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Abstract Adapting Lindström’s well-known construction, we consider a wide class
of functions which are generated by flows in a planar acyclic directed graph whose
vertices (or edges) take weights in an arbitrary commutative semiring. We give a com-
binatorial description for the set of “universal” quadratic relations valid for such func-
tions. Their specializations to particular semirings involve plenty of known quadratic
relations for minors of matrices (e.g., Plücker relations) and the tropical counterparts
of such relations. Also some applications and related topics are discussed.

Keywords Plücker relation · Dodgson condensation · Tropicalization · Semiring ·
Planar graph · Network flow · Lindström’s lemma · Schur function · Laurent
phenomenon

1 Introduction

In this paper, we consider functions which take values in a commutative semiring
and are generated by planar flows. Functions of this sort satisfy plenty of quadratic
relations, and our goal is to describe a combinatorial method to reveal and prove such
relations. One important class consists of quadratic relations of Plücker type.
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Recall some basic facts concerning Plücker algebra and Plücker coordinates. For
a positive integer n, let [n] denote the set {1,2, . . . , n}. Consider the n × n matrix x
of indeterminates xij and the corresponding commutative polynomial ring Z[x]. Also
consider the polynomial ring Z[�] generated by variables �S indexed by the subsets
S ⊆ [n]. They are linked by the natural ring homomorphism ψ : Z[�] → Z[x] that
brings each variable �S to the flag minor polynomial for S, i.e., to the determinant
of the submatrix xS formed by the column set S and the row set {1, . . . , |S|} of x. An
important fact is that the ideal ker(ψ) of Z[�] is generated by homogeneous quadrics,
each being a certain integer combination of products �S�S′ . They correspond to
quadratic relations on the Plücker coordinates of an invertible n×n matrix (regarded
as a point of the corresponding flag manifold embedded in an appropriate projective
space); for a survey see, e.g., [13, Chap. 14].

There are many quadratic Plücker relations on flag minors of a matrix whose en-
tries are assumed to belong to an arbitrary commutative ring R (the case R = R or C

is most popular). Let f (S) denote the flag minor with a column set S in this matrix.
The simplest examples of Plücker relations involve triples: for any three elements

i < j < k in [n] and any subset X ⊆ [n]− {i, j, k}, the flag minor function f : 2[n] →
R of an n × n matrix satisfies

f (Xik)f (Xj) − f (Xij)f (Xk) − f (Xjk)f (Xi) = 0, (1.1)

where for brevity we write Xi′ . . . j ′ for X ∪ {i′, . . . , j ′}. We call (1.1) the AP3-
relation (abbreviating “algebraic Plücker relation with triples”). Another well-known
special case (in particular, encountered in a characterization of Grassmannians) in-
volves quadruples i < j < k < �; this is of the form

f (Xik)f (Xj�) − f (Xij)f (Xk�) − f (Xi�)f (Xjk) = 0. (1.2)

A general algebraic Plücker relation on flag minors of a matrix can be written as
∑

A∈A
f (X ∪ A)f

(
X ∪ (Y − A)

) −
∑

B∈B
f (X ∪ B)f

(
X ∪ (Y − B)

) = 0. (1.3)

Here X and Y are disjoint subsets of [n], and A and B are certain families of p-
element subsets of Y , for some p.

In fact, an instance of (1.3) (such as (1.1) or (1.2)) represents a class of relations of
“the same type”. More precisely, let m := |Y | and define γY to be the order preserving
bijective map [m] → Y , i.e., γY (i) < γY (j) for i < j . This gives the families A0, B0
of p-element subsets of the initial interval [m] such that A = {γY (C) : C ∈ A0} and
B = {γY (C) : C ∈ B0}. We call A0 the pattern of A and write A = γY (A0), and
similarly for B0 and B. When considering a class of functions f : 2[n] → R and
speaking of (1.3) as a “universal” (or “stable”) relation, we require that (1.3) be valid
for all functions within this class and depend only on m, p, and the patterns A0, B0,
but not on X and Y . Namely, (1.3) should hold for any choice of disjoint X,Y ⊆ [n]
with |Y | = m and for the corresponding families A := γY (A0) and B := γY (B0).

In particular, (1.3) turns into (1.1) when m = 3, p = 2, A0 = {13}, B0 = {12,23},
and Y = {i, j, k}, and turns into (1.2) when m = 4 p = 2, A0 = {13}, B0 = {12,14},
and Y = {i, j, k, �}.
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Fig. 1 The grid Γ5,4 (left) and

the half-grid Γ
�
4 (right)

An important fact established by Lindström [12] is that the minors of many matri-
ces can be expressed in terms of flows in a planar graph. A certain flow model will
play a key role in our description; next we specify the terminology and notation that
we use. (A more general flow model yielding a generalization of Lindström’s result
is given in [14, 15].)

By a planar network we mean a finite directed planar acyclic graph G = (V ,E) in
which two subsets S = {s1, . . . , sn} and T = {t1, . . . , tn′ } of vertices are distinguished,
called the sets of sources and sinks, respectively. We assume that these vertices, also
called terminals, lie in the boundary of a compact convex region in the plane, which
we denote by O and sometimes conditionally call a “circumference”, and the re-
maining part of the graph lies inside O . The terminals appear in O in the cyclic order
sn, . . . , s1, t1, . . . , tn′ clockwise (with possibly s1 = t1 or sn = tn′ ), and for conve-
nience we say that the sources and sinks lie in the “lower” and “upper” halves of O ,
respectively, and that the indices in each set grow “from left to right”.

Two important particular cases are: the (square) grid Γn,n′ and the half-grid Γ
�
n ,

where the vertices in the former are the integer points (i, j) ∈ R
2 with 1 ≤ i ≤ n,

1 ≤ j ≤ n′, the vertices in the latter are the integer points (i, j) with 1 ≤ j ≤ i ≤ n,
and the edges in both cases are all possible ordered pairs of the form ((i, j), (i−1, j))

or ((i, j), (i, j + 1)). The sources are the points si := (i,1), whereas the sinks are the
points tj := (1, j) in the former case, and the tj := (j, j) in the latter case. The graphs

Γ5,4 and Γ
�

4 are illustrated in Fig. 1.
In what follows, the collection of pairs (I ⊆ [n], I ′ ⊆ [n′]) with equal sizes:

|I | = |I ′|, is denoted by E n,n′
. By an (I |I ′)-flow we mean a collection φ of pair-

wise (vertex) disjoint directed paths in G going from the source set SI := {si : i ∈ I }
to the sink set TI ′ := {tj : j ∈ I ′}. The set of (I |I ′)-flows in G is denoted by ΦG

I |I ′ ,
or simply by ΦI |I ′ .

