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Abstract We prove Stanley’s conjecture that, if δn is the staircase shape, then the
skew Schur functions sδn/μ are non-negative sums of Schur P -functions. We prove
that the coefficients in this sum count certain fillings of shifted shapes. In particular,
for the skew Schur function sδn/δn−2 , we discuss connections with Eulerian numbers
and alternating permutations.

Keywords Schur functions · Schur P -functions · Shifted tableaux · Eulerian
numbers · Alternating permutations

1 Introduction

The Schur functions sλ, indexed by partitions λ, form a basis for the ring Λ of sym-
metric functions. These are very important objects in algebraic combinatorics, alge-
braic geometry, and representation theory, among others. They play a fundamental
role in the study of the representations of the symmetric group and the general linear
group, and the cohomology ring of the Grassmannian [4]. The Schur P -functions Pλ,
indexed by strict partitions, form a basis for an important subring Γ of Λ. They are
crucial in the study of the projective representations of the symmetric group, and the
cohomology ring of the isotropic Grassmannian [10, 11].

The goal of this paper is to prove the following conjecture of Richard Stanley [15]:
If δn is the staircase shape and μ ⊂ δn, then the staircase skew Schur function sδn/μ,
which belongs to the ring Γ , is a nonnegative sum of Schur P -functions. We find
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a combinatorial interpretation for the coefficients in this expansion in terms of Shi-
mozono’s compatible fillings [13]. Furthermore, we discuss connections between the
special case of the skew Schur function sδn/δn−2 and alternating permutations, and
show an expansion of the former in terms of the elementary symmetric functions.

The paper is organized as follows. In Sect. 2 we recall some basic definitions,
including Schur and Schur P -functions. In Sect. 3 we discuss the staircase Schur
functions and prove that they are indeed in the subring Γ of Λ generated by the
Schur P -functions. In Sect. 4 we state our main result, Theorem 4.10, which states
that the (non-negative integer) coefficient of Pλ in the Schur P -expansion of sδn/μ is
the number of “δn/μ-compatible” fillings of the shifted shape λ.

In Sect. 5 we prove the key proposition that, in the particular case of staircase skew
shapes δn/μ, jeu de taquin respects δn/μ-compatibility. Finally in Sect. 6 we prove
Theorem 4.10.

The Schur P -positivity of staircase Schur functions has also been proved indepen-
dently by Elizabeth Dewitt and will appear in her forthcoming thesis [2].

2 Preliminaries

A partition is a sequence λ = (λ1, λ2, . . . , λl) ∈ Z
l with λ1 ≥ λ2 ≥ · · · ≥ λl > 0.

The Ferrers diagram, or shape of λ is an array of square cells in which the ith row
has λi cells, and is left justified with respect to the top row. The size of λ is |λ| :=
λ1 + λ2 + · · · + λl . We denote the number of rows of λ by �(λ) := l.

A strict partition is a sequence λ = (λ1, λ2, . . . , λl) ∈ Z
l such that λ1 > λ2 > · · · >

λl > 0. The shifted diagram, or shifted shape of λ is an array of square cells in which
the ith row has λi cells, and is shifted i − 1 units to the right with respect to the top
row.

For example, the shape (5,3,2) and the shifted shape (5,3,2), of size 10 and
length 3, are shown below.

A skew (shifted) diagram (or shape) λ/μ is obtained by removing a (shifted) shape
μ from a larger shape λ containing μ.

A semistandard Young tableau or SSYT T of shape λ is a filling of a Ferrers
shape λ with letters from the alphabet X = {1 < 2 < · · · } which is weakly increasing
along the rows and strictly increasing down the columns.

A shifted semistandard Young tableau or shifted SSYT T of shape λ is a filling of
a shifted shape λ with letters from the alphabet X′ = {1′ < 1 < 2′ < 2 < · · · } such
that:

• rows and columns of T are weakly increasing;
• each k appears at most once in every column;
• each k′ appears at most once in every row;
• there are no primed entries on the main diagonal.
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If T is a filling of a shape λ, we write sh(T ) := λ. The content of a (shifted) SSYT T

is the vector (a1, a2, . . .), where ai is the number of times the letters i and i′ appear
in T .

