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Abstract In this paper we present, for any integer d , a description of the set of hooks
in a d-symbol. We then introduce generalized hook length functions for a d-symbol,
and prove a general result about them, involving the core and quotient of the symbol.
We list some applications, for example to the well-known hook lengths in integer par-
titions. This leads in particular to a generalization of a relative hook formula for the
degree of characters of the symmetric group discovered by G. Malle and G. Navarro
in Trans. Am. Math. Soc. 363, 6647–6669, 2011.
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The celebrated hook formula for the degrees of the irreducible characters of the finite
symmetric groups has been a source of inspiration for several other degree formulas.
In his work [2] on unipotent degrees in reflection groups G. Malle used d-symbols
as labels, defined hooks in d-symbols and associated a length to a hook. With these
he was able to prove a “hook formula” for the degrees. He also proved formulas
involving suitable cores and quotients of symbols.
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Considering here for simplicity an h-hook as a pair (a, b) of integers satisfying
0 ≤ b < a and a − b = h, an h-hook may contribute a factor h (for characters of the
symmetric groups), or qh − 1 (for unipotent characters in general linear groups over
GF(q)), or more generally qh − ζ for some complex root of unity ζ to the degree of
a character. Thus knowledge of the number of h-hooks in a partition or a symbol for
all h gives information about character degrees.

This paper is concerned with ways of organizing hooks which lead to alternative
versions of hook formulas. The hope is that these versions may be better suited to
deal with explicit degree problems.

We introduce generalized hook length functions for d-symbols and prove a general
result about them. More specifically we consider certain functions h from the set
H(S) of hooks of a d-symbol S to R and decompositions of the multiset H(S) of
all generalized hook lengths h(z), where z ∈ H(S). For a given positive integer � we
find a decomposition which is compatible with the �-core and �-quotient of S.

Based on a crucial well controlled correspondence between hooks in symbols and
hooks in associated core and quotient symbols, our main result (Theorem 3.2) on
generalized hook lengths for symbols is deduced. This may seem quite a special and
technical result, but its consequence Theorem 3.3 really provides a very general and
unified approach to hooks. It has a number of applications. For instance, we show
that the relative hook formula obtained by Malle and Navarro [3, Theorem 9.1] is
just the well-known hook formula for the degree of the irreducible characters of the
symmetric groups with the hooks suitably arranged (Remark 4.12). If H(λ) is the
multiset of hook lengths for a partition λ, and λ has d-core partition λ(d) then we
have in particular H(λ(d)) ⊂ H(λ). Furthermore the remaining elements of H(λ)

may be seen as modified hook lengths of a d-quotient partition for λ (Theorem 4.7;
see Example 4.8 for an illustration).

Our paper is organized as follows. In Sect. 1 we explain the relations between
partitions, β-sets and d-symbols, their hooks and their corresponding cores and quo-
tients. In Sect. 2 we set up useful bijections between the set of hooks of a symbol and
the set of hooks of its core and quotient. This is used in Sect. 3 to prove our key result,
Theorem 3.3. The theorem is then applied to partitions in Sect. 4 and to symbols in
Sect. 5. The main results of the final section may be found in a somewhat different
form in [2, Sect. 3] (especially the subsection on Harish-Chandra theory).

1 On β-sets and d-symbols

A β-set X is a finite subset of N0. For s ∈ N0 we put X+s = (X + s) ∪ {0,1, . . . ,

s − 1}. Write X = {a1, a2, . . . , at } where we always assume a1 > a2 > · · · > at .
Then we associate to the β-set X the partition p(X) having the non-zero numbers
among ai − (t − i), i = 1, . . . , t , as parts. For example, p({5,3,0}) = (3,2). Note
that p(X) = p(X+s) for all s ∈ N0.

Let d ∈ N. We define a d-symbol S = (X0,X1, . . . ,Xd−1) as a d-tuple of β-sets.
In analogy with β-sets we define S+s = (X+s

0 ,X+s
1 , . . . ,X+s

d−1).
In [2], a d-symbol is an equivalence class of such d-tuples. The equivalence rela-

tion is generated by the following operations:
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• cyclic permutation of the β-sets
• replacing S by S+1.

The multiset of all hook lengths in S, as defined in [2], only depends on the equiv-
alence class of S. The more general definition of hook lengths in symbols which we
introduce in Sect. 3 includes those of [2], but they are not independent of the cyclic
permutations of the β-sets.

Let s ∈ N. We set [s] = {0,1, . . . , s − 1}. For n ∈ N0, we define n[s] ∈ [s] as the
remainder of n after division by s.

Definition 1.1 Given d ∈ N we associate to a β-set X a d-symbol

sd(X) = (
X

(d)
0 ,X

(d)
1 , . . . ,X

(d)
d−1

)
,

where for j ∈ [d]
X

(d)
j = {k ∈ N0 | j + kd ∈ X}.

Clearly, we have

Lemma 1.2 The map sd is a bijection between the set of all β-sets and the set of all
d-symbols.

Definition 1.3 To an arbitrary d-symbol S, we associate a partition p(S), defined by

p(S) = p
(
s−1
d (S)

)
.

Definition 1.4 (1) A hook in the β-set X is a pair (a, b) of nonnegative integers with
a > b such that a ∈ X and b /∈ X. The set of hooks in X is denoted H(X). If a−b = �

then (a, b) is called an �-hook in X.
(2) A hook in the d-symbol S = (X0,X1, . . . ,Xd−1) is a quadruple (a, b, i, j) of

nonnegative integers where a ≥ b, i, j ∈ [d], a ∈ Xi , b /∈ Xj , and in addition if a = b

then i > j . If a = b, we call the hook short and otherwise long. The set of hooks in S

is denoted by H(S). If a − b = � and (i − j)[d] = e, e ∈ [d] then (a, b, i, j) is called
an (�, e)-hook in S.

Note (i) To avoid confusion we want to point out that since we will be dealing with
generalized hook lengths below, an �-hook will not be the same as a hook of length �.

(ii) In [2] only long hooks are considered in symbols, since short hooks give only
trivial contributions to the unipotent degrees. The inclusion of short hooks makes our
later arguments much simpler, and the short hooks will then be dealt with separately
whenever necessary.

Lemma 1.5 (1) There is a canonical bijection hX between the set H(X) of hooks in
a β-set X and the set H(p(X)) of hooks in the partition p(X). Thereby an �-hook in
H(X) is mapped to an �-hook in the partition H(p(X)).

(2) There is a canonical bijection hX,d between the set H(X) of hooks in a β-set
X and the set H(S) of hooks in the associated d-symbol S = sd(X).
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(3) There is a canonical bijection hS between the set H(S) of hooks in a d-symbol
S and the set H(p(S)) of hooks in the partition p(S).

Proof Let X = {a1, a2, . . . , at }. (1) If (a, b) ∈ H(X), a − b = � and a = ai , then the
partition p(X) has an �-hook in the ith row. The map hX sending (a, b) to this hook
is a bijection; this is well known, see [1, Sect. 2.7] or [4, Sect. 1] for more details.

(2) The map hX,d which maps (a, b) ∈ H(X) to (a′, b′, i, j) ∈ H(S) where
a = a′d + i, b = b′d + j with i, j ∈ [d], is obviously a bijection between H(X)

and H(S) = H(sd(X)).
(3) By Definition 1.3, p(S) = p(s−1

d (S)). Put hS = hX ◦ h
−1
X,d , where X =

s−1
d (S). �

Definition 1.6 (1) Let X be a β-set and z = (a, b) ∈ H(X). If X′ = (X \ {a}) ∪ {b}
we say that X′ is obtained by removing the hook z from X.