Let w : V → R be a weighting on the vertices of G (alternatively, one can consider
a weighting on the edges; see the end of this section). We associate to w the function
f = fw on E n,n′

defined by

f
(
I |I ′) :=

∑

φ∈ΦI |I ′

∏

v∈Vφ

w(v),
(
I, I ′) ∈ E n,n′

, (1.4)

where Vφ is the set of vertices occurring in a flow φ. (When G has no flow for some
(I, I ′), we set f (I |I ′) := 0.) We refer to f obtained in this way as an algebraic
flow-generated function, or an AFG-function for short.

When an (I |I ′)-flow φ enters the first |I | =: k sinks (i.e., I ′ = [k]), we say that φ

is a flag flow for I . Accordingly, we use the abbreviated notation ΦI for ΦI | [k], and
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fw(I) for fw(I | [k]). When we are interested in the flag case only, fw is regarded as
a function on the set 2[n] of subsets of [n].

Lindström [12] showed that if M is the n′ × n matrix whose entries mji are de-
fined as

∑
φ∈Φ{i}|{j }

∏
v∈Vφ

w(v), then for any (I, I ′) ∈ E n,n′
, the minor of M with the

column set I and the row set I ′ is equal to the value f (I |I ′) as in (1.4). A converse
property is valid for many matrices, in particular, for the totally nonnegative matrices
(see [3]): the minors of such a matrix can be expressed as above via flows for some
planar network and weighting. (Recall that a real matrix is called totally nonnegative
(totally positive) if all minors in it are nonnegative (resp., positive).)

Another important application of the flow model concerns tropical analogues of
the above quadratic relations. In this case, the flow-generated function f = fw deter-
mined by a weighting w on V is defined by

f
(
I |I ′) := max

φ∈ΦI |I ′

( ∑

v∈Vφ

w(v)

)
,

(
I, I ′) ∈ E n,n′

. (1.5)

Here w is assumed to take values in a totally ordered abelian group L (usually one
deals with L = R or Z). The expression for f in (1.5) is the tropicalization of that
in (1.4), and f is said to be a tropical flow-generated function, or a TFG-function.
Some appealing properties of such functions and related objects in the flag flow case
are demonstrated in [4, 5] (where real-valued tropical functions are considered but
everywhere R can be replaced by L). In particular, a TFG-function f satisfies the
tropical analog of (1.1), or the TP3-relation: for i < j < k and X ⊆ [n] − {i, j, k},

f (Xik) + f (Xj) = max
{
f (Xij) + f (Xk),f (Xjk) + f (Xi)

}
. (1.6)

In this paper, we combine both cases, the algebraic and tropical ones, by consid-
ering functions taking values in an arbitrary commutative semiring S, a set equipped
with two associative and commutative binary operations ⊕ (addition) and 
 (multi-
plication) satisfying the distributive law a 
 (b ⊕ c) = (a 
 b) ⊕ (a 
 c). Sometimes
we will assume that S contains neutral elements 0 (for addition) and/or 1 (for mul-
tiplication). Two special cases are: (i) a commutative ring (in which case 0 ∈ S and
each element has an additive inverse); (ii) a commutative semiring with division (in
which case 1 ∈ S and each element has a multiplicative inverse). Examples of (ii)
are: the set R>0 of positive reals (with ⊕ = + and 
 = ·), and the above-mentioned
tropicalization of a totally ordered abelian group L, denoted as Ltrop (with ⊕ = max
and 
 = +). The set 2Z>0 of positive even integers (with usual addition and multi-
plication) gives an example of a commutative semiring having neither 0 nor 1.

Extending (1.4) and (1.5), the flow-generated function f = fw determined by a
weighting w : V → S is defined by

f
(
I |I ′) :=

⊕

φ∈ΦI |I ′
w(φ),

(
I, I ′) ∈ E n,n′

,

where w(φ) denotes the weight 
(w(v) : v ∈ Vφ) of a flow φ. We call f an FG-
function (abbreviating “flow-generated function”), and denote the set of these func-
tions by FGn,n′(S).
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Remark 1 Note that an (I |I ′)-flow in G may not exist, making f (I |I ′) undefined if
S does not contain 0 (e.g., in the tropical case). To overcome this trouble, we may
formally extend S, when needed, by adding an “extra neutral” element ∗, setting
∗ ⊕ a = a and ∗ 
 a = ∗ for all a ∈ S. In the extended semiring Ŝ, one defines
f (I |I ′) := ∗ whenever ΦI |I ′ = ∅.

As before, we write f (I) for f (I | [|I |]) in the flag flow case. Then a direct ana-
logue of the general Plücker relation (1.3) for S is viewed as

⊕

A∈A

(
f (X ∪ A) 
 f

(
X ∪ (Y − A)

)) =
⊕

B∈B

(
f (X ∪ B) 
 f

(
X ∪ (Y − B)

))
. (1.7)

Definition 1 Let p < m ≤ n and let A0, B0 be two families of p-element subsets
of [m]. If (1.7) (with f determined as above) holds for any commutative semiring
S, acyclic directed graph G, weighting w, disjoint subsets X and Y , and the fami-
lies A := γY (A0) and B := γY (B0), then we call (1.7) a stable quadratic relation of
Plücker type, or a PSQ-relation for short, and say that it is induced by the patterns
A0, B0.

Note that in general we admit that A0 or B0 can contain multiple members. In
other words, one may assume that for m,p fixed, the pairs of patterns inducing PSQ-
relations constitute an abelian group under the operations (A0, B0) + (A′

0, B′
0) :=

(A0  A′
0, B0  B′

0) and (A0, B0)− (A′
0, B′

0) := (A0  B′
0, B0  A′

0), where  denotes

the disjoint set union. For this reason, we will write A0 �
([m]

p

)
and A �

(
Y
p

)
(with

symbol � rather than ⊆), and similarly for B0 and B.
Next, a Plücker relation on minors of a matrix deals with flag minors and is ho-

mogeneous, in the sense that the pairs of minor sizes in all products are the same.
However, there are quadratic relations involving non-flag and non-homogeneous mi-
nors. One relation of this sort is expressed by Dodgson’s condensation formula [6]:

f
(
iX| i′X′)f

(
Xk|X′k′) = f

(
iXk| i′X′k′)f

(
X|X′) + f

(
iX|X′k′)f

(
Xk| i′X′),

(1.8)
where f (I |I ′) stands for the minor of a matrix with the column set I and the row set
I ′, k − i = k′ − i′ > 0, X is the interval [i + 1..k − 1] (from i + 1 to k − 1) and X′ is
the interval [i′ + 1..k′ − 1].

