < H < G.

If F is a j -face and G is a k-face of a polytope with F ≤ G, then the section G/F

is a (k − j − 1)-polytope itself. We can identify a face F with the section F/F−1;
if F is a j -face, then F/F−1 is a j -polytope. We call the section Fn/F the co-face
at F . The co-face at a vertex is also called a vertex-figure.

We sometimes need to work with pre-polytopes, which are ranked partially or-
dered sets that satisfy the first, second, and fourth property above, but not neces-
sarily the third. In this paper, all of the pre-polytopes we encounter will be flag-
connected, meaning that if Φ and Ψ are two flags, there is a sequence of flags
Φ = Φ0,Φ1, . . . ,Φk = Ψ such that for i = 0, . . . , k − 1, the flags Φi and Φi+1 are
adjacent (but we do not require each flag to contain Φ ∩ Ψ ). When working with
pre-polytopes, we apply all the same terminology as with polytopes.

2.2 Regularity

For polytopes P and Q, an isomorphism from P to Q is an incidence- and rank-
preserving bijection on the set of faces. An isomorphism from P to itself is an auto-
morphism of P . We denote the group of all automorphisms of P by Γ (P ). There is
a natural action of Γ (P ) on the flags of P , and we say that P is regular if this action
is transitive. This coincides with any of the usual definitions of regularity for convex
polytopes.

Given a regular polytope P , fix a base flag Φ . Then the automorphism group
Γ (P ) is generated by involutions ρ0, . . . , ρn−1 where ρi maps Φ to the flag Φi that
is i-adjacent to Φ . These generators satisfy (ρiρj )

2 = ε for all i and j such that
|i − j | ≥ 2. We say that P has (Schläfli) type {p1, . . . , pn−1} if for each i = 1, . . . ,

n−1 the order of ρi−1ρi is pi (with 2 ≤ pi ≤ ∞). We also use {p1, . . . , pn−1} to rep-
resent the universal regular polytope of this type, which has an automorphism group
with no relations other than those mentioned above. We denote Γ ({p1, . . . , pn−1})
by [p1, . . . , pn−1]. Whenever this universal polytope corresponds to a regular convex
polytope, then the name used here is the same as the usual Schläfli symbol for that
polytope (see [7]).

For I ⊆ {0,1, . . . , n − 1} and a group Γ = 〈ρ0, . . . , ρn−1〉, we define ΓI :=
〈ρi | i ∈ I 〉. The strong flag-connectivity of polytopes induces the following inter-
section property in the group:

ΓI ∩ ΓJ = ΓI∩J for I, J ⊆ {0, . . . , n − 1}. (2.1)



266 J Algebr Comb (2012) 36:263–277

In general, if Γ = 〈ρ0, . . . , ρn−1〉 is a group such that each ρi has order 2 and such
that (ρiρj )

2 = ε whenever |i − j | ≥ 2, then we say that Γ is a string group generated
by involutions (or sggi). If Γ also satisfies the intersection property given above, then
we call Γ a string C-group. There is a natural way of building a regular polytope
P (Γ ) from a string C-group Γ such that Γ (P (Γ )) = Γ (see [12, Chap. 2E]). There-
fore, we get a one-to-one correspondence between regular n-polytopes and string
C-groups on n specified generators.

2.3 Direct regularity and chirality

If P is a regular polytope with automorphism group Γ (P ) generated by ρ0, . . . , ρn−1,
then the elements

σi := ρi−1ρi

(for i = 1, . . . , n − 1) generate the rotation subgroup Γ +(P ) of Γ (P ), which has
index at most 2. We say that P is directly regular if this index is 2. This is essentially
an orientability condition; for example, the directly regular polyhedra correspond to
orientable maps. The convex regular polytopes are all directly regular.

We say that an n-polytope P is chiral if the action of Γ (P ) on the flags of P
has two orbits such that adjacent flags are always in distinct orbits. For convenience,
we define Γ +(P ) = Γ (P ) whenever P is chiral. Given a chiral polytope P , fix a
base flag Φ = {F−1,F0, . . . ,Fn}. Then the automorphism group Γ +(P ) is generated
by elements σ1, . . . , σn−1, where σi acts on Φ the same way that ρi−1ρi acts on the
base flag of a regular polytope. That is, σi sends Φ to Φi,i−1. For i < j , we get
(σi · · ·σj )

2 = ε. In analogy to regular polytopes, if the order of each σi is pi , we say
that the type of P is {p1, . . . , pn−1}.

The automorphism groups of chiral polytopes and the rotation groups of directly
regular polytopes satisfy an intersection property analogous to that for string C-
groups. Let Γ + = 〈σ1, . . . , σn−1〉 be the rotation group of a chiral or directly regular
polytope. For 1 ≤ i ≤ j ≤ n − 1, we define

τi,j := σiσi+1 · · ·σj ,

and for 0 ≤ i ≤ n we let τ0,i := τi,n := ε. For I ⊆ {0, . . . , n − 1} we define

Γ +
I := 〈τi,j | i ≤ j and i − 1, j ∈ I 〉.