(2) Let S = (X0, . . . ,Xd−1) be a d-symbol and z = (a, b, i, j) ∈ H(S). If i 	= j ,
we set X′

i = Xi \ {a},X′
j = Xj ∪ {b}, for i = j we set X′

i = (Xi \ {a}) ∪ {b}, and we
set X′

k = Xk for all k 	= i, j . Then we say that S′ = (X′
0, . . . ,X

′
d−1) is obtained by

removing the hook z from S.

Remark 1.7 If we keep removing �-hooks from a β-set X for a fixed � we eventually
reach a β-set with no �-hooks left. This is the �-core of X, denoted C�(X). By an
abacus argument this is well-defined [1, 2.7.16]. A similar statement is true for (�, e)-
hooks in a symbol [2, 3.4]. We return to this in Sect. 5.

We call a d-symbol S = (X0, . . . ,Xd−1) balanced if |X0| = |X1| = · · · = |Xd−1|,
and if in addition there is an i ∈ [d] such that 0 /∈ Xi .

To a d-tuple (κ0, κ1, . . . , κd−1) of partitions we associate a balanced d-symbol as
follows. If r is the maximal length (i.e., number of parts) of the partitions κi , we may
choose a β-set Yi of cardinality r for each partition κi . Then 0 /∈ Yj whenever κj has
length r because then Yj is just the set of first column hook lengths of κj . Thus

td (κ0, κ1, . . . , κd−1) = (Y0, Y1, . . . , Yd−1)

is a well-defined balanced d-symbol for the d-tuple of partitions. On the other hand,
if S = (X0, . . . ,Xd−1) is balanced, then td (p(X0), . . . , p(Xd−1)) = (X0, . . . ,Xd−1).

We have shown:

Lemma 1.8 There is a bijection td between the set of d-tuples of partitions and the
set of balanced d-symbols.

Definition 1.9 (1) The balanced quotient Q(S) of an arbitrary d-symbol S =
(X0,X1, . . . ,Xd−1) is defined as the balanced d-symbol

Q(S) = td
(
p(X0),p(X1), . . . , p(Xd−1)

)
.

We call q(S) = p(Q(S)) the quotient partition of S.
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(2) The core C(S) of an arbitrary d-symbol S = (X0,X1, . . . ,Xd−1) is defined as
the d-symbol

C(S) = ([x0], [x1], . . . , [xd−1]
)
,

where xi = |Xi | for i ∈ [d]. We call c(S) = p(C(S)) the core partition of S.

Remark 1.10 (A remark on notation) The core C(S) of a d-symbol S is really its
(1,0)-core (see Remark 1.7) and we will consider Q(S) as the (1,0)-quotient of S.
This will be generalized in Sect. 5.

Remark 1.11 We may recover a d-symbol S = (X0,X1, . . . ,Xd−1) from its balanced
quotient Q(S) = (Y0, Y1, . . . , Yd−1) together with its core C(S) = (Z0,Z1, . . . ,Zd−1).
Indeed, for i ∈ [d] Xi must be the β-set of cardinality |Zi | for the partition p(Yi).

Definition 1.12 Let X be a β-set. Then the d-quotient partition of X is defined as
qd(X) = q(sd(X)) and the d-core partition of X is defined as cd(X) = c(sd(X)).

With notation as in Definition 1.1 we define the d-quotient of X as

Qd(X) = s−1
d

(
td

(
p
(
X

(d)
0

)
,p

(
X

(d)
1

)
, . . . , p

(
X

(d)
d−1

)))
.

Remark 1.13 If we put the elements of a β-set X as beads on the d-abacus, and if
X

(d)
j is as in Definition 1.1, then the results of [1, Sect. 2.7] or [4, Sect. 1] show the

following:

• The d-core partition cd(X) of X is also the d-core λ(d) of the partition λ = p(X)

and thus it stays the same when we replace X by X+s .
• We have cd(X) = p(Cd(X)).
• The d-quotient partition qd(X) of X must have an empty d-core. It may change if

we replace X by X+1. However X and X+d have the same d-quotient partition.
• We have qd(X) = p(Qd(X)) and sd(Qd(X)) = Q(sd(X)).
• If t ∈ [d] is chosen such that |X| + t is divisible by d then

(
p
(
X

(d)
t

)
,p

(
X

(d)
t+1

)
, . . . , p

(
X

(d)
t+d−1

))

is the d-quotient of the partition p(X) [1, 2.7.29]. Here the subscripts are to be
read modulo d .

Lemma 1.14 Let X be a β-set, d ∈ N. Then
∣∣p(X)

∣∣ = ∣∣qd(X)
∣∣ + ∣∣cd(X)

∣∣.

Proof Using the first and last statement in Remark 1.13 we get

∣∣p(X)
∣∣ = d

(∣∣p
(
X

(d)
0

)∣∣ + ∣∣p
(
X

(d)
1

)∣∣ + · · · + ∣∣p
(
X

(d)
d−1

)∣∣) + ∣∣cd(X)
∣∣

(see e.g. [4, (3.6)(ii)]). If we apply this result to the d-quotient of X,

Qd(X) = s−1
d

(
td

(
p
(
X

(d)
0

)
,p

(
X

(d)
1

)
, . . . , p

(
X

(d)
d−1

)))
,
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and the partition qd(X) = p(Qd(X)) (which has an empty d-core) we get |qd(X)| =
|p(Qd(X))| = d(|p(X

(d)
0 )| + |p(X

(d)
1 )| + · · · + |p(X

(d)
d−1)|). The result follows. �

The following diagram illustrates the connection between a β-set X, its associated
d-symbol S = sd(X), their cores and quotients and the associated partitions via the
partition map p:

qd(X) Qd(X)
p sd

Q(S)
p

q(S) = qd(X)

p(X)

quot

core

X
p sd

quot

core

S

quot

core

p

p(S) = p(X)

quot

core

cd(X) Cd(X)
p sd

C(S)
p

c(S) = cd(X)

Here is an example:

Example 1.15 Consider the β-set X = {11,8,6,2,0} for the partition p(X) = λ =
(7,5,4,1) of 17. Let d = 3. Letting boldface entries indicate the beads on the abacus
we see that the 3-abacus representation for X is

0 1 2
3 4 5
6 7 8
9 10 11

.

This corresponds to S = s3(X) = ({2,0},∅, {3,2,0}) (giving the levels of the beads).
We get the balanced quotient

Q(S) = t3
(
(1), (0), (1,1)

) = ({2,0}, {1,0}, {2,1}).
Below on the left, we see its 3-abacus representation and on the right, the 3-abacus
representation of the β-set corresponding to Q(S)

Q(S)

0 0 0
1 1 1
2 2 2
3 3 3

Q3(X)

0 1 2
3 4 5
6 7 8
9 10 11

That is,

Q3(X) = s−1
3

(
Q(S)

) = {8,6,5,4,1,0},
giving the 3-quotient partition

q3(X) = (3,2,2,2).
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The cardinalities of the β-sets in S give the core symbol

C(S) = ({1,0},∅, {2,1,0}).
The corresponding β-set (and by construction also the 3-core of X) is

C3(X) = {8,5,3,2,0},
and thus the corresponding 3-core partition is

c3(X) = (4,2,1,1).