This inspires a study of a larger class of quadratic relations on flow-generated
functions over commutative semirings. Now for S,G,w as before, we deal with the
function f = fw on E n,n′

, and consider disjoint X,Y ⊆ [n] and disjoint X′, Y ′ ⊆ [n′].
An identity of our interest is of the form

⊕

(A,A′)∈A

(
f

(
XA|X′A′) 
 f

(
XA|X′A ′))

=
⊕

(B,B ′)∈B

(
f

(
XB|X′B ′) 
 f

(
XB|X′B ′)). (1.9)

Here, to simplify notation, we write KL for the union K ∪ L of disjoint sets K,L,
denote the complement Y − C of C ⊆ Y by C, and the complement Y ′ − C′ of
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C′ ⊆ Y ′ by C ′. The families A, B consist of certain pairs (C ⊆ Y,C′ ⊆ Y ′) (ad-
mitting multiplicities). As before, we are interested in “universal” relations, and for
this reason, consider the patterns A0, B0 formed by the pairs (A0 ⊆ [m],B0 ⊆ [m′])
such that A = γY,Y ′(A0) and B = γY,Y ′(B0), where m := |Y |, m′ := |Y ′|, and γY,Y ′
is the bi-component order preserving bijective map of [m]  [m′] to Y  Y ′. Ob-
serve that (1.7) is a special case of (1.9) with X′ = {1,2, . . . , |X| + r} and Y ′ =
{|X| + r + 1, . . . , |X| + m − r}, where r := min{p,m − p}.

Definition 2 When (1.9) holds for fixed A0, B0 as above and any correspond-
ing S,G,w,X,Y,X′, Y ′ and the families A := γY,Y ′(A0) and B := γY,Y ′(B0), we
call (1.9) a (general) stable quadratic relation, or an SQ-relation, and say that it is
induced by the patterns A0, B0.

To distinguish between the general and Plücker cases, we will refer to A, B in
Definition 2 as 2-families, and to A0, B0 as 2-patterns, whereas analogous objects in
Definition 1 will be called 1-families and 1-patterns.

The goal of this paper is to describe a relatively simple combinatorial method
of characterizing the patterns A0, B0 inducing SQ-relations (in particular, PSQ-
relations). In fact, our method generalizes a flow rearranging approach used in [4]
for proving the TP3-relation for TFG-functions. The method consists in reducing to
a certain combinatorial problem, and as a consequence, provides an “efficient” pro-
cedure to recognize whether or not a pair A, B of 2-families yields an SQ-relation.

The main result obtained on this way is roughly as follows. We associate to a
pair (C ⊆ [m],C′ ⊆ [m′]) a certain set M(C,C′) of perfect matchings on [m]  [m′].
Given a pair A0, B0 of 2-patterns for m,m′, define M(A0) to be the collection of
such matchings over all members of A0 (counting multiplicities), and define M(B0)

in a similar way. We say that A0, B0 are balanced if the families M(A0) and M(B0)

are equal, and show (Theorem 3.1) that

2-patterns A0, B0 induce an SQ-relation if and only if they are balanced.

Our approach to handling flows and reducing the problem to examining certain
collections of matchings is close in essence to a lattice paths method elaborated in
Fulmek and Kleber [9] and Fulmek [8] to generate quadratic identities on Schur
functions. The latter method is based on the Gessel–Viennot interpretation [11] of
semistandard Young tableaux by use of “flows” in a special directed graph, and [8, 9]
give sufficient conditions on quadratic identities for Schur functions, formulated just
in terms of relations on matchings.

The paper is organized as follows. Section 2 describes properties of certain pairs
of flows, called double flows, which lie in the background of the method. Section 3
states the main result (Theorem 3.1) and proves sufficiency, claiming that all balanced
families A, B give SQ-relations. Section 4 is devoted to illustrations of the method;
it demonstrates a number of examples of SQ-relations, including rather wide classes
(a majority concerns the flag flow case). Section 5 proves the other direction of The-
orem 3.1, which is more intricate. Moreover, we show that if 2-patterns A0, B0 are
not balanced, then for any corresponding X,Y,X′, Y ′, one can construct a planar net-
work G with integer weights w such that the FG-function fw violates relation (1.9).
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As a consequence, for A, B fixed, validity of (1.9) for all commutative semirings S

is equivalent to its validity for S = Z. (This matches the so-called transfer principle
for semirings; see, e.g., [1, Sect. 3].) Section 6 is devoted to applications to Schur
functions. The final Sect. 7 contains a short discussion on nice additional properties
(namely, the existence and an explicit construction of a so-called basis for FGn,n′(S),
the Laurent phenomenon for FG-functions, and some others) in the case when S is
a commutative semiring with division; this extends corresponding results from [4].
Here we also indicate one more sufficient condition on a matrix guaranteeing that
the function of its minors is flow-generated (Proposition 7.2). The paper is concluded
with a (rather routine) proof of the assertion that the function of minors of any n′ × n

matrix A over a commutative ring obeys all SQ-relations concerning n,n′ (Proposi-
tion 7.3).

We have mentioned above that, instead of a weighting on the vertices of a graph G

in question, one can consider a weighting on the edges. However, this does not affect
the problem and our results in essence. When an edge e is endowed with a weight,
one can split e into two edges in series and transfer the weight into the intermediate
vertex, yielding an equivalent flow model (up to assigning the weight to each old
vertex to be the “neutral element for multiplication”). Throughout the paper (except
for Sect. 6), we prefer to deal with a weighting on vertices for technical reasons.

2 Flows and double flows

As before, let G = (V ,E) be an (acyclic) planar network with sources s1, . . . , sn
and sinks t1, . . . , tn′ . In this section, we describe ideas and tools behind the method
of constructing 2-patterns A0, B0 that ensure validity of (1.9) for all flow-generated
functions f = fw on E n,n′

determined by weightings w : V → S, where S is an
arbitrary commutative semiring.

First of all, we specify some terminology and notation. By a path in a digraph
(directed graph) we mean a sequence P = (v0, e1, v1, . . . , ek, vk) such that each ei

is an edge connecting vertices vi−1, vi . An edge ei is called forward if it is directed
from vi−1 to vi , denoted as ei = (vi−1, vi), and backward otherwise (when ei =
(vi, vi−1)). The path P is called directed if it has no backward edge, and simple if
all vertices vi are distinct. When k > 0, v0 = vk , and all v1, . . . , vk are distinct, P is
called a simple cycle, or a circuit. The sets of vertices and edges of P are denoted by
VP and EP , respectively.

Consider an (I |I ′)-flow φ in G, where (I, I ′) ∈ E n,n′
. It consists of pairwise dis-

joint directed paths going from the source set SI to the sink set TI ′ . Since G is acyclic,
these paths are simple, and in view of the ordering of sources and sinks in the bound-
ary O , the path in φ beginning at ith source in SI enters ith sink in TI ′ (counting
“from left to right”). Equivalently (when s1 �= t1 and sn �= tn′ ), we may think of φ as
an induced subgraph of G satisfying: δout

φ (si) = 1 and δin
φ (si) = 0 if i ∈ I ; δout

φ (tj ) = 0

and δin
φ (tj ) = 1 if j ∈ I ′; and δout

φ (v) = δin
φ (v) ∈ {0,1} for the other vertices v of G.

