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Abstract Let A be the adjacency matrix of a graph Γ . The nullity of A (that is, the
dimension of the nullspace of A), when viewed as a matrix over a field of prime char-
acteristic p, is called the p-nullity of Γ . We present several families of arc-transitive
graphs with arbitrarily large p-nullity. We also show that the p-nullity of a vertex-
transitive graph of order a power of p is zero, provided that the valency of the graph
is coprime to p.

Keywords Arc-transitive graphs · Graph-restrictive groups · Spectral graph theory ·
Finite fields

1 Introduction

Spectral graph theory is a well-developed area of research with fascinating applica-
tions in other areas of graph theory. In view of the vast amount of work done in this
field, it is somewhat surprising that the spectrum of a graph is almost exclusively
studied over a field of characteristic zero. There are at least two exceptions. Namely,
in [3, 4] and [12], the rank of the adjacency matrix of a graph over the field of order
2 is used to bound its chromatic number. Furthermore, in the theory of association
schemes and coherent configurations, the adjacency matrix of graphs and designs is
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studied in detail over an arbitrary field to deduce some important facts about special
families of graphs, for example strongly regular graphs. For this remarkable aspect of
spectral graph theory, we refer the reader to [2, 6] and to the excellent recent survey
article [5].

Our original motivation for this investigation was a seemingly unrelated question
about the order of vertex-stabilisers in arc-transitive graphs [10]. The proof of a criti-
cal result required the existence of certain families of arc-transitive graphs with adja-
cency matrices having arbitrary large nullity over the field with p elements. However,
whilst searching for such graphs, the authors became fascinated by the topic and its
plentiful connections with other areas of mathematics, ranging from projective geom-
etry to number theory. The aim of this paper is thus two-fold; first, to convey some
of our fascination and perhaps initiate further research in this area and, second, to
construct a family of graphs solving our original problem. Before stating the main
results, let us first introduce some notation which will be used throughout the paper.

Unless otherwise noted, graphs are finite and simple. Let Γ be such a graph. An
s-arc of Γ is a sequence α = (v0, . . . , vs) of s + 1 vertices of Γ such that each two
consecutive vertices are adjacent and each three consecutive vertices in the sequence
are pairwise distinct. A 1-arc is simply called an arc.

Let G ≤ Aut(Γ ) be a group of automorphisms of Γ . We say that Γ is G-vertex-
transitive or G-arc-transitive if G acts transitively on the vertices or the arcs of Γ ,
respectively. Similarly, we say that Γ is (G, s)-arc-transitive if G acts transitively on
the set of s-arcs of Γ . We also say that Γ is (G, s)-arc-regular if G acts regularly
on the set of s-arcs of Γ . When G = Aut(Γ ), the prefix G in the above definitions is
usually omitted.

Let p be a prime, let F be a field of characteristic p and let A be an integer-valued
matrix. Taking A over F simply means reducing the entries of A modulo p. Note
that this does not depend on the choice of F. The rank of A over F will be called the
p-rank of A. Define the p-rank of a graph to be the p-rank of its adjacency matrix.
Recall that the nullity of a matrix is the dimension of its nullspace. In an analogous
manner as above, we define the p-nullity of an integer-valued matrix and of a graph.

Definition 1 Let p be a prime and let F be a class of graphs. If, for every integer M ,
there exists a graph Γ of F with p-nullity at least M , we say that F has unbounded
p-nullity.

In this paper, we exhibit a few interesting such classes of graphs, which are sum-
marised in the following theorem.

Theorem 2 Let d ≥ 3 be an integer and let p be a prime. The following families have
unbounded p-nullity.

(1) connected 4-arc-transitive graphs,
(2) connected 4-arc-transitive 3-valent graphs, for p = 2,
(3) connected arc-transitive graphs of valency d ,
(4) the class of connected 3-valent graphs for which there exists a 2-arc-regular

group of automorphisms containing a 1-arc-regular subgroup.
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Here are a few comments on the above theorem. First, note that part (3) improves
part (1) for the class of arc-transitive graphs. Similarly, part (2) improves parts (1)
and (3) but only for p = 2 and d = 3, respectively. Part (4) is the result needed to
solve the problem which originally motivated our investigation. Let us briefly present
this problem and its connection with the above theorem.