Then the intersection property for Γ + is given by

Γ +
I ∩ Γ +

J = Γ +
I∩J for I, J ⊆ {0, . . . , n − 1}. (2.2)

If Γ + is a group generated by elements σ1, . . . , σn−1 such that (σi · · ·σj )
2 = ε for

i < j , and if Γ + satisfies the intersection property above, then Γ + is either the auto-
morphism group of a chiral n-polytope or the rotation subgroup of a directly regular
polytope. In particular, it is the rotation subgroup of a directly regular polytope if and
only if there is an automorphism of Γ + that sends σ1 to σ−1

1 , σ2 to σ 2
1 σ2, and fixes

every other generator.
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Suppose P is a chiral polytope with base flag Φ and with Γ +(P ) =〈σ1, . . . , σn−1〉.
Let P be the chiral polytope with the same underlying face-set as P , but with base
flag Φ0. Then Γ +(P ) = 〈σ−1

1 , σ 2
1 σ2, σ3, . . . , σn−1〉. We call P the enantiomorphic

form or mirror image of P . Though P 
 P , there is no automorphism of P that takes
Φ to Φ0.

Let Γ + = 〈σ1, . . . , σn−1〉, and let w be a word in the free group on these gener-
ators. We define the enantiomorphic (or mirror image) word w of w to be the word
obtained from w by replacing every occurrence of σ1 by σ−1

1 and σ2 by σ 2
1 σ2, while

keeping all σj with j ≥ 3 unchanged. Then if Γ + is the rotation subgroup of a di-
rectly regular polytope, the elements of Γ + corresponding to w and w are conjugate
in Γ . On the other hand, if Γ + is the automorphism group of a chiral polytope, then
w and w need not even have the same period. Note that w = w for all words w.

The sections of a regular polytope are again regular, and the sections of a chiral
polytope are either directly regular or chiral. Furthermore, for a chiral n-polytope,
all the (n − 2)-faces and all the co-faces at edges must be directly regular. As a
consequence, if P is a chiral polytope, it may be possible to extend it to a chiral
polytope having facets isomorphic to P , but it will then be impossible to extend that
polytope once more to a chiral polytope.

Chiral polytopes only exist in ranks 3 and higher. The simplest examples are the
toroidal maps {4,4}(b,c), {3,6}(b,c) and {6,3}(b,c), with b, c �= 0 and b �= c (see [8]).
These give rise to chiral 4-polytopes having toroidal maps as facets and/or vertex-
figures. More examples of chiral 4- and 5-polytopes can be found in [6].

If a regular or chiral n-polytope P has facets P1 and vertex-figures P2, we say that
P is of type {P1, P2}. Given regular or chiral polytopes P1 and P2, if there are any
regular or chiral polytopes of type {P1, P2}, then there is a universal one that covers
all other regular or chiral polytopes of that type. We then also use {P1, P2} to denote
this universal polytope.

Let P and Q be two polytopes (or flag-connected pre-polytopes) of the same rank,
not necessarily regular or chiral. A mapping γ : P → Q is called a covering if it pre-
serves incidence of faces, ranks of faces, and adjacency of flags; then γ is necessarily
surjective, by the flag-connectedness of Q. We say that P covers Q if there exists a
covering γ : P → Q.

If P and Q are chiral or directly regular n-polytopes, their rotation groups are both
quotients of

W+ := [∞, . . . ,∞]+ = 〈
σ1, . . . , σn−1 | (σi · · ·σj )

2 = ε for i < j
〉
.

Therefore there are normal subgroups M and K of W+ such that Γ +(P ) = W+/M

and Γ +(Q) = W+/K . Then P covers Q if and only if M ≤ K .
Let P be a chiral or directly regular polytope with Γ +(P ) = W+/M . We define

M = {w | w ∈ M}.

If M = M , then P is directly regular. Otherwise, P is chiral, and Γ +(P ) = W+/M .
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3 Mixing polytopes

In this section, we will define the mix of two finitely presented groups, which natu-
rally gives rise to a way to mix polytopes. The mixing operation is analogous to the
join of hypermaps [2] and the parallel product of maps [13, 18].

Let Γ = 〈x1, . . . , xn〉 and Γ ′ = 〈x′
1, . . . , x

′
n〉 be groups with n specified generators.