A (shifted) SSYT is standard, if it contains the letters 1,2, . . . , |λ|, each exactly
once. In the shifted case, these letters are all unprimed. If that is the case, we call it a
(shifted) SYT. A skew (shifted) Young tableau is defined analogously.

Example 2.1 The following are examples of a SSYT and a shifted SSYT, both having
shape λ = (5,3,2) and content (2,1,1,2,2,1,0,0,1).

1 1 2 3 5
4 4 5
6 9

1 1 2 3′ 5
4 4 5

6 9′

In a SYT or a shifted SYT T , the pair of entries (i, j), where i < j , forms an
ascent if j is located weakly north and strictly east of i. We abbreviate and say that
j is northEast of i. The pair (i, j) forms a descent if j is located strictly south and
weakly west, or Southwest, of i. Note that (i, j) could be neither an ascent nor a
descent.

When j = i + 1, the pair (i, i + 1) must be either an ascent or a descent, and we
abbreviate and call i an ascent or a descent as appropriate. An entry i forms a peak if
i − 1 is an ascent and i is a descent.

Example 2.2 The figure below shows a SYT of shape δ4 := (4,3,2,1) and a shifted
SYT of shape (5,3,2), both with descent set (2,4,5,7,9), ascent set (1,3,6,8), and
peak set (2,4,7,9).

1 2 4 7
3 5 9
6 10
8

1 2 4 7 9
3 5 8

6 10

For a (shifted) Young tableau T with content (a1, a2, . . .), we let xT = x
a1
1 x

a2
2 · · · .

For each partition λ, the Schur function sλ is defined as the generating function for
semistandard Young tableaux of shape λ, namely

sλ = sλ(x1, x2, . . .) :=
∑

sh(T )=λ

xT .

It is well known (see e.g., [14]) that the power sum symmetric functions pi =
pi(x1, x2, . . .) := xi

1 + xi
2 + · · · are a generating set, and the Schur functions sλ are a

linear basis, for the ring Λ of symmetric functions.
For each strict partition λ, the Schur P -function Pλ is defined as the generating

function for shifted Young tableaux of shape λ, namely

Pλ = Pλ(x1, x2, . . .) :=
∑

sh(T )=λ

xT .
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The Schur P -functions form a basis for the subring Γ of Λ generated by the odd
power sums, Γ := Q[p1,p3, . . .]. This ring also has the presentation

Γ = {
f ∈ Λ : f (t,−t, x1, x2, . . .) = f (x1, x2, . . .)

}
.

See, e.g., [10]. The skew Schur functions sλ/μ and the skew Schur P -functions Pλ/μ

are defined similarly for a skew (shifted) shape λ/μ.

3 The skew Schur functions sδn/δn−2 and sδn/μ

Definition 3.1 The staircase δn is the shape (n,n − 1, . . . ,2,1). Denote sδn/δn−2 =:
F2n−1, and let F = F (x1, x2, . . .) := ∑

n≥1 F2n−1.

The symmetric function F2n−1 is one of the main subjects of study of this paper.
It has nice expansions in terms of the power and elementary symmetric functions.

Definition 3.2 A permutation a1a2 . . . an of {1, . . . , n} is said to be alternating if
a1 < a2 > a3 < a4 > · · · .

Proposition 3.3 [3] Let Ek be the number of alternating permutations of {1, . . . , k},
and let zλ := ∏

i≥1
imi

mi ! for the partition λ = 1m12m2 · · · . We have

F2n−1 =
∑

λ∈OP(2n−1)

El(λ)

zλ

pλ,

where OP(2n − 1) is the set of partitions of 2n − 1 into odd parts.