For a G-arc-transitive graph Γ and a vertex v ∈ V (Γ ), let G
Γ (v)
v be the permu-

tation group induced by the action of the stabiliser Gv on the neighbourhood Γ (v)

of the vertex v. A transitive permutation group L is said to be graph-restrictive [11,
Definition 2] provided that there exists a constant c(L) such that, if Γ is a connected
G-arc-transitive graph with G

Γ (v)
v permutation isomorphic to L and (u, v) is an arc

of Γ , then |Guv| ≤ c(L). By the classical result of Tutte on 3-valent arc-transitive
graphs [15], transitive permutation groups of degree 3 are graph-restrictive (and the
constant c(L) can be chosen to be 16). Similarly, it is well known that, with the ex-
ception of the dihedral group D4 of degree 4, all transitive permutation groups of
degree 4 or 5 are graph-restrictive (see [16] for example). When trying to extend the
classification of graph-restrictive groups to permutation groups of degree 6, some key
cases are: (i) the action of the alternating group A4 on the six unordered pairs of a
4-set, (ii) the action of the symmetric group S4 on the same six pairs and, (iii) the
action of S4 on the cosets of a cyclic subgroup of order 4. We are able to reduce
the problem of proving that these permutation groups are not graph-restrictive to the
problem of proving part (4) of Theorem 2 (see [10] for details).

Here is a brief summary of this paper. In Sects. 2 and 3 we give two simple con-
structions of 4-arc-transitive graphs proving parts (1) and (2) of Theorem 2. In Sect. 4,
we set up some useful notation for graphs admitting a semiregular group of automor-
phisms. This is then used in Sects. 5 and 6 to prove, respectively, parts (3) and (4) of
Theorem 2. Finally, in Sect. 7, we prove a remarkable result relating the p-nullity of
a graph Γ to the p-nullity of the quotient of Γ by a semiregular group of automor-
phisms. As an application, we show that vertex-transitive graphs of valency d and
order a power of p have trivial p-nullity if gcd(p, d) = 1.

2 Incidence graphs of projective planes

If there is no restriction on the valency, then it is not hard to exhibit examples of
arc-transitive graphs with large p-nullity. Here is a well-studied example.

Proof of part (1) of Theorem 2 Let a ∈ N, let q = pa , and consider the incidence
graph Γa of the projective plane PG(2, q). The vertices of Γa are the points and the
lines of PG(2, q), with a point P incident to a line l in Γa if and only if P lies on l.
It is known that Γa is connected, is 4-arc-transitive (see [3, Sect. 5.3]) and its p-rank
is 2(

(
p+1

2

)a + 1) (see [13]). Note that
(
p+1

2

)a + 1 ≤ q2. Since Γa has 2(q2 + q + 1)

vertices, it follows that Γa has p-nullity at least 2(q + 1). In particular, {Γa | a ∈ N}
has unbounded p-nullity, proving part (1) of Theorem 2. �
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3 4-arc-transitive 3-valent graphs

In this section, we study the 2-nullity of some arc-transitive 3-valent graphs. Our first
observation is that this is always even. This follows from the fact that the number
of vertices of a 3-valent graph is even and the 2-rank of a graph is even. Indeed,
the adjacency matrix of a graph over a field of characteristic 2 can be viewed as the
matrix of an alternating bilinear form, which is well known to have even rank (see [3,
Theorem 8.10.1]).

We prove part (2) of Theorem 2, that is, that the class of connected 4-arc-transitive
3-valent graphs has unbounded 2-nullity. We will require the following lemma, which
is well known (see [12, Theorem 22]). We include a proof for completeness.

Lemma 3 Let A be the adjacency matrix of a graph Γ and let μ be the number of
perfect matchings of Γ . Then detA has the same parity as μ.

Proof Let n be the number of vertices of Γ and write A = (aij )i,j . We have detA =∑
σ sgn(σ )a11σ · · ·annσ . Since we are only interested in the parity of detA, we can

omit sgn(σ ). Moreover, σ does not contribute to the sum unless a11σ · · ·annσ = 1.
Since A is symmetric, if a11σ · · ·annσ = 1, then a

11σ−1 · · ·a
nnσ−1 = 1. In particular, if

σ �= σ−1, then the contributions of σ and σ−1 to detA cancel each other. Therefore,
we only need to consider the permutations σ such that σ 2 = 1 and a11σ · · ·annσ = 1.
Clearly, each such permutation σ gives rise to the perfect matching {{i, iσ }}i of Γ .
Conversely, each perfect matching of Γ yields an involution σ with a11σ · · ·annσ = 1.
This completes the proof of the lemma. �

We also need the following simple result.