Here δout
φ (v) (resp., δin

φ (v)) denotes the number of edges in φ leaving (resp., entering)

a vertex v. Also we denote δout
φ (v) + δin

φ (v) by δφ(v).
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Our approach is based on examining certain pairs of flows in G and rearranging
them to form some other pairs. To simplify technical details, it is convenient to mod-
ify the original network G as follows. Let us split each vertex v ∈ V into two vertices
v′, v′′ (placing them in a small neighborhood of v in the plane) and connect them by
edge ev = (v′, v′′), called a split-edge. Each edge (u, v) of G is replaced by an edge
going from u′′ to v′; we call it an ordinary edge. Also for each si ∈ S, we add a new
source ŝi and the edge (̂si , s

′
i ), and for each tj ∈ T , add a new sink t̂j and the edge

(t ′′j , t̂j ); we refer to such edges as extra ones. The picture illustrates the transforma-

tion for the half-grid Γ
�

3 .

Note that the new (modified) graph is again acyclic, but it need not be planar in
general (e.g., a local non-planarity arises when the original graph has a vertex v with
four incident edges e1, e2, e3, e4, in this order clockwise, such that e1, e3 enter and
e2, e4 leave v); nevertheless, the latter fact will cause no trouble to us. We denote this
graph by Ĝ = (V̂ , Ê), and take Ŝ := {̂s1, . . . , ŝn} and T̂ := {̂t1, . . . , t̂n′ } as the sets
of sources and sinks in it, respectively. As before, sources and sinks are also called
terminals. Clearly, for any i ∈ [n] and j ∈ [n′], there is a natural 1–1 correspon-
dence between the directed paths from si to tj in G and the ones from ŝi to t̂j in Ĝ.
This is extended to a 1–1 correspondence between flows, and for (I, I ′) ∈ E n,n′

, we
keep notation ΦI |I ′ for the set of flows in Ĝ going from ŜI := {̂si : i ∈ I } to T̂I ′ :=
{̂tj : j ∈ I ′}. (When needed, a weighting w on the vertices v of the initial G is trans-
ferred to the split-edges of Ĝ, namely, by setting w(ev) := w(v). Then corresponding
flows in both networks have equal weights, which are the 
-products of the weights
of vertices or split-edges in the flows. This implies that the functions on E n,n′

gener-
ated by corresponding flows coincide.)

The digraph Ĝ possesses the following useful properties:

(2.1) (a) Each non-terminal vertex is incident with exactly one split-edge, and if
e = (u, v) is a split-edge, then δout

Ĝ
(u) = 1 and δin

Ĝ
(v) = 1.

(b) Each source (sink) has exactly one leaving edge and no entering edge
(resp., one entering edge and no leaving edge).

Consider disjoint subsets X,Y ⊆ [n] and disjoint subsets X′, Y ′ ⊆ [n′]. Let
m := |Y | and m′ := |Y |. Consider a pair (A ⊆ Y,A′ ⊆ Y ′) satisfying

|X| + |A| = ∣∣X′∣∣ + ∣∣A′∣∣ and |X| + ∣∣A
∣∣ = ∣∣X′∣∣ + ∣∣A′∣∣,

as before denoting by A and A ′ the sets Y − A and Y ′ − A′, respectively.
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Remark 2 The above equalities are necessary for the existence of an (XA|X′A′)-
flow and an (XA|X′A ′)-flow (as before, we write XA for X ∪ A, and so on). They
imply

(i) 2|X| + |Y | = 2
∣∣X′∣∣ + ∣∣Y ′∣∣ and (ii) |Y | − ∣∣Y ′∣∣ = 2

(|A| − ∣∣A′∣∣). (2.2)

We say that X,Y,X′, Y ′ satisfying (i) are consistent and refer to a pair (A ⊆ Y,

A′ ⊆ Y ′) satisfying (ii) as being proper for (Y,Y ′). The set of proper pairs for (Y,Y )

is denoted by ΠY,Y ′ . For brevity, we write Πm,m′ for Π[m],[m′].
Consider an (XA|X′A′)-flow φ and an (XA|XA ′)-flow φ′ in Ĝ; we call the pair

(φ,φ′) a double flow for (A,A′). Our method will rely on two lemmas. Hereinafter
we write C�D for the symmetric difference (C − D) ∪ (D − C) of sets C,D.

Lemma 2.1 Eφ�Eφ′ is partitioned into the edge sets of pairwise disjoint circuits
C1, . . . ,Cd (for some d) and simple paths P1, . . . ,Pp (with p = 1

2 (m + m′)), where
each Pi connects either ŜA and ŜA, or ŜA and T̂A′ , or ŜA and T̂A ′ , or T̂A′ and T̂A ′ .
In each of these circuits and paths, the edges of φ and the edges of φ′ have opposed
directions (say, the former edges are forward and the latter ones are backward).

Proof Observe that a vertex v of Ĝ satisfies: (i) δφ(v) = 1 and δφ′(v) = 0 if v ∈
ŜA ∪ T̂A′ ; (ii) δφ(v) = 0 and δφ′(v) = 1 if v ∈ ŜA ∪ T̂A ′ ; (iii) δφ(v) = δφ′(v) = 1 if v ∈
ŜX ∪ T̂X′ ; and (iv) δφ(v), δφ′(v) ∈ {0,2} otherwise. This together with (2.1) implies
that any vertex v is incident with 0, 1 or 2 edges in Eφ�Eφ′ , and the number of such
edges is equal to 1 if and only if v ∈ ŜA ∪ ŜA ∪ T̂A′ ∪ T̂A ′ . (This is where we essentially
use the transformation of G into Ĝ.) Hence the weakly connected components of the
subgraph of Ĝ induced by Eφ�Eφ′ are circuits, say, C1, . . . ,Cd , and simple paths
P1, . . . ,Pp , each of the latter connecting two terminals in ŜA ∪ ŜA ∪ T̂A′ ∪ T̂A ′ .

Consider consecutive edges e, e′ in a circuit Ci or a path Pj . If both e, e′ belong
to the same flow among φ,φ′, then, obviously, they have the same direction in this
circuit/path. Suppose e, e′ belong to different flows. In view of (2.1), the common
vertex v of e, e′ is not a terminal and it is incident with a split-edge e′′. Clearly, e′′
belongs to both φ,φ′, and therefore e′′ �= e, e′. Then either both e, e′ enter v or both
leave v, so they are directed differently along the circuit/path containing them. This
yields the second assertion in the lemma.