The following proposition expresses F in terms of the elementary symmetric func-
tions. Equivalent formulas appear in [1, 5], [6, p. 9] and [7, Corollary 4.2.20].

Proposition 3.4 We have

F = e1 − e3 + e5 − · · ·
1 − e2 + e4 − · · · ,

where ek = ∑
i1<···<ik

xi1 · · ·xik is the kth elementary symmetric function.

Proof Consider a SSYT T of shape δn/δn−2 with n ≥ 2 which contains a 1. Let
the leftmost 1 occur in the (top entry on the) kth column. When we remove that 1,
we are left with a SSYT of shape δk/δk−2 containing no 1s and a SSYT of shape
δn−k/δn−k−2. It follows that

F (x1, x2, . . .) − F (x2, x3, . . .) = x1 + F (x2, x3, . . .)x1 F (x1, x2, . . .).

Denoting Fi := F (xi, xi+1, . . .), we rewrite this as F1 = x1+F2
1−x1 F2

, which gives that
arctan F1 = arctanx1 + arctan F2 as formal power series. Iterating, we obtain

arctan F1 = arctanx1 + arctanx2 + · · · .
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The desired formula follows by taking the tangent of both sides, repeatedly using the
well–known identity for the tangent of a sum, and letting the number of variables go
to infinity. �

More importantly for us, we observe that F is in the subring Γ of Λ.

Lemma 3.5 [15] The skew Schur functions F2n−1 and, more generally, the staircase
skew Schur functions sδn/μ, are in the subring Γ of Λ.

Proof From the equation ek(t,−t, x1, x2, . . .) = ek − t2ek−2 and Proposition 3.4 it
follows that F (t,−t, x1, x2, . . .) = F (x1, x2, . . .), which proves that F2n−1 ∈ Γ .

For the general case, one can mimic the proof of [14, Proposition 7.17.7] for the
particular case of μ = ∅. Namely, by the Murnaghan–Nakayama rule [14, Theo-
rem 7.17.3], the coefficient of pα in sδn/μ is equal to

∑
T (−1)ht (T ) where T runs

over all border strip tableaux of shape δn/μ and type α, and ht(T ) is the height of T .
If α has any even part, reorder the parts such that this even part is the last nonzero
entry. But then, one can see that there is no border strip tableau of shape δn/μ and
content α, since any border strip along the south–east border of the staircase must
have odd size. Thus, the coefficient of pα is zero. We conclude that sδn/μ ∈ Γ . �

From the previous lemma, it follows that F2n−1 and, more generally, sδn/μ have
expansions in terms of the Schur P -functions. The purpose of this paper is to clarify
this expansion.

4 Main result

Definition 4.1 A (shifted) standard Young tableau is alternating if every odd number
is an ascent and every even number is a descent.

Example 4.2 The following are the only two shifted standard Young tableaux of
size 7 which are alternating:

1 2 4 6
3 5 7

,
1 2 4 6

3 5
7

.

The following is a special case of our main result, Theorem 4.10.

Theorem 4.3 The skew Schur function sδn/δn−2 can be expressed as a nonnegative
sum of Schur P -functions. We have

sδn/δn−2 =
∑

U∈AltShSYT(2n−1)

Psh(U),

where AltShSYT(2n−1) is the set of shifted SYT of size 2n−1 which are alternating.
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Example 4.4 From Example 4.2 it follows that

sδ4/δ2 = P43 + P421.

Similarly,

sδ5/δ3 = P54 + 2P531 + P432

because the shifted SYT of size 9 which are alternating are:

1 2 4 6 8
3 5 7 9

,
1 2 4 6 8

3 5 7
9

,
1 2 4 6 8

3 5 9
7

,
1 2 4 6

3 5 8
7 9

.

Definition 4.5 For a skew shape λ/μ of size n, the standard filling Tλ/μ is given by
filling the shape with the entries 1,2, . . . , n, starting from the bottom row and moving
up, subsequently filling each row from left to right.