Lemma 4 Let Γ be a connected 3-arc-transitive graph of valency d ≥ 2 and let μ

be the number of perfect matchings of Γ . Then d(d − 1) divides μ. In particular, μ

is even.

Proof Let (u, v,w,x) be a 3-arc of Γ . We first consider the degenerate case when
u = x. By the 3-arc-transitivity of Γ , each 3-arc of Γ is a 3-cycle and hence Γ is a
complete graph on 3 vertices, which admits no perfect matching. In particular, μ = 0
and the lemma follows. We may thus assume that u �= x. Let μ1 be the number of
perfect matchings containing (u, v) and let μ2 be the number of perfect matchings
containing both (u, v) and (w,x). In a perfect matching containing (u, v), the vertex
w must be matched to any of its remaining d − 1 neighbours. Since Γ is 3-arc-
transitive, each such choice leads to the same number of perfect matchings and hence
μ1 = (d − 1)μ2. Similar arguments show that μ = dμ1. Hence μ = d(d − 1)μ2 and
d(d − 1) divides μ. �

Combining the above two lemmas, we get the following corollary.

Corollary 5 If Γ is a connected 3-arc-transitive graph of valency d ≥ 2, then Γ has
non-zero 2-nullity.
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Proof From Lemma 4, the number of perfect matchings of Γ is even, and hence from
Lemma 3, the determinant of the adjacency matrix of Γ is even. �

Proof of part (2) of Theorem 2 We construct an infinite family of connected 4-arc-
transitive 3-valent graphs. First, we point out that, by Dirichlet’s theorem on primes
in arithmetic progression, there exist infinitely many primes congruent to ±1 mod 16.
Let r be such a prime and let Gr = PSL(2, r).

It is well known that Gr contains a maximal subgroup H isomorphic to S4 (see
[14, Chap. 3, Sect. 6]). Moreover, in its action on the coset space Ω = Gr/H , the
group Gr has a self-paired suborbit of size 3. In particular, Gr is a group of auto-
morphisms of an arc-transitive 3-valent graph Γr . Since |H | = 24, the group Gr acts
4-arc-transitively on Γr . As Gr acts primitively on VΓr , the graph Γr is connected.

We claim that the 2-nullity of Γr tends to infinity as r tends to infinity. Let Vr

be the nullspace of the adjacency matrix Ar of Γr over F2. As Gr acts as a group
of automorphisms of Γr , we can view Vr as a Gr -module. Since Gr is a simple
group, it either centralises or acts faithfully on Vr . If Gr centralises Vr , then, since
Gr acts transitively on the vertices of Γr , the module Vr must be a subspace of the
one dimensional vector space spanned by the all-one vector e. Since Γr is a 3-valent
graph, we have Are = 3e �= 0 and hence e /∈ Vr . By Corollary 5, we know that Vr �= 0
and hence Vr � 〈e〉. This shows that Gr acts faithfully on Vr , that is, Gr is isomorphic
to a subgroup of GL(Vr). Since the order of Gr tends to infinity with r , this implies
that dimVr also tends to infinity as r tends to infinity, as claimed. In particular {Γr |
r prime, r ≡ ±1 mod 16} is a family of connected 4-arc-transitive 3-valent graphs
with unbounded 2-nullity. �

4 Graphs with semiregular groups of automorphisms

In this section, we will consider the p-nullity of graphs which admit the action of a
semiregular group of automorphisms. (A permutation group is said to be semiregular
if the stabiliser of each point is trivial.) Note that the much studied family of Cay-
ley graphs is a special case of this situation. The existence of a semiregular group of
automorphisms H of a graph Γ allows a more compact representation of the adja-
cency matrix A of Γ . Rather than considering A as a matrix of dimension |V(Γ )|
with coefficients in a field F, we can consider it as a matrix of dimension |V(Γ )|/|H |
with coefficients in the group algebra F[H ]. (See [7] for a good reference about this
approach.)

As an application of this approach, we will prove three results, the first two dealing
with the p-nullity of certain Cayley graphs (see Sect. 5 and Sect. 6) and the third
dealing with the p-nullity of vertex-transitive graphs with a power of p number of
vertices (see Sect. 7). In the last of the three applications, it will prove useful to
consider the p-nullity in the setting of multigraphs rather than graphs.