Then the elements zi = (xi, x
′
i ) ∈ Γ × Γ ′ (for i = 1, . . . , n) generate a subgroup of

Γ × Γ ′ that we call the mix of Γ and Γ ′ and denote Γ � Γ ′ (see [12, Chap. 7A]).
If P and Q are chiral or directly regular n-polytopes, we can mix their rotation

groups. Let Γ +(P ) = 〈σ1, . . . , σn−1〉 and Γ +(Q) = 〈σ ′
1, . . . , σ

′
n−1〉. Let βi = (σi, σ

′
i )

for i = 1, . . . , n−1. Then Γ +(P )�Γ +(Q) = 〈β1, . . . , βn−1〉. We note that for i < j ,
we have (βi · · ·βj )

2 = ε, so that the group Γ +(P ) � Γ +(Q) can be written as a
quotient of W+. In general, however, it will not have the intersection property (2.2)
with respect to its generators β1, . . . , βn−1. Nevertheless, it is possible to build a
directly regular or chiral poset from Γ +(P ) � Γ +(Q) using the method outlined in
[15], and we denote that poset P � Q and call it the mix of P and Q. (In fact, this poset
is always a flag-connected pre-polytope.) Thus Γ +(P � Q) = Γ +(P ) � Γ +(Q). If
Γ +(P ) � Γ +(Q) satisfies the intersection property, then P � Q is in fact a polytope.

The following proposition is proved in [4]:

Proposition 3.1 Let P and Q be chiral or directly regular polytopes with Γ +(P ) =
W+/M and Γ +(Q) = W+/K . Then Γ +(P � Q) 
 W+/(M ∩ K).

Determining the size of Γ +(P ) � Γ +(Q) is often difficult for a computer unless
Γ +(P ) and Γ +(Q) are both fairly small. However, there is usually an easy way to
indirectly calculate the size using the comix of two groups. If Γ has presentation
〈x1, . . . , xn | R〉 and Γ ′ has presentation 〈x′

1, . . . , x
′
n | S〉, then we define the comix of

Γ and Γ ′, denoted Γ �Γ ′, to be the group with presentation
〈
x1, x

′
1, . . . , xn, x

′
n | R,S,x−1

1 x′
1, . . . , x

−1
n x′

n

〉
.

Informally speaking, we can just add the relations from Γ ′ to those for Γ , rewriting
them to use xi in place of x′

i .
Just as the mix of two rotation groups has a simple description in terms of quotients

of W+, so does the comix of two rotation groups:

Proposition 3.2 Let P and Q be chiral or directly regular polytopes with Γ +(P ) =
W+/M and Γ +(Q) = W+/K . Then Γ +(P )�Γ +(Q) 
 W+/MK .

Proof Let Γ +(P ) = 〈σ1, . . . , σn−1 | R〉, and let Γ +(Q) = 〈σ1, . . . , σn−1 | S〉, where
R and S are sets of relators in W+. Then M is the normal closure of R in W+ and K

is the normal closure of S in W+. We can write Γ +(P )�Γ +(Q) = 〈σ1, . . . , σn−1 |
R ∪ S〉, so we want to show that MK is the normal closure of R ∪ S in W+. It is
clear that MK contains R ∪ S, and since M and K are normal, MK is normal, and
so it contains the normal closure of R ∪ S. To show that MK is contained in the
normal closure of R ∪ S, it suffices to show that if N is a normal subgroup of W+
that contains R ∪ S, then it must also contain MK . Clearly, such an N must contain
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the normal closure M of R and the normal closure K of S. Therefore, N contains
MK , as desired. �

Now we can determine how the size of Γ +(P ) � Γ +(Q) is related to the size of
Γ +(P )�Γ +(Q).

Proposition 3.3 Let P and Q be finite chiral or directly regular n-polytopes. Then

∣∣Γ +(P � Q)
∣∣ · ∣∣Γ +(P )�Γ +(Q)

∣∣ = ∣∣Γ +(P )
∣∣ · ∣∣Γ +(Q)

∣∣.

Proof Let Γ +(P ) = W+/M and Γ +(Q) = W+/K . Then by Proposition 3.1,
Γ +(P � Q) = W+/(M ∩K), and by Proposition 3.2, Γ +(P )�Γ +(Q) = W+/MK .
Let π1 : Γ +(P � Q) → Γ +(P ) and π2 : Γ +(Q) → Γ +(P )�Γ +(Q) be the natural
covering maps. Then kerπ1 
 M/(M ∩ K) and kerπ2 
 MK/K 
 M/(M ∩ K).
Therefore, we have

∣∣Γ +(P � Q)
∣∣ = ∣∣Γ +(P )

∣∣|kerπ1| =
∣∣Γ +(P )

∣∣|kerπ2|
= ∣∣Γ +(P )

∣∣∣∣Γ +(Q)
∣∣/∣∣Γ +(P )�Γ +(Q)

∣∣,

and the result follows. �

Corollary 3.4 Let P and Q be finite chiral or directly regular n-polytopes such that
Γ +(P )�Γ +(Q) is trivial. Then Γ +(P ) � Γ +(Q) = Γ +(P ) × Γ +(Q).

The reason that Proposition 3.3 is so useful in calculating the size of Γ +(P ) �
Γ +(Q) is that it is typically very easy for a computer to find the size of Γ +(P )�
Γ +(Q). Indeed, in many of the cases that come up in practice, it is easy to calculate
|Γ +(P )�Γ +(Q)| by hand just by combining the relations from Γ +(P ) and Γ +(Q)

and playing with the presentation a little.
The mix of P and Q is polytopal if and only if Γ +(P ) � Γ +(Q) satisfies the

intersection property (2.2). There is no general method for determining whether this
condition is met, but the following two results from [4] are widely applicable.