To distinguish a standard filling from a skew SYT, we color the standard fillings
blue (color version online).1

Example 4.6 For the shape 54321/32, we have

T54321/32 = .

Definition 4.7 [13] A (shifted or ordinary) SYT U of size |λ| − |μ| is said to be
λ/μ-compatible if

• whenever Tλ/μ contains , i is a descent in T .

• whenever Tλ/μ contains , (i, j) is an ascent in T .

Remark 4.8 Note that a (shifted) standard Young tableau is alternating if and only if
it is δn/δn−2-compatible.

Example 4.9 The following are the only two 54321/32-compatible shifted standard
Young tableaux:

1 2 4 7 9
3 5 8 10

6
and

1 2 4 7 9
3 5 8

6 10

The following is our main result.

1Although the color may add clarity, this paper is equally understandable in black and white.



J Algebr Comb (2012) 36:409–423 415

Theorem 4.10 For any shape μ ⊂ δn, the skew Schur function sδn/μ can be expressed
as a nonnegative linear combination of Schur P -functions. We have

sδn/μ =
∑

U∈CompShSYT(δn/μ)

Psh(U),

where CompShSYT(δn/μ) is the set of shifted SYT tableau which are δn/μ-
compatible.

Example 4.11 In light of Example 4.9, Theorem 4.10 says that

s54321/32 = P541 + P532.

Note that Theorem 4.3 is a special case of Theorem 4.10, by Remark 4.8.

5 Jeu de taquin and δn/μ-compatibility

Definition 5.1 Let T be a SYT. Consider T as a skew shifted SYT in the shifted
plane. Denote by jdt(T ) its shifted jeu de taquin rectification, inspired by the notation
and terminology in [14, A1.2].

Example 5.2

jdt

⎛

⎜⎝
1 2 4 7
3 5 9
6 10
8

⎞

⎟⎠ =
1 2 4 7 9

3 5 8
6 10

.

Recall that in each step, or jeu de taquin slide, we choose an empty internal corner,
move the smaller of its (one or two) neighbors into this empty cell, then fill the result-
ing cell in the same way, and continue until we reach an external corner, and obtain a
skew SYT. We do this subsequently until we obtain a shifted SYT, which turns out to
be independent of the choices made [12], [14, A1.2]. For instance, we can compute
the jeu de taquin rectification above as follows:

1 2 4 7
3 5 9
6 10
8

�→
1 2 4 7
3 5 9

6 8 10
�→

1 2 4 7
3 5 9
6 8 10

�→
1 2 4 7
3 5 9
6 8 10

�→
1 2 4 7

3 5 8 9
6 10

�→

1 2 4 7
3 5 8 9

6 10 �→

1 2 4 7 9
3 5 8

6 10 .
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Our crucial technical lemma says that δn/μ-compatibility is well behaved under
jeu de taquin. This is not true for λ/μ-compatibility in general: for

jdt

(
1
2

)
= 1 2 ,

jeu de taquin makes the tableau lose its (2)/∅-compatibility and gain (1,1)/∅-
compatibility.

We first give a short argument for the special case of δn/δn−2, and then a different
(and necessarily more intricate) argument for the general case.

Proposition 5.3 A standard Young tableau T is alternating if and only if jdt(T ) is
alternating.

Proof The reading word read(T ) of a tableau T is the word formed by subsequently
reading each row from left to right, starting from the bottom row and moving up.
Notice that i is an ascent (descent) in T if and only if it is an ascent (descent) in
read(T ), in the sense that i appears before (after) i + 1 in the word.2