By a multigraph, we mean an ordered pair Γ = (V ,μ), where V is the set of
vertices and μ : V × V → N satisfies μ(u, v) = μ(v,u) and is called the edge-
multiplicity function. The valency of a vertex v ∈ V is defined by

∑
w∈V μ({w,v}).

Note that every graph can be considered as a multigraph by setting μ(u, v) = 1
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if {u,v} is an edge and μ(u, v) = 0 otherwise. The adjacency matrix of Γ is the
(|V | × |V |)-matrix whose rows and columns are indexed by elements of V in which
the (u, v)-entry equals μ({u,v}). An automorphism of the multigraph Γ = (V ,μ) is
a permutation of V which preserves μ.

If F[V ] is the free F-module over V (that is, the vector space of all formal linear
combinations of elements in V with coefficients in the field F), then the adjacency
matrix A may be viewed as the endomorphism of F[V ] mapping a basis element
v ∈ V to the sum

∑
u∈V μ({v,u})u. As in the case of graphs, a permutation g of V is

an automorphism of Γ if and only if the induced permutation representation of g on
F[V ] commutes with A.

Suppose now that Γ admits a group of automorphisms H acting semiregularly
on V . Let P1, . . . ,Pk denote the orbits of H and choose a reference vertex vi ∈ Pi ,
for each i. The semiregularity of H allows us to identify each Pi with a copy of H

(where vi gets identified with 1 ∈ H ), in such a way that the regular action of H on
Pi is permutation isomorphic to the action of H on itself by right multiplication. This
identification, extended by linearity to F[V ], defines an isomorphism ι of the space
F[V ] with

F[H ]k = F[H ] ⊕ · · · ⊕ F[H ],
the direct sum of k = |V |/|H | copies of the group algebra F[H ]. The semiregular
action of h ∈ H on F[V ] corresponds to the componentwise multiplication by the
scalar h ∈ F[H ] in F[H ]k . In particular, F[V ] is a free F[H ]-module. Also, the iso-
morphism ι identifies Mk(F[H ]) with a subalgebra of M|V |(F).

Since the action of the adjacency matrix A on F[V ] commutes with each h ∈ H ,
the F-endomorphism A of F[V ] is also a F[H ]-endomorphism of the F[H ]-module
F[V ]. Thus we can represent A as a (k × k)-matrix over F[H ].

Observe that the A-image of the ith standard basis vector ei of F[H ]k = F[V ]
is precisely the row of A indexed by the reference vertex vi ∈ Pi . With respect to
the standard basis (ei)

k
i=1, the j th component of the ith row of A (as an element of

Mk(F[H ])) equals
∑

h∈H

μ
({

vi, v
h
j

})
h. (∗)

More precisely, we have shown the following.

Proposition 6 Let Γ = (V ,μ) be a multigraph admitting a semiregular group of
automorphisms H having k orbits on V . For each orbit Pi of H choose a vertex vi ∈
Pi , and consider the matrix A ∈ Mk(F[H ]) with the (i, j)-entry being the sum (∗)
above. Then A is the adjacency matrix of Γ .

This has the following straightforward consequence for Cayley graphs.

Corollary 7 Let Γ = Cay(H,S) be a Cayley graph. The adjacency matrix of Γ is∑
s∈S s ∈ F[H ]. Also, the nullity of Γ over F is the dimension over F of the right

annihilator of the element
∑

s∈S s in the group algebra F[H ].
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Proof We use Proposition 6. Since H acts regularly on VΓ , the group H has only
one orbit on VΓ , with reference point 1 say. Since S is the neighbourhood of 1 in Γ ,
we see that

∑
s∈S μ({1, s})s = ∑

s∈S s is the adjacency matrix of Γ . The rest of the
corollary follows. �

5 Arc-transitive dihedrants

In this section, we prove part (3) of Theorem 2. Recall that d ≥ 3 and p is a prime.
Let a = pk for some k ≥ 1 and let n = 1 + a + a2 + · · · + ad−1. Denote by Dn the
dihedral group of order 2n generated by {r, t}, where r has order n and t has order
2. Let S = {rt, rat, ra2

t, . . . , rad−1
t} and consider the dihedrant Γk = Cay(Dn, S).