Proposition 3.5 Let P and Q be chiral or directly regular n-polytopes. If the facets
of P cover the facets of Q, or if the vertex-figures of P cover the vertex-figures of Q,
then P � Q is polytopal.

Proposition 3.6 Let P be a chiral or directly regular n-polytope of type {p1, . . . ,

pn−1}, and let Q be a chiral or directly regular n-polytope of type {q1, . . . , qn−1}.
If pi and qi are relatively prime for each i = 1, . . . , n − 1, then P � Q is a chi-
ral or directly regular n-polytope of type {p1q1, . . . , pn−1qn−1}, and Γ +(P � Q) =
Γ +(P ) × Γ +(Q).

In fact, it is actually sufficient for only the middle entries of the Schläfli symbol to
be coprime:
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Theorem 3.7 Let P be a chiral or directly regular n-polytope of type {p1, . . . , pn−1},
and let Q be a chiral or directly regular n-polytope of type {q1, . . . , qn−1}. If pi and
qi are relatively prime for each i = 2, . . . , n − 2 (but not necessarily for i = 1 or
i = n − 1), then P � Q is a chiral or directly regular n-polytope.

Proof We prove the claim by induction. The claim is trivially true for n ≤ 2.
Now, suppose the claim is true for (n − 1)-polytopes, and let P and Q be
n-polytopes satisfying the given conditions. Let Γ +(P ) = 〈σ1, . . . , σn−1〉 and
Γ +(Q) = 〈σ ′

1, . . . , σ
′
n−1〉. Let βi = (σi, σ

′
i ), so that Γ +(P ) � Γ +(Q) = 〈β1, . . . ,

βn−1〉. Now, the facets of P are of type {p1, . . . , pn−2} and the facets of Q are
of type {q1, . . . , qn−2}, so that by the inductive hypothesis, the mix of the facets
is polytopal. In other words, 〈β1, . . . , βn−2〉 has the intersection property (2.2).
Similarly, 〈β2, . . . , βn−1〉 has the intersection property. Now, if we can prove that
〈β1, . . . , βn−2〉 ∩ 〈β2, . . . , βn−1〉 ≤ 〈β2, . . . , βn−2〉, then it follows that P � Q is poly-
topal [15]. We have

〈β1, . . . , βn−2〉 ∩ 〈β2, . . . , βn−1〉
= 〈

(σ1, σ
′
1), . . . , (σn−2, σ

′
n−2)

〉 ∩ 〈
(σ2, σ

′
2), . . . , (σn−1, σ

′
n−1)

〉

≤ (〈σ1, . . . , σn−2〉 × 〈σ ′
1, . . . , σ

′
n−2〉

) ∩ (〈σ2, . . . , σn−1〉 × 〈σ ′
2, . . . , σ

′
n−1〉

)

= (〈σ1, . . . , σn−2〉 ∩ 〈σ2, . . . , σn−1〉
) × (〈σ ′

1, . . . , σ
′
n−2〉 ∩ 〈σ ′

2, . . . , σ
′
n−1〉

)

= 〈σ2, . . . , σn−2〉 × 〈σ ′
2, . . . , σ

′
n−2〉,

where the last line follows from the polytopality of P and Q. Now, 〈σ2, . . . , σn−2〉 is
the group of a polytope of type {p2, . . . , pn−2}, and 〈σ ′

2, . . . , σ
′
n−2〉 is the group of a

polytope of type {q2, . . . , qn−2}. Since pi and qi are coprime for i = 2, . . . , n− 2, the
mix of those two groups is their direct product. That is,

〈β2, . . . , βn−2〉 = 〈σ2, . . . , σn−2〉 × 〈σ ′
2, . . . , σ

′
n−2〉.

Thus we see that P � Q is polytopal. �

Corollary 3.8 Let P and Q be chiral or directly regular polyhedra (3-polytopes).
Then P � Q is a chiral or directly regular polyhedron.

4 Regular covers and the chirality group

The chirality group of a hypermap was introduced in [3] and then adapted to poly-
topes in [4]. Instead of a binary invariant, we now get a much more detailed measure
of how far away a polytope is from being directly regular. Additionally, we can use the
chirality group to easily determine when the mix of two polytopes is chiral, thereby
dodging lengthy calculations. Note that the results in this section are completely in-
dependent of whether the mix is polytopal.
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Let P be a chiral polytope, and P its enantiomorphic form (mirror image). If
Γ +(P ) has presentation

〈σ1, . . . , σn−1 | w1, . . . ,wt 〉,
then the group Γ +(P ) has presentation

〈σ1, . . . , σn−1 | w1, . . . ,wt 〉,
where we obtain w from w by changing every σ1 to σ−1

1 and every σ2 to σ 2
1 σ2. Let

Γ +(P ) = W+/M , so that Γ +(P ) = W+/M .
Now, the group Γ +(P )�Γ +(P ) is isomorphic to W+/(M ∩M). Set N = M ∩M .