Now consider a skew shifted SYT T and its shifted jeu de taquin rectification
U = jdt(T ). By [12, Theorem 7.1] and [8, Theorem 6.10], read(T ) and read(U) are
equivalent modulo the Sagan–Worley relations [12]:

ab · · · ≈ ba · · ·
· · ·bac · · · ≈ · · ·bca · · · for a < b < c,

· · · cab · · · ≈ · · ·acb · · · for a < b < c,

where the letters represented by · · · remain the same.
We now prove that jeu de taquin preserves peaks, by proving that read(T ) and

read(U) have the same peaks. Since the Sagan-Worley moves are reversible, we only
need to check that a move cannot turn a peak i into a non-peak. This follows from
the following observation: i is a peak in a permutation if and only if it is preceded
by both i − 1 and i + 1. This property cannot be changed by any of the Sagan-
Worley relations: The first relation cannot involve i, and the second and third can
never change the relative order of two consecutive numbers.

Finally notice that a tableau of size 2n − 1 is alternating if and only if its set of
peaks is {2,4, . . . ,2n−2}. This property is preserved by jeu de taquin rectification. �

The previous proof relies heavily on the description of alternating tableau in
terms of peaks; notice that the Sagan-Worley relations do not respect the ascents
and descents. We do not know how to extend this argument to the setting of δn/μ-
compatibility. To settle this general case, we will carry out a careful analysis of the
jeu de taquin algorithm from the point of view of δn/μ-compatibility. We will keep
referring back to the following:

2This is sometimes called a right ascent (right descent) of the word.
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Proposition 5.4 A standard Young tableau T is δn/μ-compatible if and only if jdt(T )

is δn/μ-compatible.

Proof During the procedure of jeu de taquin rectification, we call the move (up or
left) of a single number a move, and a series of (upward and leftward) moves trans-
forming an inner corner into an outer corner a slide. For instance

1 2 4 7
3 5 9
6 8 10

�→
1 2 4 7

3 5 8 9
6 10

is a slide consisting of four moves. We will prove that a slide cannot affect the δn/μ-
compatibility of a skew shifted SYT, which will show the desired result.

For the sake of contradiction, assume that a slide of jeu de taquin, which trans-
formed a tableau T1 into a tableau T2, affected δn/μ-compatibility. There are two
(not mutually exclusive) cases, namely:

• the tableau gained/lost an ascent (i, j) prescribed by in Tδn/μ, or

• the tableau gained/lost a descent (i, i + 1) prescribed by in Tδn/μ.

We will study these two cases separately.
Case 1: The tableau gained or lost an ascent (i, j) prescribed by Tδn/μ, with i < j .
Assume that i is minimal among all such ascents. We consider four subcases,

namely when i remains still and j moves left or up, and when i moves left or up.
Case 1.1: During the slide, i did not move and j moved left.
The area southWest of j before the move of j contains the area southWest of j

after the move, so the tableau must have lost the descent: Before the move, i was
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southWest of j , and after the move it is not, making the tableau T1 lose its δn/μ-
compatibility when it turned into T2. Since i did not move, it must have been on the
column directly left of j ’s column, and below j . But then the move put j above i in
T2, a contradiction.

Case 1.2: During the slide, i did not move and j moved up.
Before the move, i was not southWest of j , and after the move it is. The tableau

gained a prescribed ascent, making T2 a δn/μ-compatible tableau.
Since i did not move, it must have been on the row directly above j ’s row, and

strictly left of j . In T2, i and j are on the same row. If there was a number x between
them, it would satisfy i < x < j . In Tδn/μ, because i is directly below j , x would have
to be either directly east of i (and therefore Southwest of i in T2) or directly west of
j (and therefore Northeast of j in T2)—a contradiction in either case. It follows that
the slide looked like this:

i y
j

�→
y

i
j

�→
y

i j ,

where the number y must move up since i does not move. We have i < y < j which,
by the argument in the previous paragraph, means that

Tδn/μ contains .