Clearly, Γk is a vertex-transitive graph with 2n vertices and valency d .
We claim that Γk is arc-transitive. Note that, since gcd(n, a) = 1, the function

ϕ :
{

r �→ ra,

t �→ t

extends to an automorphism of Dn (which we still denote by ϕ) with 〈ϕ〉 acting transi-
tively on the neighbours of 1 in Γk . Therefore G = Dn � 〈ϕ〉 is an arc-transitive group
of automorphisms of Γk with G1 = 〈ϕ〉 ∼= Zd and Γk is an arc-transitive dihedrant.

Note that 〈S〉 = 〈rt, ra−1〉 = 〈rt, rgcd(a−1,n)〉, which has index gcd(a − 1, n) in
Dn. This shows that Γk has gcd(a − 1, n) = gcd(a − 1, d) connected components. In
particular, the number of connected components of Γk is at most d . In the rest of the
proof, we study the p-nullity of Γk .

Proof of part (3) of Theorem 2 We use the dihedrants Γk introduced above. Let
S̄ = ∑

s∈S s ∈ Fp[Dn]. By Corollary 7, the p-nullity of Γk equals the dimension
dimFp

(ann(S̄)) over Fp of the right annihilator ann(S̄) of S̄ in the group algebra
Fp[Dn]. As t is a unit in the ring Fn[Dn], we see that ann(S̄) = ann(N), where

N = ∑d−1
l=0 ral

.
Since the group algebra Fp[Dn] splits into the direct sum Fp[〈r〉] ⊕ Fp[〈r〉]t , if

we let ann〈r〉(N) = ann(N)∩Fp[〈r〉], then ann(N) = ann〈r〉(N)⊕ann〈r〉(N)t . Hence
dimFp

(ann(N)) equals twice the dimension of the right annihilator of N in Fp[〈r〉],
which we will now compute.

Identifying the elements of 〈r〉 with the corresponding matrices in the right regular
permutation representation 〈r〉 → GL(n,Fp), we have to compute the dimension of

the kernel of the (n × n)-matrix N = r + ra + · · · + rad−1
.

Let pr(T ) be the characteristic polynomial of r ∈ GL(n,Fp) over Fp . Clearly, as r

has order n, we have pr(T ) = T n −1. Now, since pr(T ) and p′
r (T ) = nT n−1 = T n−1

are coprime, it follows that pr(T ) has n distinct roots in a suitable extension of Fp ,
that is, r has n distinct eigenvalues in the algebraic closure of Fp .

Note that the set of eigenvalues of N = ∑d−1
l=0 ral

is {∑d−1
l=0 λal | λ eigenvalue of r}.

Namely, if λ is an eigenvalue of r for the eigenvector v, then
∑d−1

l=0 λal
is an eigen-

value of N for the eigenvector v. In particular, the p-nullity of N is the number of
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common roots of pr(T ) and
∑d−1

l=0 T al
. Write g(T ) = ∑d−1

l=0 T al
and null(N) for the

p-nullity of N .
Let f (T ) = T ad − T . Consider E = Fad and F = Fa the fields with ad and

a elements, respectively. As |E| = ad , the elements of E are exactly the roots
of the polynomial f (T ). Note that g(T )a = T a + T a2 + · · · + T ad

and hence
g(T )(g(T )a−1 − 1) = g(T )a − g(T ) = T ad − T = f (T ). In particular, the poly-
nomial g(T ) divides f (T ) and hence the roots of g(T ) are elements of E. Moreover,
since n divides ad −1, we find that pr(T ) divides f (T ) and hence the roots of pr(T )

lie in E. This shows that the roots of pr(T ) and g(T ) are elements of E.
We claim that the common roots of pr(T ) and g(T ) are the elements of E of norm

1 and trace 0 in the Galois extension E/F . Indeed, if x ∈ E, then the norm of x in
E/F is

NE/F (x) =
d−1∏

l=0

xal = x
∑d−1

l=0 al = xn

and NE/F (x) = 1 if and only if pr(x) = 0. Similarly, the trace of x in E/F is

TrE/F (x) =
d−1∑

l=0

xal = g(x)

and TrE/F (x) = 0 if and only if g(x) = 0. Now, Moisio in [9, Sect. 3] obtains tight
upper and lower bounds on the number of field elements in the finite extension E/F

of norm 1 and trace 0, in particular from [9, Corollary 3.3] we obtain

(†) null(N) ≥ ad−1 − 1

a − 1
− gcd(a − 1, d)a(d−2)/2.