Note that |q3(X)| + |c3(X)| = 9 + 8 = 17 = |p(X)|, illustrating the previous lemma.

Lemma 1.16 Let X be a β-set and S = sd(X) be the associated d-symbol. We have:

(1)
∣∣p(X)

∣∣ = ∣∣H
(
p(X)

)∣∣ = ∣∣H(X)
∣∣ = ∣∣H(S)

∣∣

(2)
∣∣qd(X)

∣∣ = ∣∣H
(
qd(X)

)∣∣ = ∣∣H
(
Qd(X)

)∣∣ = ∣∣H
(
Q(S)

)∣∣

(3)
∣∣cd(X)

∣∣ = ∣∣H
(
cd(X)

)∣∣ = ∣∣H
(
Cd(X)

)∣∣ = ∣∣H
(
C(S)

)∣∣

and in addition

(4)
∣∣H(S)

∣∣ = ∣∣H
(
Q(S)

)∣∣ + ∣∣H
(
C(S)

)∣∣.

Proof (1)–(3) are trivial using the bijections in Lemma 1.5 and then (4) follows from
Lemma 1.14. �

2 Correspondences between sets of hooks

In this section we fix the following notation. Let S = (X0,X1, . . . ,Xd−1) be a d-
symbol with balanced quotient symbol Q = Q(S) = (Y0, Y1, . . . , Yd−1) and core
symbol C = C(S) = (Z0,Z1, . . . ,Zd−1).

We would like to describe some well-behaved correspondences (called universal
bijections) between the set H(S) and the union of the sets H(Q) and H(C) (see
Lemma 1.16(4)).

We decompose the set of hooks H(S) into disjoint subsets according to the posi-
tion of the hooks. For this, define

Hij (S) = {
(a, b, i, j) | (a, b, i, j) ∈ H(S)

}
, Hi(S) = Hii(S).

Then we have

H(S) =
( ⋃

i∈[d]
Hi(S)

)
∪

( ⋃

i,j∈[d], i 	=j

Hij (S)

)
.

Also, we set H{ij}(S) = Hij (S) ∪ Hji(S).
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We want to split Hij (S) further according to the differences a − b, i.e., for � ≥ 0
we define

H�
ij (S) = {

(a, b, i, j) ∈ Hij (S) | a − b = �
}
, H�

i (S) = H�
ii(S).

We have the following easy observation:

Lemma 2.1 Let i, j ∈ [d]. Then we have

∣∣H�
ij (S)

∣∣ =
{ |Xi | − |Xi ∩ X+�

j | if � > 0, or � = 0 and i > j,

0 if � = 0 and i ≤ j .

Toward our key result, we proceed to describe a correspondence between the set
H{ij}(S) and the multiset union of the sets H{ij}(Q) and H{ij}(C), for any given i, j .

Note that for each i ∈ [d] and each � ≥ 0 there is a bijection H�
i (S) → H�

i (Q)

because p(Xi) = p(Yi), and H�
i (C) = ∅.

Thus it suffices to consider the situation where i 	= j . We may assume that i and
j are such that � = |Xi | − |Xj | ≥ 0.

For � = 0 we clearly have H{ij}(S) = H{ij}(Q) and H{ij}(C) = ∅. So now we
consider the case � > 0. We may assume that Xi = Yi , Yj = X+�

j , Zi = [�] and
Zj = ∅.

Note that for 1 ≤ � ≤ �, H�
ij (C) has cardinality �−�. Also H 0

ij (C) has cardinality

0 if i < j and cardinality � if j < i. Clearly, H�
ij (C) = ∅ if � > �, and H�

ji(C) = ∅.

First, let � > �. The conditions Xi = Yi , X+�
j = Yj imply that we have bijections

H�−�
ji (S) → H�

ji(Q), (a, b, j, i) 
→ (a + �,b, j, i),

H�
ij (S) → H�−�

ij (Q), (a, b, i, j) 
→ (a, b + �, i, j).

Next we consider H�
ji(Q) and H�

ij (S) for 0 < � < �. By Lemma 2.1 we obtain

∣∣H�
ji(Q)

∣∣ = |Xj | + � − ∣∣X+�
j ∩ X+�

i

∣∣ = |Xj | + (� − �) − ∣∣X+(�−�)
j ∩ Xi

∣∣

and then
∣∣H�−�

ij (S)
∣∣ = |Xi | −

∣∣Xi ∩ X
+(�−�)
j

∣∣ = ∣∣H�
ji(Q)

∣∣ + �.

Replacing � by � − � we have for 0 < � < �:
∣∣H�

ij (S)
∣∣ = ∣∣H�−�

ji (Q)
∣∣ + ∣∣H�

ij (C)
∣∣.

It remains to consider the contributions of the sets H�
ij (S), H 0

ij (S), H 0
ji(S)

toward H{ij}(S), and of H�
ji (Q), H 0

ji(Q), H 0
ij (Q) toward H{ij}(Q), and take the

contribution from H 0
ij (C) into account. We use again Lemma 2.1 and keep in mind

that X+�
j = Yj . Thus we have

∣∣H�
ij (S)

∣∣ = |Xi |− |Xi ∩Yj |,
∣∣H�

ji (Q)
∣∣ = |Yj |−

∣∣Yj ∩Y+�
i

∣∣ = |Xj |− |Xj ∩Yi |.
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Furthermore, for i > j we have
∣∣H 0

ij (S)
∣∣ = |Xi | − |Xi ∩ Xj |,

∣∣H 0
ji(S)

∣∣ = 0,

∣∣H 0
ji(Q)

∣∣ = 0,
∣∣H 0

ij (Q)
∣∣ = |Yi | − |Yi ∩ Yj |,

∣∣H 0
ij (C)

∣∣ = �,

and for i < j we have
∣∣H 0

ij (S)
∣∣ = 0,

∣∣H 0
ji(S)

∣∣ = |Xj | − |Xj ∩ Xi |,
∣∣H 0

ji(Q)
∣∣ = |Yj | − |Yj ∩ Yi |,

∣∣H 0
ij (Q)

∣∣ = 0,
∣∣H 0

ij (C)
∣∣ = 0.

Let k = max(i, j); using that Xi = Yi and |Yj | = |Yi | = |Xj |+�, we see that in both
cases the terms add up:

∣∣H�
ij (S)

∣∣ + ∣∣H 0{ij}(S)
∣∣ = |Xi | − |Xi ∩ Yj | + |Xk| − |Xi ∩ Xj |
= |Xj | − |Yi ∩ Xj | + |Xk| + � − |Yi ∩ Yj |
= ∣∣H�

ji (Q)
∣∣ + ∣∣H 0

{ij}(Q)
∣∣ + ∣∣H 0

ij (C)
∣∣.

We have shown the following key result:

Proposition 2.2 Let S = (X0, . . . ,Xd−1) be a d-symbol with balanced quotient sym-
bol Q(S) = Q and core symbol C(S) = C. Let i 	= j ∈ [d], and set � = |Xi | − |Xj |.

When � > 0, we have the following equalities:

• For all � > �: |H�
ij (S)| = |H�−�

ij (Q)|.
• For all � > �: |H�−�

ji (S)| = |H�
ji(Q)|.

• For all 0 < � < �: |H�
ij (S)| = |H�−�

ji (Q)| + |H�
ij (C)|.