In T2, j is Southwest of j − 1, which is Southwest of j − 2, . . . , which is Southwest
of y. But y and j are adjacent, so y = j − 1. Now

Tδn/μ contains ,

which forces i − 1 to be Northeast of i and southWest of j − 1 in T2; i.e., directly
above i. Therefore the slide looked like:

i−1 z
i j−1

j

�→
i−1 j−1
i

j

�→
i−1 j−1
i j ,

where the number z must have moved up, or else it would be between i − 1 and i.
We conclude that this slide also made the tableau gain the (smaller) ascent

(i − 1, j − 1), while leaving i − 1 still and moving j − 1 up. This contradicts the
minimality of i.

Case 1.3: During the slide, i moved left.
Here we gained the prescribed ascent (i, j), making T2 δn/μ-compatible.
In T2, j must be on the column to the right of i’s column. It cannot be higher

than i, or else it would have been on the same column and above i in T1. Therefore
it must be directly to the right of i, having slid into i’s old position. Since j was not
northEast of i, it must have slid up from below i, so the slide looked like this:

i
j

�→ i j
.
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We need to consider two subcases.
Case 1.3.1: There is no cell to the left of j in T1. From the shape of δn, j + 1 is

to the right of j in Tδn/μ, so it must be Southwest of j in T2. The only possibility is
that it is directly below j , and was to the right of j in T1. The slide must have looked
like:

i x
j j+1

�→ i j x
j+1

,

where j < x < j + 1, a contradiction.
Case 1.3.2: There is a cell to the left of j in T1. The number in it must be between

i and j , and by the same argument of Case 1.2, it must actually equal i + 1, and

Tδn/μ contains .

By δn/μ-compatibility, j + 1 must be directly below j and to the right of i + 1 in T2,
making the slide look like:

i
i+1 j

�→ i j
i+1 j+1

.

Note that j + 1 could not be to the right of j in T1, or else the number directly above
it would have to be between j and j + 1. So j + 1 must have been below j and slid
up:

i
i+1 j

j+1
�→ i j

i+1 j+1
.

Therefore the slide introduced the ascent (i + 1, j + 1) stipulated by Tδn/μ, leaving
i + 1 still and moving j + 1. As we saw in Case 1.2, this is impossible.

Case 1.4: During the slide, i moved up.
Here we lost the ascent (i, j) when we go from the δn/μ-compatible tableau T1

to T2. Then j must be on the same row as i in T1; arguing as above, it must actually
be directly to the right of j . The number x directly above j must have stayed still, so
the slide looks like:

x
i j

�→ i x
? ?

,

where j may or may not have moved left, so we do not specify the bottom row in T2.
As in the previous cases, i < x < j implies that x = j − 1 and that

Tδn/μ contains ,

and δn/μ-compatibility then gives that the slide was

i−1 j−1
i j

�→ i j−1
? ?

.



420 J Algebr Comb (2012) 36:409–423

If i −1 slid up, then the prescribed ascent (i −1, j −1) would also be lost by moving
i − 1 up, contradicting the minimality of i. Therefore the slide was

i−1 j−1
i j

�→ i−1 i j−1
? ?

.

If there was a cell to the left of i in T1, the number in it would need to be between
i − 1 and i; so this move went along the bottom left diagonal of the board. Also,

Tδn/μ contains

for some h. By δn/μ-compatibility, h must have been to the left of i − 1 in T1.
Because we are at the bottom of the board, the slide must have looked like this:

h i−1 j−1
i j

�→
h
i−1 i j−1

? ?
.

But then the prescribed ascent (h, i − 1) was lost by moving h up, contradicting the
minimality of i.

Case 2: The tableau gained or lost a descent (i, i + 1) prescribed by Tδn/μ.
Again, we consider the same four subcases as above:
Case 2.1: During the slide, i did not move and i + 1 moved up.
Before the move, i was Northeast of i + 1, and after the move it is not. Since i did

not move, it must have been on the row directly above i + 1 and east of it. Therefore
the move placed i + 1 on the same row and to the left of i, a contradiction.