Then

N = M ∩ M = M ∩ M = N,

so that Γ +(P )�Γ +(P ) is the group of a directly regular pre-polytope. Furthermore,
any directly regular pre-polytope that covers P must cover P � P , so P � P is the
minimal directly regular pre-polytope that covers P . In a similar way, we see that
P � P is the maximal directly regular quotient of P .

In order to determine how chiral P is, we compare Γ +(P ) to Γ +(P ) � Γ +(P )

or to Γ +(P )�Γ +(P ). From Proposition 3.3, we know that the natural maps π1 :
Γ +(P ) � Γ +(P ) → Γ +(P ) and π2 : Γ +(P ) → Γ +(P )�Γ +(P ) have isomorphic
kernels. We call this kernel the chirality group of P and denote it by X(P ). At one
extreme, X(P ) might be trivial, in which case P is directly regular. At the other
extreme, X(P ) might coincide with the whole automorphism group Γ +(P ); in that
case, we say that P is totally chiral. For example, any chiral polytope with a simple
automorphism group is totally chiral.

Now we move on to our main application of the chirality group. Our goal is to
construct chiral polytopes via mixing. If P is a chiral polytope and Q is a chiral
or directly regular polytope, how do we know when P � Q is chiral? In principle,
we can determine the answer with a computer algebra system. However, the usual
algorithmic hurdles in combinatorial group theory often make it difficult to get an
answer that way.

We start by giving an equivalent condition to direct regularity of P � Q.

Lemma 4.1 Let P and Q be chiral or directly regular n-polytopes. Then P � Q is
directly regular if and only if Γ +(P )�Γ +(Q) naturally covers Γ +(P )�Γ +(P ) and
Γ +(Q) � Γ +(Q).

Proof Let M and K be the subgroups of W+ such that Γ +(P ) = W+/M and
Γ +(Q) = W+/K . Then Γ +(P ) � Γ +(Q) = W+/(M ∩ K). If P � Q is directly
regular, then we have M ∩ K = M ∩ K . Then M ∩ K = M ∩ K ∩ M ≤ M ∩ M ,
so Γ +(P ) � Γ +(Q) naturally covers W+/(M ∩ M) = Γ +(P ) � Γ +(P ). Similarly,
Γ +(P ) � Γ +(Q) naturally covers Γ +(Q) � Γ +(Q).

Conversely, if Γ +(P ) � Γ +(Q) naturally covers both Γ +(P ) � Γ +(P ) and
Γ +(Q) � Γ +(Q), then we have M ∩ K ≤ M ∩ M and M ∩ K ≤ K ∩ K . There-
fore M ∩ K ≤ M ∩ M ∩ K ∩ K , and thus we must have M ∩ K = M ∩ K , so that
P � Q is directly regular. �



272 J Algebr Comb (2012) 36:263–277

We now come to the main result:

Theorem 4.2 Let P and Q be finite chiral or directly regular polytopes, but not both
directly regular. Suppose that |X(P )| does not divide |Γ +(Q)| or that |X(Q)| does
not divide |Γ +(P )|. Then P � Q is chiral.

Proof Suppose that P � Q is directly regular. Then by Lemma 4.1, Γ +(P ) �
Γ +(Q) naturally covers Γ +(P ) � Γ +(P ) and Γ +(Q) � Γ +(Q). Thus we see
that |Γ +(P ) � Γ +(P )| and |Γ +(Q) � Γ +(Q)| both divide |Γ +(P ) � Γ +(Q)|,
which divides |Γ +(P )||Γ +(Q)|. Since |Γ +(P ) � Γ +(P )| = |Γ +(P )||X(P )| and
|Γ +(Q) � Γ +(Q)| = |Γ +(Q)||X(Q)|, we see that |X(P )| divides |Γ +(Q)| and
|X(Q)| divides |Γ +(P )|, and the result follows. �

Corollary 4.3 Let P and Q be totally chiral polytopes. If |Γ +(P )| �= |Γ +(Q)|, then
P � Q is chiral.

Theorem 4.2 gives us a simple combinatorial criterion for the chirality of P � Q.
In order to use it, we only need information about P and Q separately; no other
information about P � Q is required. Furthermore, finding the size of X(P ) is usually
a simple computation. We just need to calculate |Γ +(P )|/|Γ +(P )�Γ +(P )|.

Let us consider a simple example to illustrate. Let Q be a finite chiral or directly
regular, polyhedron, and let P be the chiral polyhedron {4,4}(b,c), where p := b2 +c2

is an odd prime. Suppose p > |Γ +(Q)|. Since the chirality group of P is cyclic of
order p [5], Theorem 4.2 tells us that the polyhedron P � Q is chiral.

A small problem arises when we try to apply Theorem 4.2 multiple times. In order
to determine if (P � Q) � R is chiral, we need to know the chirality group of P � Q.
All that Theorem 4.2 tells us is whether X(P � Q) is trivial. However, with a little
extra work, we can get a lower bound on X(P � Q).