• For � = �: |H�
ij (S)| =

{ |H 0
ij (Q)| = |H 0{ij}(Q)| if i > j,

|H 0
ji(Q)| = |H 0

{ij}(Q)| if i < j.

• For � = 0: |H�
ji (Q)| + |H 0

ij (C)| =
{ |H 0

ij (S)| = |H 0
{ij}(S)| if i > j,

|H 0
ji(S)| = |H 0{ij}(S)| if i < j.

• |H�
ij (S)| + |H 0{ij}(S)| = |H�

ji (Q)| + |H 0{ij}(Q)| + |H 0
ij (C)|.

When � = 0, we have

• |H�
ij (S)| = |H�

ij (Q)|, H�
ij (C) = ∅, for all � ≥ 0.

Using all the correspondences behind the equalities established so far we find
bijective correspondences (between multisets)

H{ij}(S) → H{ij}(Q) ∪ H{ij}(C)

for all i, j ∈ [d], and we may glue these together to set up a universal bijection

ωS : H(S) → H(Q) ∪ H(C).



318 J Algebr Comb (2012) 36:309–332

Remark 2.3 Let us specify the properties of a universal bijection ωS very explicitly.
Let i 	= j ∈ [d] be chosen such that � = |Xi | − |Xj | ≥ 0.

(i) For positive � we have:
(1) For all � > � ≥ 0: ωS(H�

ij (S)) = H�−�
ij (Q).

(2) For all � > � ≥ 0: ωS(H�−�
ji (S)) = H�

ji(Q).

(3) For � = � > 0: ωS(H�
ij (S)) =

{
H 0

ij (Q) if i > j,

H 0
ji(Q) if i < j.

(4) For all 0 < � < �: ωS(H�
ij (S)) = H�−�

ji (Q) ∪ H�
ij (C).

(5) For all �: ωS(H�
i (S)) = H�

i (Q).
(ii) For � = 0, we have the following.

For � > 0:

(1) H�
ji (Q) ∪ H 0

ij (C) =
{

ωS(H 0
ij (S)) = ωS(H 0

{ij}(S)) if i > j,

ωS(H 0
ji(S)) = ωS(H 0{ij}(S)) if i < j.

(2) ωS(H 0
i (S)) = H 0

i (Q).
For � = 0:
(3) ωS(H 0

ij (S)) = H 0
ij (Q).

Of course such a universal bijection is by no means unique and apparently cannot
be made “canonical”. The important fact for this bijection is the relation between the
�’s in corresponding hooks.

3 Generalized hook length functions

We now want to associate lengths to the hooks in H(S), where S is a d-symbol. We
define our (generalized) hook length function on the set

H = {
(a, b, i, j) ∈ N

2
0 × [d]2 | a ≥ b and i > j if a = b

}
.

In general the lengths may be arbitrary real numbers, i.e., we have a (generalized)
hook length function h : H → R. However, we only want to consider functions h

such that

the value h(a, b, i, j) depends only on � = a − b, i and j .

This guarantees that the multiset H(S) of all h(z), z ∈ H(S), coincides with H(S+s)

for all s ∈ N0. Indeed, (a, b, i, j) ∈ H(S) if and only if (a + s, b + s, i, j) ∈ H(S+s),
and the h-value for these hooks will be the same.

We set

Hij = {
(a, b, i, j) | (a, b, i, j) ∈ H

}
, H�

ij = {
(a, b, i, j) ∈ Hij | a − b = �

}

and then the hook length functions h that we will consider will be constant on H�
ij .
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We now describe some hook length functions of interest for d-symbols. For a
(d + 1)-tuple δ = (c0, c1, . . . , cd−1; k) of real numbers, with k ≥ 0, we define the
δ-length of (a, b, i, j) ∈ H as

hδ(a, b, i, j) = k(a − b) + ci − cj .

We call δ a d-hook data tuple. For any d-symbol S, we let Hδ(S) be the multiset of
all hδ(a, b, i, j), (a, b, i, j) ∈ H(S), and Hδ

ij (S) be the multiset of all hδ(a, b, i, j),
(a, b, i, j) ∈ Hij (S).

Remark 3.1 Some special choices of d-hook data tuples will be particularly impor-
tant in the next sections.

• If we choose δo = (0,0, . . . ,0;1) then the δ-length of long hooks in S coincides
with the length defined in [2, p. 782], and the short hooks have δo-length 0. We
call δo = (0,0, . . . ,0;1) the minimal d-hook data tuple.

• If we choose δ∗ = (0,1, . . . , d − 1;d) then in the notation of Lemma 1.5 the usual
hook length a − b of (a, b) in H(X) equals the δ∗-length of the corresponding
hook hX,d(a, b) in H(S). We call δ∗ = (0,1, . . . , d − 1;d) the partition d-hook
data tuple.

As before, we let S = (X0,X1, . . . ,Xd−1) be a d-symbol with balanced quotient

Q = Q(S) = (Y0, Y1, . . . , Yd−1)

and core

C = C(S) = ([x0], [x1], . . . , [xd−1]
)
,

where xi = |Xi |. We have set up above a universal bijection

ωS : H(S) → H(Q) ∪ H(C),

with properties specified in Remark 2.3.
Let δ = (c0, c1, . . . , cd−1; k) be an arbitrary d-hook data tuple. We define

δS := (c0 + x0k, c1 + x1k, . . . , cd−1 + xd−1k; k).

This is a new d-hook data tuple which depends on the core of S.

We want to modify h = hδ to a new length function h = h
δS such that for z ∈ H(S)

we have

hδ(z) =
{

h
δS

(ωS(z)) if ωS(z) ∈ H(Q),

hδ(ωS(z)) if ωS(z) ∈ H(C).

If this is done we immediately have

Hδ(S) = HδS
(Q) ∪ Hδ(C),

where HδS
(Q) is the multiset of all h

δS
(z), z ∈ H(Q).
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We proceed to define h
δS . Apart from a sign, h

δS is just hδS , with δS as above. Let
us describe the sign modification of hδS on H{ij} = Hij ∪ Hji .

We set H>m
ij = ⋃

�>m H�
ij , and use similar notation for the condition ≥ m and for

subsets of Hji .
We assume that i, j ∈ [d] are such that � = xi − xj ≥ 0. Then for z ∈ H�{ij} we

define

h
δS

(z) =
{

hδS (z) if z ∈ Hij ∪ H>�
ji , or z ∈ H�

ji if i < j,

−hδS (z) otherwise.

Theorem 3.2 Let ωS be a universal bijection. Let h = hδ and h = h
δS be as defined

above. Then for z ∈ H(S) we have

hδ(z) =
{

h
δS

(ωS(z)) if ωS(z) ∈ H(Q),

hδ(ωS(z)) if ωS(z) ∈ H(C).

Proof Let i, j ∈ [d]. As above, we assume that i, j are chosen such that � := xi −
xj ≥ 0. We refer to Remark 2.3 for the properties of ωS used below. For i = j , the
claim clearly holds, as ωS(H�

i (S)) = H�
i (Q) for all � ≥ 0. Thus we assume now that

i 	= j .
First assume � = 0. Then ωS(H�

ij (S)) = H�
ij (Q) for all � ≥ 0, and by definition

we have for z ∈ H�
ij (S) (and analogously for z ∈ H�

ji(S)):

hδ(z) = �k + ci − cj = hδS
(
ωS(z)

) = h
δS

(
ωS(z)

)
.