Finally, consider a path Pj = (v0, e1, v1, . . . , er , vr ) as above, and suppose that
some of its ends, say, v0, belongs to ŜA. Then the extra edge e1 is contained in φ

and leaves the source v0. If vr ∈ ŜA, then the extra edge er is in φ as well and leaves
the source vr ; so e1, er are directed differently along Pj , contradicting the argument
above. And if vr ∈ T̂A ′ , then er belongs to φ′ and enters the sink vr ; so e1, er have the
same direction along Pj , again obtaining a contradiction. Thus, Pj connects ŜA and
ŜA ∪ T̂A′ . Similarly, any path Pj neither has both ends in exactly one of ŜA, T̂A′ , T̂A ′ ,
nor connects ŜA and T̂A′ . �

Figure 2 illustrates an example of Ĝ,φ,φ′ and indicates Eφ  Eφ′ and Eφ�Eφ′ .
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Fig. 2 (a) Ĝ; (b) φ; (c) φ′; (d) Eφ  Eφ′ ; (e) Eφ�Eφ′

Next we explain how to rearrange a double flow (φ,φ′) for (A,A′) so as to obtain
a double flow for another pair (B,B ′) ∈ ΠY,Y ′ . Let P1, . . . ,Pp be the paths as in
Lemma 2.1, where p = 1

2 (m+m′). We denote the set of these paths by P (φ,φ′). For
a path P ∈ P (φ,φ′), let π(P ) denote the pair of elements in Y  Y ′ corresponding
to the end vertices of P . We observe from Lemma 2.1 that π(P ) belongs to one of
A × A, A × A′, A′ × A ′, A × A ′ (considering π(P ) up to reversing). Define

M
(
φ,φ′) := {

π(P ) : P ∈ P
(
φ,φ′)}.

This set of pairs forms a perfect matching on Y  Y ′ (i.e., each element of the latter
set is contained in exactly one pair).

Lemma 2.2 Choose an arbitrary subset M0 ⊆ M(φ,φ′). Define Z := ⋃
(π ∈ M0) ∩

Y , Z′ := ⋃
(π ∈ M0)∩Y ′, B := A�Z, and B ′ := A′�Z′. Define U := ⋃

(EP : P ∈
P (φ,φ′), π(P ) ∈ M0). Then there are a unique (XB|X′B ′)-flow ψ and a unique
(XB|X′B ′)-flow ψ ′ such that Eψ = Eφ�U and Eψ ′ = Eφ′�U . In particular, Eψ 
Eψ ′ = Eφ  Eφ′ .

Proof By Lemma 2.1, each path P ∈ P (φ,φ′) is a concatenation of directed paths
Q1, . . . ,Qr (considered up to reversing), where consecutive Qj,Qj+1 are contained
in different flows among φ,φ′ and either both leave or both enter their common
vertex. Therefore, exchanging the pieces Qj in φ,φ′, we obtain an (XC|X′C′)-flow
α and an (XC|X′C ′)-flow α′ such that Eα = Eφ�EP and Eα′ = Eφ′�EP , where
C := A� (π ∩ Y) and C′ := A′� (π ∩ Y ′).

Doing so for all P ∈ P (φ,φ′) with π(P ) ∈ M0, we obtain flows ψ,ψ ′ satisfying
the desired properties, taking into account that the paths in P (φ,φ′) are pairwise
disjoint. The uniqueness of ψ,ψ ′ is obvious. �

Note that M(ψ,ψ ′) = M(φ,φ′) and P (ψ,ψ ′) = P (φ,φ′), and the transformation
of ψ,ψ ′ by use of the paths in P (ψ,ψ ′) related to M0 returns the flows φ,φ′.

Figure 3 illustrates flows ψ,ψ ′ created from φ,φ′ in Fig. 2. Here the left fragment
shows ψ,ψ ′ when the exchange is performed with respect to the (single) path P in
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Fig. 3 Creating ψ,ψ ′ from φ,φ′ in Fig. 2: by use of P (left); by use of P ′ (right)

P (φ,φ′) connecting the sources ŝ2 and ŝ3, and the right fragment shows those for the
path P ′ connecting the source ŝ1 and the sink t̂2 (see (e) in Fig. 2).

In the next section, we will use the fact that, although the modified graph Ĝ may
not be planar, its subgraph φ ∪ φ′ is planar.

To see this, consider a non-terminal vertex v in the initial graph G that belongs
to both flows φ,φ′. Let a, a′ be the edges of φ (concerning G) entering and leaving
v, respectively, and let b, b′ be similar edges for φ′. The only situation when the
subgraph φ ∪ φ′ (concerning Ĝ) is not locally planar in a small neighborhood of the
split-edge ev is that all a, a′, b, b′ are different and follow in this order (clockwise or
counterclockwise) around v. We assert that this is not the case. Indeed, a, a′ belong
to a directed path P in Ĝ from a source ŝi to a sink t̂i′ , and b, b′ belong to a directed
path Q from ŝj to t̂j ′ . From the facts that the initial graph G is planar and acyclic and
that the edges a, a′, b, b′ occur in this order around v one can conclude that the paths
P,Q can meet only at v. This implies that the terminals si , ti′ , sj , tj ′ are different and
follow in this cyclic order in the boundary O; a contradiction. Thus, φ ∪ φ′ is planar,
as required.

Remark 3 In the definition of FG-functions, one can equivalently consider only the
acyclic digraphs G having the additional property that each edge of G belongs to at
least one directed path going from a source to a sink. Arguing as above, one easily
shows that for any vertex v of such a G, the edge direction (to v or from v) changes
at most twice when we move around v. Then the modified graph Ĝ is automatically
planar, and so is φ ∪ φ′.

3 Balanced families

In this section, we use the above observations and results to construct families in-
volved in stable quadratic relations.

Consider the same objects as before: consistent sets X,Y,X′, Y ′ and a proper pair
(A,A′) for (Y,Y ′) (obeying (2.2)), a double flow (φ,φ′) for (A,A′), and the perfect
matching M = M(φ,φ′) on Y  Y ′, referring to the members of M as couples. We
denote the set of double flows for (A,A′) by D(A,A′) (when X,Y,X′, Y ′ are fixed).

We associate to (A,A′) the set M(A,A′) (or MY,Y ′(A,A)) of feasible perfect
matchings M on Y Y ′ defined as follows. Let us think that the elements of Y and Y ′
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are placed, respectively, on the lower half and on the upper half of a circumference
O , in the increasing order from left to right. Also let us call the elements (points) of
AA′ white, and the elements of AA ′ black. Then a perfect matching M on Y Y ′
is called feasible for (A,A′) if:

(3.1) (i) When both elements of a couple π ∈ M lie either in the lower half of O

or in the upper half of O , these elements have different colors.
(ii) When the elements of π lie in different halves, these elements have the

same color.
(iii) M is planar, in the sense that the chords of O connecting the couples in

M are pairwise not intersecting.

Observe that for (φ,φ′) ∈ D(A,A′), the matching M = M(φ,φ′) is feasible. This
follows from Lemma 2.1, taking into account that the subgraph φ ∪ φ′ of Ĝ is pla-
nar and that the paths in P (φ,φ′) are pairwise disjoint. A priori any matching in
M(A,A′) may be expressed as M(φ,φ′) for some (φ,φ′) ∈ D(A,A′).

We refer to a triple (A,A′,M) with (A,A′) ∈ ΠY,Y ′ and M ∈ M(A,A′) as a con-
figuration. For a 2-family A � ΠY,Y ′ , we define K(A) to be the family of all config-
urations (A,A′,M) (with possible multiplicities) arising when (A,A′) runs over A.