Theorem 4.4 Let P and Q be finite chiral or directly regular polytopes. Let g1 be the
greatest common divisor of |X(P )| and |Γ +(Q)|, and let g2 be the greatest common
divisor of |X(Q)| and |Γ +(P )|. Then |X(P � Q)| is divisible by |X(P )|/g1 and by
|X(Q)|/g2.

Proof The group Γ +(P ) � Γ +(P ) is covered by (Γ +(P ) � Γ +(Q)) � (Γ +(P ) �
Γ +(Q)). The former has size |Γ +(P )||X(P )|, while the latter has size |Γ +(P ) �
Γ +(Q)||X(P � Q)|. Then |Γ +(P )||X(P )| divides |Γ +(P ) � Γ +(Q)||X(P � Q)|,
which divides |Γ +(P )||Γ +(Q)||X(P � Q)|. Therefore, |X(P )| divides |Γ +(Q)| ×
|X(P � Q)|. Since g1 divides both |X(P )| and |Γ +(Q)|, we find that |X(P )|/g1
divides |Γ +(Q)||X(P � Q)|/g1. Furthermore, |X(P )|/g1 is coprime to |Γ +(Q)|/g1,
and thus |X(P )|/g1 must divide |X(P � Q)|. The result then follows by symmetry. �

Armed with this new result, we can now say something about the chirality of
(P � Q) � R. In particular, if (P � Q) � R is directly regular, then |X(P � Q)| di-
vides |Γ +(R)| by Theorem 4.2; by Theorem 4.4, we conclude that |X(P )|/g1 and
|X(Q)|/g2 both divide |Γ +(R)|.
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Let us return to our previous example, where P is the chiral polyhedron {4,4}(b,c)

with a chirality group of order p = b2 + c2. Suppose p is an odd prime, and let Q and
R be finite chiral or directly regular polyhedra such that p does not divide |Γ +(Q)|
or |Γ +(R)|. Then by Theorem 4.4, p must divide |X(P � Q)|. Since p does not
divide |Γ +(R)|, that means that |X(P � Q)| does not divide |Γ +(R)|, and thus by
Theorem 4.2, the polyhedron P � Q � R is chiral.

If the chirality group of P is simple (as it was in our previous example) and P � Q
is chiral, we can actually determine the chirality group of P � Q. Proposition 4.5
below was proved in [4].

Proposition 4.5 Let P be a chiral n-polytope and let Q be a directly regular n-
polytope. Then X(P � Q) is a normal subgroup of X(P ).

Theorem 4.6 Let P be a finite chiral polytope such that X(P ) is simple. Let Q be
a finite directly regular polytope. If |X(P )| does not divide |Γ +(Q)|, then P � Q is
chiral and X(P � Q) = X(P ).

Proof By Theorem 4.2, the mix P � Q is chiral. Proposition 4.5 says that X(P � Q)

is a normal subgroup of X(P ), which is simple. Since P � Q is chiral, X(P � Q)

must be nontrivial, and thus we have X(P � Q) = X(P ). �

Thus, we see that if P is a chiral polytope with simple chirality group, and if
Q1, . . . , Qk are finite directly regular polytopes such that |X(P )| does not divide any
|Γ +(Qi )|, then P � Q1 � · · · � Qk is chiral.

Returning to the mix of two polytopes, we also get a nice result in the case where
Q has a simple rotation group:

Theorem 4.7 Let P be a finite chiral polytope, and let Q be a finite chiral polytope
such that Γ +(Q) is simple. If X(P ) is not isomorphic to Γ +(Q), then P � Q is chiral.

Proof Suppose P � Q is directly regular. Then by Lemma 4.1, Γ +(P ) � Γ +(Q)

naturally covers Γ +(P )�Γ +(P ). Thus, we get the following commutative diagram,
where the maps are all the natural covering maps:

Γ +(P ) � Γ +(Q)
f1

f2

Γ +(P ) � Γ +(P )

g

Γ +(P )

So we have kerf2 = ker(g ◦ f1), and in particular, kerf1 is normal in kerf2. Now,
we can view kerf2 as a normal subgroup of Γ +(Q), which is simple. Then kerf2
is simple (possibly trivial), and kerf1 is likewise simple (possibly trivial). Suppose
kerf1 is trivial. Then kerf2 = kerg = X(P ). Since P is chiral, kerg is nontrivial.
Therefore, kerf2 is nontrivial, so we must have kerf2 
 Γ +(Q). But then X(P ) 

Γ +(Q), violating our assumptions. Now, suppose instead that kerf1 
 Γ +(Q). Then
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we must have kerf2 
 Γ +(Q) as well. Then since kerf2 = ker(g ◦ f1), kerg must
be trivial, contradicting that P is chiral. Therefore, P � Q must be chiral. �

Theorem 4.8 Let P be a finite chiral polytope, and let Q be a finite directly regular
polytope with a simple rotation group Γ +(Q). If X(P ) is not isomorphic to Γ +(Q),
then X(P � Q) = X(P ).