Denote by Γ 1
k the connected component of Γk containing 1 and consider the fam-

ily {Γ 1
k | k ∈ N}. By construction Γ 1

k is a connected arc-transitive graph of valency
d . As Γk has gcd(a − 1, d) connected components, from (†) we see that Γ 1

k has p-

nullity at least ad−1−1
gcd(a−1,d)(a−1)

− a(d−2)/2. In particular, the p-nullity of Γ 1
k tends to

infinity as k tends to infinity and the proof is complete. �

Remark This proof of part (3) of Theorem 2 depends on deep number theoretic re-
sults about Kloosterman sums from [9, Sect. 3]. For d > 3, it is possible to deduce
that the number of common roots of pr(T ) and g(T ) tends to infinity as a tends to
infinity by using the Stepanov–Schmidt method and a theorem of A. Weil, (see [8]
for a general account of the Stepanov–Schmidt method and [8, Theorem 6.61] for
our particular application). This yields another proof of part (3) of Theorem 2 (for
d > 3).

6 2-arc-regular 3-valent generalised dihedrants

This section is devoted to the proof of part (4) of Theorem 2. In particular, we will
construct an infinite family of connected 3-valent Cayley graphs Γ , admitting a 2-
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arc-regular group of automorphisms A which contains a 1-arc-regular subgroup A.
We will then show that this family has an unbounded p-nullity for each prime p. We
will make use of the theory developed in Sect. 4.

Construction 8 Let p be a prime and let n be a natural number. Let Gn be the group
(〈i〉×〈j 〉×〈g〉)�〈h〉, where |i| = |j | = pn, |g| = 3, |h| = 2, ih = i−1, jh = j−1 and
gh = g−1. (Such a group is sometimes called a generalised dihedral group over the
abelian group Zpn × Zpn × Z3.) Let Sn = {h, igh, jg2h} and let Γn = Cay(Gn,Sn).

Note that Sn consists of three involutions and hence Γn is a vertex-transitive 3-
valent graph with 6p2n vertices. It is not hard to see that, if p �= 3, then Gn =
〈h, igh, jg2h〉 and Γn is connected, whilst if p = 3, then Γn has 3 connected compo-
nents.

We claim that Γn admits a group of automorphisms An acting 2-arc-regularly, and
containing a subgroup An acting arc-regularly.

We leave to the reader to check that the map

α :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i �→ j,

j �→ i,

g �→ g2,

h �→ h

determines an automorphism of Gn fixing h and swapping igh and jg2h. Similarly,
the map

β :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i �→ i−1j,

j �→ i−1,

g �→ g,

h �→ igh

determines an automorphism of Gn acting as a 3-cycle on Sn. Since the auto-
morphisms α and β of Gn fix Sn setwise, the groups An = Gn � 〈β〉 and An =
Gn � 〈α,β〉 act arc-regularly and 2-arc-regularly on Γn, respectively, with An ⊆ An,
as required.

Proposition 9 Let p be a prime and let n be a natural number. The p-nullity of the
graph Γn from Construction 8 is at least 4pn.

Proof Throughout the proof, we use the notation of Construction 8 but we drop the
subscript n, writing G for Gn, S for Sn and Γ for Γn.

Let F = Fp be the field of cardinality p. By a slight abuse of notation, we interpret
S as the element h+igh+jg2h of the group algebra F[G]. In view of Corollary 7, the
p-nullity of Γ equals the dimension dimF(annF[G](S)) over F of the right annihilator
of S in the ring F[G]. As h is a unit of F[G], we see that annF[G](S) = annF[G](N),
where N = 1 + ig + jg2 ∈ F[G].
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Let H = 〈i, j, g〉 and observe that the group algebra F[G] splits (as a left F[H ]-
module) into the direct sum F[H ] ⊕ F[H ]h. Moreover, since N ∈ F[H ], it fol-
lows that annF[G](N) = annF[H ](N) ⊕ annF[H ](N)h, and hence the F-dimension of
annF[G](N) equals twice the F-dimension of the right annihilator annF[H ](N) of N in
F[H ]. To prove the proposition it therefore suffices to show that dimF(annF[H ](N)) ≥
2pn.

Write e = 1 +g +g2 if p �= 3 and e = 0 if p = 3. Since F has characteristic p and
H is abelian, we have

Npn = 1pn + (ig)p
n + (

jg2)pn = 1 + gpn + g2pn = e.