The exchange operation applied to a configuration (A,A′,M) and to a chosen
subset M0 ⊆ M makes the pair (B,B ′) defined by B := A� (

⋃
(π ∈ M0) ∩ Y) and

B ′ := A� (
⋃

(π ∈ M0) ∩ Y ′); in other words, we change the colors of both elements
in each couple π ∈ M0 (cf. Lemma 2.2). Then M becomes a feasible matching for
(B,B ′), and the exchange operation applied to the configuration (B,B ′,M) and the
same M0 returns (A,A′).

Definition We say that two 2-families A, B � ΠY,Y ′ are balanced if there exists
a bijection between K(A) and K(B) such that the corresponding configurations
(A,A′,M) and (B,B ′,M ′) have the same matching: M = M ′. (We rely on the sim-
ple fact that for any two configurations (A,A′,M) and (B,B ′,M), the pair (B,B ′)
can be obtained from (A,A′) by the exchange operation w.r.t. some M0 ⊆ M .) Equiv-
alently, A, B are balanced if for each planar perfect matching M on Y  Y ′, the num-
ber of times M occurs in sets MY,Y ′(A,A′) among (A,A′) ∈ A is equal to a similar
number for sets MY,Y ′(B,B ′) among (B,B ′) ∈ B. This can be written as

M(A) = M(B),

where for C � ΠY,Y ′ , M(C) denotes the family consisting of matchings M taken
with the multiplicities equal to the number of (C,C′) ∈ C such that M ∈ M(C,C′).
Clearly, A, B are balanced if and only if their 2-patterns A0, B0 are balanced.

Our main result is the following

Theorem 3.1 Let A0, B0 � Πm,m′ . The following statements are equivalent:

(i) Expression (1.9) is a stable quadratic relation, where A = γY,Y ′(A0) and B =
γY,Y ′(B0).

(ii) A0, B0 are balanced.
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Part (i)⇒(ii) of this theorem will be shown in Sect. 5. In its turn, part (ii)⇒(i) can
be immediately proved by relying on the lemmas from the previous section.

Proposition 3.2 Let A0, B0 � Πm,m′ be balanced. Then identity (1.9) holds for any
consistent sets X,Y,X′, Y ′ (corresponding to n,n′,m,m′ as above; cf. (2.2)(i)), the
families A = γY,Y ′(A0) and B = γY,Y ′(B0), and any FG-function f on E n,n′

(corre-
sponding to arbitrary G,w,S as above).

Proof For corresponding G,w,S,X,Y,X′, Y ′, consider the FG-function f = fw

on E n,n′
. The summand corresponding to (A,A′) ∈ A in the L.H.S. of (1.9) can be

expressed via double flows as follows:

f
(
XA|X′A′) 
 f

(
XA|X′A ′)

=
( ⊕

φ∈ΦXA|X′A′
w(φ)

)



( ⊕

φ′∈ΦXA|X′A ′
w

(
φ′)

)

=
⊕

(φ,φ′)∈D(A,A′)
w(φ) 
 w

(
φ′)

=
⊕

M∈M(A,A′)

⊕

(φ,φ′)∈D(A,A′) : M(φ,φ′)=M

w(φ) 
 w
(
φ′). (3.2)

The summand corresponding to (B,B ′) ∈ B in the L.H.S. of (1.9) is expressed simi-
larly.

Consider a configuration (A,A′,M) ∈ K(A) and suppose (φ,φ′) is a double
flow for (A,A′) such that M(φ,φ′) = M (if it exists). Since A, B are balanced,
(A,A′,M) is bijective to some configuration (B,B ′,M) in B. Since M is a feasi-
ble matching for both (A,A′) and (B,B ′), one can see from conditions (3.1)(i), (ii)
that (B,B ′) is obtained from (A,A′) by the exchange operation w.r.t. some M0 ⊆ M .
Then transforming (φ,φ′) by use of the paths P ∈ P (φ,φ′) with π(P ) ∈ M0, as
described in Lemma 2.2, we obtain a double flow (ψ,ψ ′) for (B,B ′) such that
Eψ  Eψ ′ = Eφ  Eφ′ , and therefore w(ψ) 
 w(ψ ′) = w(φ) 
 w(φ′). Moreover,
(φ,φ′) �→ (ψ,ψ ′) gives a bijection between all double flows involved in the con-
figurations in K(A) and those in K(B). Now the desired equality (1.9) follows by
considering the last term in (3.2). �

The rest of this section is devoted to additional conventions and illustrations.
Let M be a planar perfect matching on Y  Y ′. Sometimes it will be convenient

to assume that all couples π ∈ M are ordered: if π consists of elements i, j , we may
write π = ij if: either (a) i, j ∈ Y and i < j , or (b) i, j ∈ Y ′ and i < j , or (c) i ∈ Y

and j ∈ Y ′. We call a couple π in these cases lower horizontal, upper horizontal, and
vertical, respectively. The subsets of such couples in M are denoted by M lh, Muh, and
Mvert, respectively. When π = ij is horizontal, we denote the interval {i, i +1, . . . , j}
by [π]. The fact that M is planar (cf. (3.1)(iii)) implies that
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(3.3) the set M lh is nested, which means that for any π,π ′ ∈ M lh, the intervals [π]
and [π ′] are either disjoint or one includes the other; also for each π ∈ M lh,
all elements of Y within [π] are covered by couples in M lh; similar properties
hold for Muh and Y ′.

A proper pair (A,A′) ∈ ΠY,Y ′ along with a feasible matching M for it can be
illustrated by use of either a circular diagram or a two-level diagram; the couples in
the former are connected by straight-line segments, and those in the latter by straight-
line segments or by arcs. See the picture where Y = {1,2,3,4}, Y ′ = {1′,2′}, A =
{1,3}, A′ = {1′}, M lh = {34}, Muh = ∅, and Mvert = {11′,22′}.

Recall that in the flag flow case we deal with 1-patterns on [m] and 1-families on
Y ⊆ [n] (with |Y | = m), which are formed by p-element subsets in these sets (cf.
Definition 1 in the Introduction). They are equivalent, respectively, to 2-patterns on
([m], [m′]) and 2-families on (Y,Y ′), where |Y ′| = m′ = |p − (m−p)|. Theorem 3.1
implies the following criterion on Plücker type relations.

Corollary 3.3 Let A0, B0 �
([m]

p

)
. Then (1.7) is a PSQ-relation (where A = γY (A0)

and B = γY (B0)) if and only if the 1-patterns A0, B0 are balanced.

Here the notion of balanced 1-families A, B (in particular, 1-patterns) comes from
the one given for 2-families and is specified as follows. Let q := m − p and assume,
w.l.o.g., that p ≥ q . A feasible matching for a set A ∈ (

Y
p

)
(or for the partition (A,A)

of Y ) is now defined to be a set M̃ of pairs (couples) in Y such that

(3.4) (i) |M̃| = q , the couples in M̃ are mutually disjoint, and |π ∩A| = |π ∩A| = 1
for each π ∈ M̃ .