Now assume � > 0. First consider the case � > �. Take z ∈ H�
ij (S). Then we

know that ωS(z) ∈ H�−�
ij (Q) and by definition

h
δS

(
ωS(z)

) = hδS
(
ωS(z)

) = (� − �)k + (ci + xik) − (cj + xj k)

= �k + ci − cj = hδ(z).

Also, if z ∈ H�−�
ji (S) then ωS(z) ∈ H�

ji(Q) and again

h
δS

(
ωS(z)

) = hδS
(
ωS(z)

) = �k + (cj + xj k) − (ci + xik)

= (� − �)k + cj − ci = hδ(z).

Suppose next that 0 < � < �. If z ∈ H�
ij (S) then either ωS(z) ∈ H�−�

ji (Q) or

ωS(z) ∈ H�
ij (C). In the latter case, clearly hδ(ωS(z)) = hδ(z). In the former case we

compute

h
δS

(
ωS(z)

) = −hδS
(
ωS(z)

) = (� − �)k − (cj + xj k) + (ci + xik)

= �k − cj + ci = hδ(z).
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If � = 0, z ∈ H 0
{ij}(S), we have to distinguish the cases i > j and i < j . When

i > j , z ∈ H 0
ij (S), and z can be mapped to either ωS(z) ∈ H�

ji (Q) or to ωS(z) ∈
H 0

ij (C). The latter case is clear, and in the former case we compute

h
δS

(
ωS(z)

) = −hδS
(
ωS(z)

) = −�k − (cj + xj k) + (ci + xik) = ci − cj = hδ(z).

When i < j , z ∈ H 0
ji(S), z is mapped to ωS(z) ∈ H�

ji (Q), and we compute

h
δS

(
ωS(z)

) = hδS
(
ωS(z)

) = �k + (cj + xj k) − (ci + xik) = cj − ci = hδ(z).

Finally, we are in the case z ∈ H�
ij (S). Then ωS(z) ∈ H 0

{ij}(Q), and again we have

to distinguish the cases i > j and i < j . When i > j , ωS(z) ∈ H 0
ij (Q) and we have

h
δS

(
ωS(z)

) = hδS
(
ωS(z)

) = ci + xik − (cj + xj k) = �k + ci − cj = hδ(z).

When i < j , ωS(z) ∈ H 0
ji(Q) and we have

h
δS

(
ωS(z)

) = −hδS
(
ωS(z)

) = −(cj + xj k) + ci + xik = �k + ci − cj = hδ(z).

Now we have dealt with all the elements in H{ij}(S) and the assertion is proved. �

As indicated before, the above theorem has the following consequence, which we
will use repeatedly in the following.

Theorem 3.3 Let S = (X0,X1, . . . ,Xd−1) be a d-symbol with balanced quotient
Q = Q(S) and core C = C(S) = ([x0], [x1], . . . , [xd−1]), where xi = |Xi |. Let δ =
(c0, c1, . . . , cd−1; k) be a d-hook data tuple and δS = (c0 +x0k, c1 +x1k, . . . , cd−1 +
xd−1k; k). Then we have the multiset equality

Hδ(S) = HδS
(Q) ∪ Hδ(C),

where HδS
(Q) is the multiset of all h

δS
(z), z ∈ H(Q).

In particular we have the multiset inclusion

Hδ(C) ⊆ Hδ(S).

For a later application we need the following

Remark 3.4 (Reversal of short hooks) We consider another possible definition of
a short hook in a symbol, which we call a “reversed” short hook. Suppose that S =
(X0,X1, . . . ,Xd−1). By Definition 1.4 a short hook in S is given by (a, a, i, j) where
a ∈ Xi , a /∈ Xj and i > j . Clearly short hooks from i to j are determined by the
elements a ∈ Xi \ (Xi ∩ Xj). The reversed short hooks in S are given by (a, a, i, j)

where a ∈ Xi, a /∈ Xj and i < j . If i > j and δ = (c1, . . . , cd−1; k) is a d-hook data
tuple then the δ-length of a short hook from i to j is ci − cj whereas the δ-length of
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a reversed short hook from j to i is cj − ci . We note that these lengths are equal up
to a sign.

Whenever i > j then the number of short hooks from i to j is |Xi \ (Xi ∩ Xj)|,
whereas the number of reversed short hooks from j to i is |Xj \ (Xi ∩ Xj)|. If the
symbol S is balanced, these numbers are equal, since then |Xi | = |Xj |.

4 Partition data tuples and hooks in partitions

For any partition λ we denote by H(λ) the multiset of (usual) hook lengths in λ. Let
X be any β-set and d ∈ N. We let H(X) be the multiset of hook lengths in X (in the
sense of Definition 1.4(1)). Note that all these hook lengths are positive integers. The
bijection hX from Lemma 1.5(1) preserves hook lengths. Thus we have

Lemma 4.1 Let X be a β-set for the partition p(X). Then

H(X) = H
(
p(X)

)
.

Consider the associated d-symbol S = sd(X) to X. Lemma 1.5 shows that there
is a bijection h = hX,d between H(X) and H(S). If we choose the partition d-hook
data tuple δ∗ = (0,1, . . . , d − 1;d) for S then the description of h shows that for any
hook z ∈ H(X) we have h(z) = hδ∗

(h(z)) (Remark 3.1).
Thus we obtain

Lemma 4.2 Let X be a β-set with associated d-symbol S = sd(X). Then

H(X) = Hδ∗
(S),

where δ∗ is the partition d-hook data tuple.

If we then apply Theorem 3.3 to a d-symbol S and the partition d-hook data tuple
δ∗ we get the following result:

Theorem 4.3 Let the d-symbol S = (X0,X1, . . . ,Xd−1) have the balanced quotient
Q = Q(S) and the core C = C(S) = ([x0], [x1], . . . , [xd−1]), where |Xi | = xi for
0 ≤ i ≤ d − 1. Let the d-hook data tuple δ∗

S be defined by δ∗
S = (x0d,1 + x1d, . . . ,

(d − 1) + xd−1d;d). Then

Hδ∗
(S) = Hδ∗

(C) ∪ abs
(

Hδ∗
S (Q)

)
,

where abs(Hδ∗
S (Q)) = {|h| | h ∈ Hδ∗

S (Q)}.

Proof In the notation of Theorem 3.3, an element h
δ∗
S (z) ∈ Hδ∗

S (Q), z ∈ H(Q), has
the same absolute value as hδ∗

S (z). Since the elements of Hδ∗
(S) are positive integers,

the result follows. �

We may translate Theorem 4.3 into a statement about hooks in partitions; we use
the notation introduced in Definitions 1.1 and 1.12.
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Theorem 4.4 Let d ∈ N and let λ be a partition. Let X be a β-set for λ; we set
xi = |X(d)

i |, for i ∈ [d], and put δ = (x0d,1 + x1d, . . . , (d − 1) + xd−1d;d). Let
Q = Q(sd(X)), a balanced symbol. Then

H(λ) = H(λ(d)) ∪ abs
(

Hδ(Q)
)
,

where abs(Hδ(Q)) = {|h| | h ∈ Hδ(Q)}.

Let us add a remark to the theorem.