Hence annF[H ](N) ⊆ annF[H ](Npn
) = annF[H ](e). Thus annF[H ](N) is equal to the

kernel of the linear map

Ñ : annF[H ](e) → annF[H ](e), Ñ : x �→ Nx.

Now we compute the F-dimension of annF[H ](e). If p = 3, then e = 0 and hence
dimF(annF[H ](e)) = 3p2n. If p �= 3, then we show that dimF(annF[H ](e)) = 2p2n.
Let L = 〈i, j 〉 and let w be an arbitrary element of F[H ]. Then w can be written
uniquely as w = x + yg + zg2 for some x, y, z ∈ F[L]. We have ew = (1 + g +
g2)(x + yg + zg2) = (x + y + z) + (x + y + z)g + (x + y + z)g2. Since F[H ] =
F[L] ⊕ F[L]g ⊕ F[L]g2, it follows that w ∈ annF[H ](e) if and only if x + y + z = 0.
We conclude that annF[H ](e) has F-dimension 2p2n. Note that in both cases (p = 3
and p �= 3), it follows that dimF(annF[H ](e)) ≥ 2p2n.

Notice that Npn = e implies that Ñpn = 0 and hence each Jordan block of N has
size at most pn. It follows that the kernel of Ñ has dimension at least 2p2n/pn = 2pn.
To conclude the proof, recall that the p-nullity of Γ is twice the F-dimension of
annF[H ](N). �

Proof of part (4) of Theorem 2 Using the notation from Construction 8, we already
remarked that Γn is a 3-valent graph admitting a 2-arc-regular group of automor-
phisms with a 1-arc-regular subgroup. Moreover, if p �= 3, then Γn is connected and
hence, from Proposition 9, we see that {Γn | n ∈ N} is a family of graphs satisfying
the hypothesis of part (4) of Theorem 2 and with unbounded p-nullity.

If p = 3, then Γn has 3 connected components. Denote one of these connected
components by Γ ′

n. Clearly, Γ ′
n also admits a 2-arc-regular group of automorphisms

with a 1-arc-regular subgroup. From Proposition 9, we find that Γ ′
n has p-nullity at

least (4 · 3n)/3 = 4 · 3n−1 and hence {Γ ′
n | n ∈ N} is a family of graphs satisfying the

hypothesis of part (4) of Theorem 2 and with unbounded p-nullity. �

7 Vertex-transitive graphs of prime power order

In contrast to the previous sections, where we were considering families of graphs
with large p-nullity, this section is devoted to vertex-transitive graphs with trivial p-
nullity. In particular, we will show that the p-nullity of a vertex-transitive graph on
a power of p of vertices is zero provided that the valency of Γ is not divisible by p.
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The main idea of the proof is based on the fact that such graphs admit a semiregular
group of automorphisms of order p. We will use this group to reduce the problem
to a smaller (multi)graph with the same properties and then proceed by induction.
Besides the theory developed in Sect. 4 we will also need a result concerning quotient
multigraphs, which we now briefly describe.

Let H be a group of automorphisms of a multigraph Γ = (V ,μ) and let P =
{P1, . . . ,Pk} be the partition of V into orbits of H . For each i, choose a reference ver-
tex vi ∈ Pi . We define the quotient multigraph Γ/H as the multigraph with vertex-set
P and the edge-multiplicity of {P,Q} in Γ/H is defined as the sum of the multiplic-
ities μ({u,v}), where u is a fixed vertex of P and v runs through the neighbours of
u in Q. Note that this sum is independent of the choice of the vertex u in P , and that
we get the same value for the edge-multiplicity if we swap the roles of P and Q.

By the definition of the quotient multigraph Γ/H , the adjacency matrix A′ of
Γ/H is a (k × k)-matrix with rows and columns indexed by the orbits P1, . . . ,Pk of
H , where the (Pi,Pj )-entry equals the sum

∑

u∈Pj

μ
({vi, u}) =

∑

h∈H

μ
({

vi, v
h
j

})
.

Note that the latter is precisely the value obtained from the (i, j)-entry of A (viewed
as an element of Mk(F[H ])) by applying the augmentation homomorphism ϕ :
F[H ] → F, mapping each h ∈ H to 1. We have thus proved the following interesting
fact.

Proposition 10 Let H be a semiregular group of automorphisms of a multigraph Γ

and let A be the adjacency matrix of Γ , viewed as a (k × k)-matrix over F[H ]. Then
the adjacency matrix of the quotient multigraph Γ/H is the matrix obtained from A

by applying the ring homomorphism ϕ̂ : Mk(F[H ]) → Mk(F) induced entry-wise by
the augmentation homomorphism ϕ : F[H ] → F.