(ii) M̃ is nested, and for each π ∈ M̃ , all elements of [π] are covered by M̃ ;

cf. (3.3). In other words, M̃ is just the set M lh in the corresponding planar perfect
matching M for Y  Y ′. In view of |A| = p, |A| = q and |Y ′| = p − q , we have
Muh = ∅ and |Mvert| = p − q . In particular, the elements of Y ′ are colored white,
provided that the elements of A and A are white and black, respectively.

For illustrations in the flag case, we will use flat (or one-level) diagrams. An ex-
ample of such a diagram and its corresponding two-level diagram are drawn in the

picture; here Y = [7], A = {1,3,5,6}, M̃ = {14,23,67}, and Y ′ = {1′}.
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4 Examples of stable quadratic relations

In this section, we illustrate the method described in the previous section by demon-
strating several classes of stable quadratic relations on FG-functions. According
to Proposition 3.2, once we are able to show that one or another pair of families
A, B is balanced, we can declare that relation (1.9) involving these families is sta-
ble.

As before, when visualizing a proper pair (C ⊆ [m],C′ ⊆ [m′]) (i.e., satisfy-
ing (2.2)(ii)), we will refer to the elements of C and C′ as white, and to the elements
of their complements C = [m] − C and C ′ = [m′] − C′ as black.

Most of examples below (namely, those in items 1–5) concern PSQ-relations for
flag-flow-determined functions f : 2[n] → S. In these cases, we deal with 1-patterns
A0, B0 ⊆ ([m]

p

)
for some p < m and set q := m − p. Also, considering one or an-

other white-black partition (C,C) of [m] (with |C| = p) and a feasible matching
M for it, we illustrate the configuration (C,M) by a flat diagram (introduced in the
end of the previous section). The set of feasible matchings for (C,C) is denoted
by M(C).

1. When m = 3 and p = 2, the collection
([m]

p

)
consists of three 2-element sets C,

namely, 12,13,23, and their complements C are the 1-element sets 3,2,1, respec-
tively. Since q = 1, a feasible matching consists of a unique couple. The sets 12 and
23 admit only one feasible matching each, namely, M(12) = {{23}} and M(23) =
{{12}}, whereas 13 has two feasible matchings, namely, M(13) = {{12}, {23}}. There-
fore, the 1-patterns A0 := {13} and B0 := {12,23} are balanced. The corresponding
configurations and bijection are illustrated in the picture.

This gives rise to the P3-relation (generalizing AP3- and TP3-relations (1.1),
(1.6)): for a triple i < j < k (forming Y ) and X ⊆ [n] − {i, j, k},

f (Xik) 
 f (Xj) = (
f (Xij) 
 f (Xk)

) ⊕ (
f (Xjk) 
 f (Xi)

)
. (4.1)

2. Let p = q = 2. Take the 1-patterns A0 := {13} and B0 := {12,14} in
([4]

2

)
. One

can see that each of 12 and 14 admits a unique feasible matching: M(12) = {{14,23}}
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and M(14) = {{12,34}}, whereas M(13) consists of two feasible matchings: just
those {14,23} and {12,34}. Thus, A0, B0 are balanced; see the picture where the
couples (arcs) involved in the corresponding exchange operations are marked with
crosses.

As a consequence, we obtain the P4-relation (generalizing (1.2) and its tropical
counterpart): for i < j < k < � and X ⊆ [n] − {i, j, k, �},

f (Xik) 
 f (Xj�) = (
f (Xij) 
 f (Xk�)

) ⊕ (
f (Xi�) 
 f (Xjk)

)
. (4.2)

3. As one more illustration of the method, let us consider one particular
case for m = 5 and p = 3. Put A0 := {135} and B0 := {234,125,145}. One
can check that M(234) = {{12,45}}, M(125) := {{14,23}, {23,45}}, M(145) =
{{12,34}, {25,34}}, and that M(135) consists just of the five matchings occurring
in those three collections. Therefore, A0, B0 are balanced. The corresponding con-
figurations and bijection are shown in the picture.

This implies a particular PSQ-relation on quintuples: for i < j < k < � < r and
X ⊆ [n] − {i, j, k, �, r},

f (Xikr) 
 f (Xj�) = (
f (Xjk�) 
 f (Xir)

) ⊕ (
f (Xijr) 
 f (Xk�)

)

⊕ (
f (Xi�r) 
 f (Xjk)

)
.

4. The next illustration concerns a wide class of balanced 1-patterns for m >

p ≥ m − p =: q; it includes the 1-patterns indicated in items 1 and 2 as special
cases.
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The 1-pattern A0 contains a distinguished set A0 ∈ ([m]
p

)
. Fix a nonempty subset

Z ⊆ A0 and consider the collection

C := {
C ⊂ [m] : |C| = p, C ∩ A0 = Z

}
. (4.3)

For a subset C ⊆ [n], we will denote by Σ(C) the number
∑

(i ∈ C). Now define

A0 := {A0} ∪ {
A ∈ C : Σ(A) − Σ(A0) + |Z| is odd

}
and

B0 := {
B ∈ C : Σ(B) − Σ(A0) + |Z| is even

}
. (4.4)

In particular, A0 ∩ B0 = ∅. We assert the following:

Lemma 4.1 The pair A0, B0 in (4.4) is balanced.

Proof Consider C ∈ C and M ∈ M(C). We describe a rule which associates to
(C,M) another configuration (D,M), aiming to obtain the desired bijection between
K(A0) and K(B0).

Since M is feasible and p ≥ q , we have |M| = q = |A0|. This implies that exactly
one of the two cases is possible: (i) there is a couple π ∈ M with both elements
in A0; and (ii) each π ∈ M satisfies |π ∩ A0| = 1 (whence |π ∩ A0| = 1 and M

covers A0).
In case (i), take the couple π = ij ∈ M (i < j ) such that i, j ∈ A0 and i

is minimum under this property. Let D := C�π . Then D ∩ A0 = C ∩ A0 = Z,
whence D ∈ C . Also the interval [π] is partitioned into couples (cf. (3.4)(ii)), im-
plying that j − i is odd. Hence the numbers Σ(C) − Σ(A0) + |Z| and Σ(D) −
Σ(A0) + |Z| have different parity, and therefore, C,D belong to different collec-
tions among A0, B0. Obviously, M is a feasible matching for D, the couple π sat-
isfies the above minimality property for D, and applying to D the exchange opera-
tion w.r.t. π returns C. We associate the configurations (C,M) and (D,M) to each
other.