Remark 4.5 Theorem 4.4 states in particular that the multiset of hook lengths of the
d-core of a partition is contained in that of the partition. This suggests the following
question. Suppose that μ is obtained from λ by removing a number of d-hooks; is
it then true that H(μ) ⊆ H(λ)? The answer is definitely no, and there are numerous
examples for any d . For instance, μ = (2d,1) is obtained from λ = (2d,1d+1) by
removing a d-hook, but 2d + 1 ∈ H(μ) and 2d + 1 /∈ H(λ).

For any d-symbol S there is a canonical bijection hS between H(S) and H(p(S))

(Lemma 1.5). This may be applied to the balanced symbol Q of Theorem 4.4. Then
p(Q) is the d-quotient partition qd(X) of the β-set X of λ. The lengths of corre-
sponding hooks differ up to a sign only by a multiple of d . Thus Hδ(Q) may be seen
as a multiset of modified hook lengths of the d-quotient partition qd(X).

To be more specific we need the d-residues of the nodes in a Young diagram.
The node (k, l) in row k and column l and the corresponding hook have (d-)residue
e = (l − k)[d] ∈ [d]. For a partition λ = (�1, . . . , �r ), the rightmost residue in row
k is called the hand (d-)residue and the bottom residue in column l is called the
foot (d-)residue of the (k, l)-hook in λ. If X = {a1, a2, . . . , as} is a β-set for λ, then
�k = ak − (s − k). Thus if |X| = s is divisible by d , then ak [d] = (�k − k)[d] is the end
residue in row k of λ. Note that if the (k, l)-hook has length m, then its foot residue
is congruent to ak − m + 1. Thus we have the following:

Lemma 4.6 Let X be a β-set for λ such that d | |X|. Let (a, b) ∈ H(X). Then the
hand and foot (d-)residue of the corresponding hook hX(a, b) ∈ H(λ) are a[d] and
b[d] + 1, respectively.

We may then reformulate Theorem 4.4, involving a d-quotient partition instead of
a balanced symbol, and a suitably modified hook length.

Theorem 4.7 Let d ∈ N, λ a partition, X a β-set for λ, xi = |X(d)
i |, i ∈ [d]. Let

λ
(d)
X = qd(X) be the d-quotient partition of X. For z ∈ H(λ

(d)
X ), we define a modified

hook length as h(z) = h(z) + (xi − xj )d , if z has hand and foot (d-)residue i and

j + 1, respectively. We denote by H(λ
(d)
X ) the multiset of all h(z), z ∈ H(λ

(d)
X ). Then

H(λ) = H(λ(d)) ∪ abs
(

H
(
λ

(d)
X

))
,

where abs(H(λ
(d)
X )) = {|h| | h ∈ H(λ

(d)
X ))}.



324 J Algebr Comb (2012) 36:309–332

Proof It suffices to show that if Q = Q(sd(X)) and δ are as in Theorem 4.4, then
Hδ(Q) = H(λ

(d)
X ). We have p(Q) = λ

(d)
X and there is a canonical bijection h between

H(Q) and H(λ
(d)
X ) (Lemma 1.5). In fact, h = hQd(X) ◦ h

−1
Qd(X),d

. Note that Q =
sd(Qd(X)), and since Q is balanced, we have d | |Qd(X)|. Thus if z ∈ H(λ

(d)
X ) has

hand and foot (d-)residues i and j +1, respectively, then by Lemma 4.6 h
−1
Qd(X) maps

z into a pair (a, b) ∈ H(Qd(X)) where a[d] = i and b[d] = j . Writing a = a′d + i, b =
b′d + j we have h(z) = (a′, b′, i, j). Now h(z) = a − b = (a′ − b′)d + i − j , and by
the definition of δ we have hδ(a′, b′, i, j) = h(z). �

We illustrate Theorem 4.7 by an example.

Example 4.8 (This continues Example 1.15) Consider the β-set X = {11,8,6,2,0}
for the partition p(X) = λ = (7,5,4,1) of 17. Let d = 3. We computed the 3-quotient
partition

λ
(3)
X = q3(X) = (3,2,2,2)

and the 3-core partition

λ(3) = c3(X) = (4,2,1,1).

Note that |λ| = 17 = 9 + 8 = |λ(3)
X | + |λ(3)|. Moreover, the numbers xi of elements in

X congruent to i modulo 3 are (2,0,3).
Consider the hook diagrams of λ and λ(3) where we have marked by boldface

eight hook lengths in λ which also occur in λ(3).

λ

10 8 7 6 4 2 1
7 5 4 3 1
5 3 2 1

1

λ(3)

7 4 2 1

4 1

2

1

The remaining nine hook lengths in λ which are not in λ(3) are

R = {1,3,3,5,5,6,7,8,10}.

We obtain these by adjusting the hook lengths of λ
(3)
X by multiples of 3 and changing

signs of negative entries. Consider first the 3-residue diagram of λ
(3)
X :

0 1 2

2 0

1 2

0 1

We add 3xi to hook lengths in rows with end residue i and subtract 3xj from hook
lengths in columns with end residue j + 1. These multiples of 3 are listed in boldface
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in the rows and columns of the hook diagram of λ
(3)
X to the left, and we show the

result (before sign change) to the right:

9 6 0

9 6 5 1
6 4 3
9 3 2
0 2 1

6 8 10
1 3
3 5

−7 −5

Changing the sign of −7 and −5 we get exactly the hook lengths in the list R.

Whenever M is a multiset of real numbers, we let
∏

M denote the product of all
the elements in M . Thus if λ is a partition, then

∏
H(λ) is the product of all hook

lengths in λ. Using the notation of Lemmas 4.1, 4.2 we have the following.

Corollary 4.9
∏

H(X) = ∏
H(λ) = ∏

Hδ∗
(S).

Corollary 4.10 With the notation of Theorem 4.4 we have

∏
H(λ) =

∏
H(λ(d)) ·

∣∣∣∣
∏

Hδ(Q)

∣∣∣∣.

The celebrated hook formula for the degrees of the irreducible characters of the
symmetric group Sn may be formulated as follows.

Theorem 4.11 Let λ be a partition of n, and let χλ be the irreducible character of
Sn labeled by λ. Then

χλ(1) = n!
∏

H(λ)
.

Then Corollary 4.10 may be formulated as follows:

Corollary 4.12 If |λ(d)| = r then with the notation of Theorem 4.4 we have

χλ(1) = n!
r!

1

|∏ Hδ(Q)|χλ(d)
(1).

Remark 4.13 Corollary 4.12 is equivalent to a generalization of [3, Theorem 9.1]. In
this theorem, d is assumed to be a prime, the β-set X for λ is chosen to be the set of
first column hook lengths for λ, and the short hooks in the balanced symbol Q (which
is called S in [3, Theorem 9.1]) are reversed. As pointed out in Remark 3.4 above, the
reversal of short hooks does not influence the absolute value of the products

∏
Hδ(Q)

of all hook lengths.
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5 Minimal data tuples and hooks in symbols

Let S = (X0,X1, . . . ,Xd−1) be a d-symbol. Given � ∈ N and e ∈ [d] we want to
consider the (�, e)-core and (�, e)-quotient of S. We start by the case e = 0, where
our result Theorem 5.2 is slightly stronger than in the general case, Theorem 5.4.
Only the short hooks create a difficulty in the general case.

Cores and quotients of symbols are also considered in [2, Sect. 3] and an analysis
closely related to our results is contained in [2, Proof of Theorem 3.14].