Let us now prove the following simple lemma concerning local rings (i.e. rings
with a unique maximal ideal).

Lemma 11 Let R and S be commutative local rings and let ϕ : R → S be a surjective
ring homomorphism. Let ϕ̂ be the homomorphism from Mn(R) to Mn(S) induced by
ϕ and let A ∈ Mn(R). Then, A is invertible in Mn(R) if and only if Aϕ̂ is invertible
in Mn(S).

Proof Recall that the set of invertible elements in a local ring is precisely the com-
plement of the maximal ideal. Since a surjective ring homomorphism maps maximal
ideals to maximal ideals, this shows that an element r ∈ R is invertible in R if and
only if rϕ is invertible in S. To conclude the proof, note that det(Aϕ̂) = (detA)ϕ and
that a matrix is invertible if and only if its determinant is invertible. �

Finally, we prove the following key result relating the nullity of a multigraph with
that of its quotient under an abelian p-group.
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Proposition 12 Let Γ be a vertex-transitive multigraph, let F be a field of character-
istic p and let C be an abelian p-group of automorphisms of Γ , acting semiregularly
on the vertices. Then, the adjacency matrix of Γ is invertible over F if and only if the
adjacency matrix of Γ/C is invertible over F.

Proof Let k be the number of orbits of C on the vertices of Γ , let A be the adjacency
matrix of Γ , viewed as a (k × k)-matrix over F[C], and let AC be the adjacency
matrix of Γ/C. In view of Proposition 10, we have AC = Aϕ̂ , where ϕ̂ denotes the
mapping induced by the augmentation ring homomorphism ϕ : F[C] → F.

Since C is a p-group and F has characteristic p, F[C] is a local ring (see [1,
Corollary 3, Chap. I]). Hence, by Lemma 11, AC = Aϕ̂ is invertible if and only if A

is invertible. �

We conclude the paper with a nice application of Proposition 12.

Theorem 13 Let p be a prime and let Γ be a vertex-transitive multigraph of valency
d on n vertices. Let F be a field of characteristic p. If gcd(p, d) = 1 and n is a power
of p, then the adjacency matrix of Γ is invertible over F.

Proof The proof goes by induction on n. If n = 1, then Γ consists of a single ver-
tex with d loops and its adjacency matrix is the (1 × 1)-matrix [d]. This matrix is
invertible over F since gcd(p, d) = 1.

We now assume that n > 1. Let G = Aut(Γ ) and let P be a Sylow p-subgroup of
G. Since n is a power of p, the group P acts transitively on the vertices of Γ . Let C

be a central subgroup of P with |C| = p. Since C is central in P , it must act semi-
regularly on the vertices of Γ . Consider Γ/C. This is a vertex-transitive multigraph
of valency d and |V(Γ/C)| is a strict divisor of n. By the induction hypothesis, the
adjacency matrix of Γ/C is invertible over F. Proposition 12 then completes the
induction step and the proof. �
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11. Potočnik, P., Spiga, P., Verret, G.: On graph-restrictive permutation groups. arXiv:1101.5186v2
[math.CO]

12. Rotman, J.J.: Projective planes, graphs, and simple algebras. J. Algebra 155, 267–289 (1993)
13. Smith, K.J.C.: On the p-rank of the incidence matrix of points and hyperplanes in a finite projective

geometry. J. Comb. Theory 7, 122–129 (1969)
14. Suzuki, M.: Group Theory I. Springer, New York (1982)
15. Tutte, W.T.: A family of cubical graphs. Proc. Camb. Philos. Soc. 43, 459–474 (1947)
16. Weiss, R.: Presentation for (G, s)-transitive graphs of small valency. Math. Proc. Philos. Soc. 101,

7–20 (1987)

http://arxiv.org/abs/arXiv:math/0701686v1
http://arxiv.org/abs/arXiv:1101.5186v2

	On the nullspace of arc-transitive graphs over finite fields
	Abstract
	Introduction
	Incidence graphs of projective planes
	4-arc-transitive 3-valent graphs
	Graphs with semiregular groups of automorphisms
	Arc-transitive dihedrants
	2-arc-regular 3-valent generalised dihedrants
	Vertex-transitive graphs of prime power order
	Acknowledgements
	References