Proof Consider the commutative diagram below, where the maps are all the natural
covering maps:

Γ +(P � P � Q � Q)

f1

f2

Γ +(P � P )

g1

Γ +(P � Q)
g2

Γ +(P )

We have |kerf2| · |kerg2| = |kerf1| · |kerg1|. Furthermore, kerf2 = X(P � Q) and
kerg1 = X(P ). Now, since Q is directly regular, the group Γ +(P � P � Q � Q) is
the same as Γ +(P � P � Q), and therefore, we can view kerf1 as a normal subgroup
of Γ +(Q). We can similarly view kerg2 as a normal subgroup of Γ +(Q). Suppose
kerg2 is trivial. Then P � Q = P , so that X(P � Q) = X(P ). Otherwise, we must
have kerg2 
 Γ +(Q) since Γ +(Q) is simple. Then we get

∣∣X(P � Q)
∣∣ · ∣∣Γ +(Q)

∣∣ = |kerf1| ·
∣∣X(P )

∣∣ ≤ ∣∣Γ +(Q)
∣∣ · ∣∣X(P )

∣∣.

Therefore, |X(P � Q)| ≤ |X(P )|. By Proposition 4.5, X(P ) is a normal subgroup of
X(P � Q), so we see that again we must have X(P ) = X(P � Q). �

Several recent papers address which finite simple groups are the automorphism
groups of regular polytopes (for example, see [9, 11]). By mixing these regular poly-
topes with chiral polytopes, we get a rich source of new chiral polytopes.

So far, we have only considered the chirality groups of finite polytopes. However,
a claim similar to Theorem 4.4 is true for chiral polytopes with an infinite chirality
group:

Theorem 4.9 Let P be a chiral polytope such that X(P ) is infinite. Let Q be a finite
chiral or directly regular polytope. Then X(P � Q) is infinite.

Proof Consider the commutative diagram below, where the maps are all the natural
covering maps:

Γ +(P � P � Q � Q)

f1

f2

Γ +(P � P )

g1

Γ +(P � Q)
g2

Γ +(P )
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Then ker(g1 ◦f1) = ker(g2 ◦f2). Now, since X(P ) = kerg1 is infinite, it follows that
ker(g1 ◦f1) is infinite. Now, kerf2 = X(P � Q), and we can view kerg2 as a subgroup
of Γ +(Q), which is finite. If X(P � Q) is finite, then so is ker(g2 ◦f2) = ker(g1 ◦f1).
So X(P � Q) must be infinite. �

Determining whether P � Q is chiral when both P and Q are infinite is sometimes
possible, but it requires more machinery, and we will not develop it here.

5 New examples of chiral polytopes

Now we will apply the results of the previous section in order to construct new ex-
amples of chiral polytopes. We start by giving a few concrete new examples of small
chiral 5-polytopes.

Let P be the chiral polytope of type {3,4,4,3} in [6], with automorphism group
S6. A direct calculation in GAP [17] shows that the chirality group is A6. Let Q
be the degenerate directly regular polytope {2,3,3,2}. Then we have |X(P )| = 360,
while |Γ +(Q)| = 48. Then by Theorem 4.6, P � Q is chiral with chirality group A6.
Furthermore, by Proposition 3.6, P � Q is polytopal. We get a chiral polytope of type
{6,12,12,6} with 12 vertices, 120 edges, 480 2-faces, 120 3-faces, and 12 4-faces.
The total number of flags is 69120.

Mixing P with {2,3,3,3} also yields a new chiral polytope. In this case, The-
orem 3.7 tells us that the mix is polytopal. We get a chiral polytope of type
{6,12,12,3} with 12 vertices, 150 edges, 2400 2-faces, 300 3-faces, and 30 4-faces.
The number of flags is 1728000.

We now turn to some more general results. One particularly useful source of
directly regular polytopes to mix with chiral polytopes are the cubic n-toroids
{4,3n−3,4}(sk,0n−k−1), defined in [12, Chap. 6D]. For each s ≥ 2 and k = 1,2, or
n − 1, we get a directly regular polytope with a group of size 2n+k−2(n − 1)!sn−1.
Mixing them with chiral polytopes yields the following:

Theorem 5.1 Let P be a finite chiral n-polytope (n ≥ 3), and let Q(s, k) be the
directly regular n- polytope {4,3n−3,4}(sk,0n−k−1), where k = 1,2, or n−1. If |X(P )|
does not divide 2n+k−2(n − 1)!, then there are infinitely many values of s such that
P � Q(s, k) is chiral.

Proof If s is a prime that does not divide |X(P )|, then |X(P )| does not divide
|Γ +(Q(s, k))| = 2n+k−2(n − 1)!sn−1. Therefore, by Theorem 4.2, P � Q(s, k) is
chiral for each such s. �

The condition that |X(P )| does not divide 2n+k−2(n − 1)! is very mild. For ex-
ample, this holds if |X(P )| has a prime factor larger than n − 1. Note, however, that
Theorem 5.1 says nothing about the polytopality of P � Q(s, k)—we must establish
that separately.