Case 2.2: During the slide, i did not move and i + 1 moved left.
In this case the tableau must have gained the descent: Before the move, i was not

Northeast of i + 1, and after the move it is. Since i did not move, it is on the same
column and (necessarily directly) above i + 1 after the move. The slide must have
looked like this:

i
x i+1

�→ i
x i+1

�→ i
x i+1

which gives i < x < i + 1, a contradiction.
Case 2.3: During the slide, i moved up.
Before the move, i +1 was not Southwest of i, and after the move it is. Since i +1

could not have been on the same row and to the left of i before, it must have been
directly to the right of i, and must have slid into i’s old position:

i i+1
�→ i

i+1
�→ i

i+1
.

But then the cell northeast of these is part of the tableau:

x
i i+1

�→ i x
i+1

�→ i x
i+1

,
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and the number x in it satisfies i < x < i + 1, a contradiction.
Case 2.4: During the slide, i moved left.
Before the move, i + 1 was Southwest of i, and after the move it is not. Therefore

i +1 must have been on the same column as i and (necessarily directly) below it. The
slide must have looked like this:

i
∗ i+1

�→ i i+1
∗

The tableaux cannot contain the cell with the asterisk, because the number in it would
need to be between i and i + 1. Therefore this part of the slide is happening along the
lower diagonal of the tableaux.

Because i + 1 is not a descent in T1, it must be the rightmost number in its row in
Tδn/μ. Given the shape of δn,

Tδn/μ contains

for some j + 1 < i. Then (j + 1, i) must be an ascent in T1, which implies that the
slide looked like this

j+1 i
i+1

�→
j+1
i i+1 .

This means that this slide made the tableau lose the prescribed ascent (j +1, i) which,
as we saw in Case 1, leads to a contradiction. �

6 Proof of Theorem 4.10

We will need the following two theorems on the Schur expansions of skew Schur
functions and Schur P -functions.

Theorem 6.1 (Shimozono [13]) We have

sλ/μ =
∑

ν

cλ
μ,νsν,

where the Littlewood–Richardson coefficient cλ
μ,ν is equal to the number of SYT T of

shape ν which are λ/μ-compatible.

Proof The proof is in [13], but note that Shimozono’s definition of λ/μ-compatibility
differs from ours in the sense that it reverses ascents and descents. The change is
easily made by considering the reverse alphabet · · · > 3 > 2 > 1. �

Theorem 6.2 (Stembridge [16]) Fix a shifted SYT U of shape λ. We have

Pλ =
∑

μ

gλ
μsμ,
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where gλ
μ is the number of SYT T of shape μ such that jdt(T ) = U .

We have now assembled all the ingredients to prove the main theorem.

Proof of Theorem 4.10 Denote the set of shifted standard Young tableaux of shape
δn/μ by ShSYT, and the set of (shifted) standard δn/μ-compatible tableaux by Comp-
SYT (CompShSYT). By Theorem 6.1 we have

sδn/μ =
∑

T ∈CompSYT

ssh(T )

=
∑

U∈ShSYT

∑

T ∈CompSYT :U=jdt(T )

ssh(T ).

By Proposition 5.4 and Theorem 6.2, respectively, this equals

sδn/μ =
∑

U∈CompShSYT

∑

T ∈SYT :U=jdt(T )

ssh(T )

=
∑

U∈CompShSYT

Psh(U)

as we wished to prove. �

7 Further Work

• As mentioned earlier, the Schur and the Schur P -functions are related to the rep-
resentations and the projective representations of the symmetric group, and to the
cohomology of the Grassmannian and the isotropic Grassmannian. The represen-
tation theoretic and geometric significance of Theorem 4.10 should be explored.

• Theorem 4.10 implies that if λ/μ is a disjoint union of staircase skew shapes and
their 180 degree rotations, then sλ/μ is Schur P -positive. It is natural to wonder
whether these are the only skew Schur functions which are Schur P -positive. In
fact, Dewitt [2] has proved the stronger statement that these are the only skew
Schur functions which are linear combinations of Schur P -functions.
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