First we define S∗� as the d�-symbol

S∗� := sd�

(
s−1
d (S)

)
.

Here s−1
d transforms the d-symbol S into a β-set X and S∗� is then the d�-symbol

associated to X. Thus S∗� may be seen as the “splitting of S into � pieces”.
By Definition 1.9 the d�-symbol S∗� has a balanced quotient which we call the

balanced �-quotient of S:

Q�(S) := Q(S∗�).

The d�-symbol S∗� also has a core C(S∗�). By Lemma 1.5 there is a bijec-
tion between H(S) and H(S∗�) which may be described as follows. Let X =
s−1
d (S). Consider z = (a, b, i, j) ∈ H(S). Here i, j ∈ [d]. Write a = r� + s, b =

r ′� + s′, s, s′ ∈ [�]. Then h
−1
X,d maps (a, b, i, j) to (ad + i, bd + j) = (r(d�) +

sd + i, r ′(d�) + s′d + j) ∈ H(X) which by hX,d� is mapped to z′ = (r, r ′, sd +
i, s′d + j). This bijection restricts to a bijection between the (�,0)-hooks in H(S)

and the (1,0)-hooks in H(S∗�). More generally it restricts to a bijection between
the (k�,0)-hooks in H(S) and the (k,0)-hooks in H(S∗�). This may also be ap-
plied to the d-symbol C(�)(S) having the property that C(�)(S)∗� = C(S∗�). (Thus
C(�)(S) = sd(s−1

d� (C(S∗�))).) It shows that C(�)(S) has no (�,0)-hooks and it is thus
called the �-core of S. It is really the (�,0)-core of S. The reader should notice
that the quotient Q�(S) is a d�-symbol, whereas the core C(�)(S) is a d-symbol.
(Subscripts with brackets are used for d-symbols and subscripts without brackets for
d�-symbols.)

Here is an example:

Example 5.1 Choose d = 2, � = 3. Consider S = (X0,X1) with X0 = {9,7,4,2},
X1 = {3,1,0}. We get X = s−1

2 (S) = {18,14,8,7,4,3,1} and p(S) = p(X) =
(12,9,4,4,2,2,1). We compute S∗3 = (X′

0,X
′
1, . . . ,X

′
5), where

X′
0 = {3}, X′

1 = {1,0}, X′
2 = {2,1}, X′

3 = {0},
X′

4 = {0}, X′
5 = ∅

and get as balanced 3-quotient of S the 6-symbol

Q3(S) = t6
(
(3), (0), (1,1), (0), (0), (0)

) = (Y0, Y1, . . . , Y5),
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where

Y0 = {4,0}, Y1 = {1,0}, Y2 = {2,1}, Y3 = {1,0},
Y4 = {1,0}, Y5 = {1,0}.

We have C(S∗3) = ([1], [2], [2], [1], [1], [0]), and s−1
6 (C(S∗3)) = {8,7,4,3,2,1,0}

so that C(3)(S) is the 2-symbol

C(3)(S) = ({4,2,1,0}, {3,1,0}).

Let δ = (c0, c1, . . . , cd−1;m) be a d-hook data tuple. Consider the d�-hook data
tuple δ∗� = (c′

1, . . . , c
′
d�−1;m�) where we have c′

i′ = sm + ci if i′ = sd + i. Thus

δ∗� = (
c0, c1, . . . , cd−1,

m + c0,m + c1, . . . ,m + cd−1,

2m + c0,2m + c1, . . . ,2m + cd−1,

. . . ,

(� − 1)m + c0, . . . , (� − 1)m + cd−1;m�
)
.

We then find that if z ∈ H(S) is mapped to z′ ∈ H(S∗�) then hδ(z) = hδ∗� (z′). Indeed,
if z = (a, b, i, j) is mapped to z′ = (r, r ′, sd + i, s′d + j) in the above notation then

hδ(z) = (a − b)m + ci − cj

= (r − r ′)m� + (sm + ci) − (s′m + cj ) = hδ∗� (z′).

Thus

Hδ(S) = Hδ∗� (S∗�).

This may be applied to δ = δo = (0,0, . . . ,0;1), the minimal d-hook data tuple
(Remark 3.1). The length hδo

(z) of the hook z = (a, b, i, j) ∈ H(S) is then h(z) =
a − b. Thus H(S) := Hδo

(S) is just the multiset of hook lengths of S, as defined in
[2], including short hooks of length 0.

We have

δo
∗� = (0, . . . ,0,1, . . . ,1, . . . , � − 1, . . . , � − 1;�).

Now apply Theorem 3.3 to the d�-symbol S∗� and δo
∗�. The balanced quotient Q in the

theorem is just the balanced �-quotient of S∗�, i.e., Q = Q�(S). The core in the theo-
rem is C(S∗�). By definition of C(�)(S) we have C(�)(S)∗� = C(S∗�). Corresponding
to δS in the theorem, we have here

δ�,S = (
x0,0�, . . . , xd−1,0�,

1 + x0,1�, . . . ,1 + xd−1,1�,

. . . ,

(� − 1) + x0,�−1�, . . . , (� − 1) + xd−1,�−1�;�
)
,
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where xi,j is the number of elements in Xi which are congruent to j modulo �. By
the above Hδo

(S) = Hδo∗� (S∗�) and Hδo
(C(�)(S)) = Hδo∗� (C(S∗�)). As in Theorem 4.3

we see that the hook lengths are nonnegative. Thus we obtain

Theorem 5.2 Let S = (X0,X1, . . . ,Xd−1) be a d-symbol. Let C = C(�)(S) be the
�-core of S and let Q = Q�(S) be the balanced �-quotient of S. Then

H(S) = abs
(

Hδ�,S (Q)
) ∪ H(C)

where abs(Hδ�,S (Q)) is the multiset of all |hδ�,S (z)|, z ∈ H(Q).

We continue Example 5.1.

Example 5.3 We have d = 2, � = 3, S = (X0,X1) with X0 = {9,7,4,2}, X1 =
{3,1,0} and p(S) = (12,9,4,4,2,2,1). The hook lengths (including 3 short hooks
of length 0) of S may conveniently be read off the 2-abacus for X = s−1

2 (S) and
recorded systematically in the Young diagram of p(S). The 2-abacus representation
of X (where the subscripts indicate the elements of X0 and X1) is

0 10

2 31

42 5

6 73

84 9

10 11

12 13

147 15

16 17

189 19

The hook lengths of S, i.e., the elements of H(S):

9 8 7 6 5 4 4 3 3 2 1 1

7 6 5 4 3 2 2 1 1

4 3 2 1

3 2 1 0

2 1

1 0

0

We calculated C = C(3)(S) = ({4,2,1,0}, {3,1,0}) and get p(C) = (2,2) with hook
lengths

2 1

1 0
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so that H(C) = {2,1,1,0}. We also calculated Q = Q3(S) = (Y0, Y1, . . . , Y5) where
Y0 = {4,0}, Y1 = {1,0}, Y2 = {2,1}, Y3 = {1,0}, Y4 = {1,0}, Y5 = {1,0}. We put Q

on the 6-abacus

00 10 2 30 40 50

6 71 81 91 101 111

12 13 142 15 16 17

18 19 20 21 22 23

244 25 · · ·

The hook data tuple δ3,S in Theorem 5.2 is here δ3,S = (3,6,7,4,5,2;3). We record
the δ3,S -hook lengths of Q in the Young diagram of
p(Q) = (13,4,2,2,2,2,2,1,1,1)

8 9 6 3 5 4 7 3 0 −1 2 1 4

6 7 4 1

−2 −1

1 2

0 1

3 4

2 3

−5

−2

−3

The set of absolute values of these elements form abs(Hδ3,S (Q)) and we see that
H(S) = abs(Hδ3,s (Q)) ∪ H(C).