Next, we showcase one nice example of Theorem 4.8. Recall that the rotation
group of the n-simplex is An+1, which is simple when n ≥ 4.
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Theorem 5.2 Let P be a finite chiral n-polytope (n ≥ 4) such that X(P ) is not iso-
morphic to An+1. Let Q be the n-simplex. Then P � Q is chiral, and X(P � Q) =
X(P ).

Now, let us look at an example using Theorem 4.9. In [16], the authors proved
that for any chiral polytope K with directly regular facets, there is a universal chiral
polytope U(K) with facets isomorphic to K. This polytope covers all other chiral
polytopes with facets isomorphic to K. In many cases, this extension will have an
infinite chirality group:

Lemma 5.3 Let K be a chiral polytope with directly regular facets such that
Γ +(K)�Γ +(K) is finite. (For example, the latter holds if Γ +(K) is itself finite.) Let
P = U(K). Let Γ +(P ) = 〈σ1, . . . , σn〉 so that Γ +(K) = 〈σ1, . . . , σn−1〉. If σn−1 = ε

in Γ +(K)�Γ +(K), or if σn−1 = σn−2 in Γ +(K)�Γ +(K), then X(P ) is infinite.

Proof Since X(P ) is the kernel of the natural covering from Γ +(P ) to Γ +(P )�
Γ +(P ), it suffices to show that Γ +(P )�Γ +(P ) is finite. Now, suppose that
σn−1 = ε in Γ +(K)�Γ +(K). Then σn−1 = ε in Γ +(P )�Γ +(P ). Furthermore,
the relation (σn−1σn)

2 = ε also holds in Γ +(P )�Γ +(P ), so we get σ 2
n = ε. Sup-

pose instead that σn−1 = σn−2 in Γ +(K)�Γ +(K) (and thus in Γ +(P )�Γ +(P )).
We have (σn−2σn−1σn)

2 = ε, and thus (σ 2
n−1σn)

2 = ε = (σn−1σn)
2. Therefore,

σn−1σnσn−1 = σn. So we get (σn−1σn)
2 = σ 2

n = ε.
Now, σn commutes with σi if i < n − 2 [15]. Using the relations (σn−1σn)

2 = ε

and (σn−2σn−1σn)
2 = ε, we can conclude that σnσn−1 = σ−1

n−1σn and that σnσn−2 =
σn−2σ

2
n−1σn. Therefore, given any word w in Γ +(P )�Γ +(P ), we can bring ev-

ery σn to the right and write w = uσk
n , where u is a word in Γ +(K)�Γ +(K).

Therefore, Γ +(P )�Γ +(P ) is finite; in particular, it is at most twice as large as
Γ +(K)�Γ +(K). �

Theorem 5.4 Let K be a finite chiral polytope with directly regular facets and group
Γ +(K) = 〈σ1, . . . , σn−1〉. Let P = U(K), and let Q be a finite directly regular poly-
tope. If σn−1 = ε or σn−1 = σn−2 in Γ +(K)�Γ +(K), then P � Q is chiral, with an
infinite chirality group.

Proof By Lemma 5.3, the conditions given on K suffice to ensure that P has an
infinite chirality group. Then Theorem 4.9 applies to show that P � Q also has an
infinite chirality group. �

For example, let K be the chiral polyhedron {4,4}(b,c) with p = b2 + c2 an
odd prime. Then Γ +(K)�Γ +(K) = [4,4](1,0), the group of {4,4}(1,0), in which
σ1 = σ2 [5]. Therefore, Theorem 5.4 says that we can mix U(K) with any finite di-
rectly regular polytope to obtain a polytope with infinite chirality group.

Note that in Theorem 5.4, we had to choose K to have directly regular facets. Since
the (n − 2)-faces of a chiral polytope must be directly regular, there is no universal
polytope U(P ) if P has chiral facets. In particular, there is no universal polytope
U(U(K)). However, using mixing, we can build a chiral polytope with directly regu-
lar facets K � K:
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Theorem 5.5 Let K be a finite totally chiral polytope of type {p1, . . . , pn−2} with
directly regular facets. Let P = U(K), and let Q be the finite directly regular polytope
of type {p1, . . . , pn−2,2} with facets isomorphic to K � K. Then P � Q is a chiral
polytope with directly regular facets.

Proof Since K is totally chiral, Γ +(K)�Γ +(K) is trivial. Then by Theorem 5.4,
the mix P � Q is chiral. Furthermore, the facets of Q cover the facets of P , so by
Proposition 3.5, the mix is polytopal. �

Unfortunately, Theorem 5.5 cannot be repeatedly applied, because it requires that
we start with a finite chiral polytope, and it produces an infinite chiral polytope.
Perhaps with some more careful analysis, a similar result may be obtained for infinite
chiral polytopes.

Finally, we note that Lemma 5.3, Theorem 5.4, and Theorem 5.5 all still apply
when P is any infinite chiral polytope with facets isomorphic to K—the universality
of U(K) is not necessary.
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