We want to generalize this to (�, e)-cores and (�, e)-quotients, e ∈ [d], the above
Theorem 5.2 being the case e = 0. Involving a suitable permutation of N0, this is
done easily. This permutation σ = σd,�,e is defined as follows. Any n ∈ N0 may be
written uniquely as n = r(d�) + sd + t, r ∈ N0, s ∈ [�], t ∈ [d]. Then σd,�,e(n) =
r(d�)+sd +(t +re)[d]. The (�, e)-twist σ(S) of the d-symbol S is defined as σ(S) =
sdσ (s−1

d (S)). Note that if S = (X0,X1, . . . ,Xd−1), then the d-symbol σ(S) is not

equal to (σ (X0), σ (X1), . . . , σ (Xd−1)). But if X = s−1
d (S) is the β-set of S, then

σ(X) is the β-set of σ(S). It should be noted that similar cores and quotients occur
in [2, Proof of 3.4].

Let us consider a long hook z = (a, b, i, j) ∈ H(S), i.e., we have a > b. Write
a = r� + s, b = r ′� + s′, s, s′ ∈ [�]. Then
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(a, b, i, j) ∈ H(S)

h
−1
X,d

(ad + i, bd + j) = (r(d�) + sd + i, r ′(d�) + s′d + j) ∈ H(X)

σ

(σ (ad + i), σ (bd + j)) =
(r(d�) + sd + (i + re)[d], r ′(d�) + s′d + (j + r ′e)[d]) ∈ H(σ(X))

hX,d

z′ = (a, b, (i + re)[d], (j + r ′e)[d]) ∈ H(σ(S))

Here it should be noted that since z is long, then σ(ad + i) > σ(bd + j) so that
(σ (ad + i), σ (bd + j)) ∈ H(σ(X)). Therefore the above is a bijection between the
sets H>0(S) and H>0(σ (S)) of long hooks. There is in general no bijection for short
hooks; their number may differ!

It follows from the definitions that if δo = (0,0, . . . ,0;1) is the minimal d-hook
data tuple, then corresponding long hooks in S and σ(S) have the same δo-length.
Now δo-lengths are always nonnegative and the long hooks are exactly those of non-
zero δo-length. Thus

Hδo

>0(S) = Hδo

>0

(
σ(S)

)
.

If z = (a, b, i, j) ∈ H(S) is an (�, e)-hook, i.e., a − b = �, (j − i)[d] = e, then
in the above notation r ′ = r − 1, s = s′ and (a, b, i, j) is mapped to z′ = (a, b, (i +
re)[d], (j + (r − 1)e)[d]) ∈ H(σ(S). Since

(
j + (r − 1)e

)
[d] − (

(i + re)[d]
)
[d] = (j − i − e)[d] = 0[d]

we see that z′ is an (�,0)-hook in H(σ(S)).
This shows that the d-symbol C(�,e)(S) satisfying that σ(C(�,e)(S)) =

C(�)(σ (S)) is obtained from S by removing all (�, e)-hooks. (Thus C(�,e)(S) =
sdσ−1s−1

d (C(�)(σ (S))) = sdσ−1s−1
d� (C(σ (S)∗�)).) We call C = C(�,e)(S) the (�, e)-

core of S. We also need to define a (balanced) (�, e)-quotient Q = Q�,e(S) of S. To
do this we consider the d�-symbol S∗�,e defined by

S∗�,e := sd�σ
(
s−1
d (S)

)
.

Thus S∗�,e is the d�-symbol associated to the β-set σ(X). If again σ(S) =
sdσ (s−1

d (S)) is the (�, e)-twist of S, then by definition

σ(S)∗� = S∗�,e.

We define Q = Q�,e(S) := Q(S∗�,e) = Q(σ(S)∗�), which is a d�-symbol.
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We now apply Theorem 5.2 to the d-symbol σ(S). We get for a suitable d�-hook
data tuple δ = δ�,σ (S), defined in analogy with δ�,S above,

H
(
σ(S)

) = abs
(

Hδ(Q)
) ∪ H(C),

where abs(Hδ(Q)) is the multiset of all |hδ(z)|, z ∈ H(Q). In this multiset equality
we remove all occurrences of 0 and get

H>0
(
σ(S)

) = abs
(

Hδ
>0(Q)

) ∪ H>0
(
σ(S)(�)

)
.

By the above H>0(σ (S)) = H>0(S) and H>0(σ (S)(�)) = H>0(S(�,e)). We have
shown

Theorem 5.4 Suppose that S = (X0,X1, . . . ,Xd−1) is a d-symbol. Let C =
C(�,e)(S) be the (�, e)-core of S, Q = Q�,e(S) the balanced (�, e)-quotient of S and
δ = δ�,σ (S). Then

H>0(S) = abs
(

Hδ
>0(Q)

) ∪ H>0(C),

where abs(Hδ
>0(Q)) is the multiset of all non-zero |hδ(z)|, z ∈ H(Q).

Remark 5.5 In analogy with Corollary 4.12 we may use the Theorems 5.2 and 5.4
to prove relative hook formulas for unipotent degrees. See [4, Proposition (8.9)] for
unipotent character degrees in finite classical groups or more generally [2, 3.12].

Example 5.6 Let us consider the case d = 2, � = 3, e = 1. The permutation σ =
σ2,3,1 is a product of transpositions:

σ =
∏

k odd

(6k,6k + 1)(6k + 2,6k + 3)(6k + 4,6k + 5).

We want to apply Theorem 5.4 to the 2-symbol S = (X0,X1) with X0 = {9,7,4,2},
X1 = {3,1,0}. We have X = s−1

2 (S) = {18,14,8,7,4,3,1}. Thus σ(X) = {19,14,

9,6,4,3,1} and

σ(S) = s2
(
σ(X)

) = ({7,3,2}, {9,4,1,0}).
Putting σ(S) on the d� = 6-abacus we get in analogy with Example 5.1 that

σ(S)∗3 = S∗3,1 = ({1}, {3,0}, {2}, {1,0}, {0},∅)

and the balanced quotient is

Q = Q3,1(S) = ({1}, {2}, {2}, {0}, {0}, {0}).
We have C(σ(S)∗3) = ([1], [2], [1], [2][1],∅). Thus σ(S) has 3-core

C = C(3,1)(S) = s2σ
−1s−1

6

(
C

(
σ(S)∗3

)) = ([5], [2])
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with

H>0(C) = {2,1,1}.
We have δ�,σ (S) = (3,6,4,7,5,2;3) and list the δ�,σ (S)-hooks of Q in the Young
diagram of p(Q) = (9,9,3,3,3,3):

7 4 6 1 3 0 2 5 1
9 6 8 3 5 2 4 7 3
3 0 2

−1 −4 −2
2 −1 1
4 1 3

The union of the multiset of the non-zero absolute values of these hook lengths
and H>0(C) coincides with the multiset of hook lengths of S listed in the Young
diagram of p(S) in Example 5.3. This is in accordance with Theorem 5.4.
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