In case (ii), each couple of M has one element in A0 and the other in A0. Let MZ

be the set of π ∈ M such that π ∩Z �= ∅ and let Q := ⋃
(π ∈ MZ). Then the set D :=

C�Q satisfies |D| = p and D ∩A0 = ∅. This means that D = A0. Also M ∈ M(A0)

and C = A0�Q. Since j − i is odd for each ij ∈ M , the numbers Σ(C) − Σ(A0)

and Z have the same parity. So C ∈ B0. We associate (C,M) and (A0,M) to each
other. Conversely, for each M ′ ∈ M(A0), let C′ := A0�Q′, where Q′ := ⋃

(π ∈
M ′ : π ∩ Z �= ∅). Then Q′ ∩ A0 = Z, C′ ∈ B0, and the above construction associates
(C′,M ′) with (A0,M

′).
This gives the desired bijection between K(A0) and K(B0). �

Remark 4 (i) Consider m = 3, p = 2, A0 := 12, and Z := {3}. Then the collection
C as in (4.3) consists of the sets 13,23, and we have A0 = {12,23} and B0 = {13}.
These 1-patterns correspond to those in item 1. (ii) When m = 4, p = 2, A0 := 12,
and Z := {3}, we obtain A0 = {12,23} and B0 = {13}. They generate the same PSQ-
relations as the balanced 1-patterns {13}, {12,14} in item 2.
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The 1-patterns A0, B0 as in (4.4) give rise to the following PSQ-relation on FG-
functions f ; for brevity, it is exposed when S is a ring. Let I, J ⊂ [n] and |I | ≥ |J |.
Fix Z ⊆ J − I . Then

f (I)f (J ) =
∑

K

(−1)a+Inv((I−K)∪Z,(J−Z)∪K)f
(
(I − K) ∪ Z

)
f

(
(J − Z) ∪ K

)
,

(4.5)

where the sum is over all K ⊆ I − J with |K| = |Z|; Inv(I ′, J ′) denotes the number
of pairs (i, j) ∈ I ′ × J ′ with i > j (inversions); and a := |Z| + Inv(I − J,J − I ).
In this case, one should set X := I ∩ J , Y := I�J , m := |Y |, p := |I − J |, and
A0 := I − J .

Relations similar to (4.5) (but possibly written in a different form) appear in
a characterization of flag manifolds Fl = Fld1,...,dr (Cn), where d1 < · · · < dr ≤ n;
cf. [10, Chap. 9]. In this case one should take all subsets I, J ⊆ [n] and Z ⊆ J − I

with |I | = di , |J | = dj , i ≥ j ; then (4.5) generate the ideal of polynomials with
zero values on Fl canonically embedded in the corresponding product of projective
spaces.

5. One more representable class of balanced 1-patterns for p < m ≤ n with p ≥
m − p =: q is obtained by slightly modifying the previous construction.

Fix a set Z ⊂ [m] with 0 < |Z| ≤ q − 1 and a subset Z′ ⊆ Z. Form the collec-
tion

C := {
C ⊂ [m] : |C| = p, C ∩ Z = Z′}.

Partition C into two 1-patterns

A0 := {
A ∈ C : Σ(A) odd

}
and B0 := {

A ∈ C : Σ(A) even
}
. (4.6)

Lemma 4.2 The pair A0, B0 in (4.6) is balanced.

Proof Let C ∈ C and M ∈ M(C). Since |M| = q > |Z|, there exists a couple
π = ij ∈ M (i < j ) with both elements in [m] − Z; take such a π so that i

be minimum. Form D := C�π . Then C,D belong to different 1-patterns among
A0, B0 (since j − i is odd), and we can associate (C,M) and (D,M) to each
other, taking into account that M ∈ M(D) and that the choice of π depends only
on M . �

This lemma gives rise to the corresponding class of PSQ-relations; we omit it
here. (In fact, such relations can be derived from those in item 4 when S is a
ring.)

In the rest of this section, we give simple examples of balanced families in the non-
flag case. Now we deal with disjoint sets X,Y ⊆ [n] and disjoint sets X′, Y ′ ⊆ [n′],
denote m := |Y | and m′ := |Y ′|, and consider 2-patterns formed by proper pairs for
([m], [m′]) (cf. (2.2)). Corresponding matchings will be illustrated by use of two-
level diagrams (see the end of Sect. 3) in which the white/black elements of [m]
(resp., [m′]) are disposed in the lower (resp. upper) horizontal line.
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6. The picture below shows an example of balanced homogeneous 2-patterns
A0, B0.

Here m = m′ = 3, A0 consists of the pairs 12|13 and 23|13, and B0 consists of the
pairs 13|12 and 13|23 (indicated by light circles); we write a|b for (a, b). The feasible
matchings are indicated by line segments, and the couples involved in the correspond-
ing exchange operations are marked with crosses.

These 2-patterns give rise to the SQ-relation

(
f

(
Xij |X′i′k′) 
 f

(
Xk|X′j ′)) ⊕ (

f
(
Xjk|X′i′k′) 
 f

(
Xi|X′j ′))

= (
f

(
Xik|X′i′j ′) 
 f

(
Xj |X′k′)) ⊕ (

f
(
Xik|X′j ′k′) 
 f

(
Xj |X′i′

))
,

where i < j < k and i′ < j ′ < k′ (this is rather trivial for minors of a matrix).
7. One of the simplest examples of balanced non-homogeneous 2-patterns is

formed by A0 = {1|1} and B0 = {2|1,12|12}, in the case m = m′ = 2. See the pic-
ture:

This gives the following SQ-relation similar to Dodgson’s condensation formula for
minors of a matrix (cf. (1.8)): for i < k and i′ < k′,

f
(
Xi|X′i′

) 
 f
(
Xk|X′k′)

= (
f

(
Xik|X′i′k′) 
 f

(
X|X′)) ⊕ (

f
(
Xk|X′i′

) 
 f
(
Xi|X′k′)). (4.7)
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Another simple non-homogeneous example is analogous to the row decomposition
(by row 2) of the determinant of a 3 × 3 matrix. Here m = m′ = 3, A0 = {13|13} and
B0 = {12|13,23|13,123|123}; see the picture:

5 Necessity of the balancedness

This section is devoted to the other direction in Theorem 3.1. Moreover, we show
a sharper property. It says that if a pair A0, B0 is not balanced, then for any choice
of appropriate consistent sets X,Y,X′, Y ′ and for S := Z, there exist (and can be
explicitly constructed) a planar network and a weighting such that the corresponding
flow-generated function f violates relation (1.9).

As before, for subsets C ⊆ Y and C′ ⊆ Y ′, we write C for Y − C, and C ′ for
Y ′ − C′, and call (C,C′) a proper pair for (Y,Y ′) if it satisfies (2.2)(ii).

Theorem 5.1 Fix disjoint sets X,Y ⊆ [n] and disjoint sets X′, Y ′ ⊆ [n′] satisfy-
ing (2.2)(i). Let A, B � ΠY,Y ′ . Suppose that A, B are not balanced. Then (1.9) does
not hold for some (G,w) and S = Z. More precisely, there exists a planar network
G = (V ,E) with n sources and n′ sinks such that for the all-unit weighting w ≡ 1 on
V , the flow-generated function f = fw on E n,n′

gives
∑

(A,A′)∈A
f

(
XA|X′A′)f

(
XA|X′A ′) �=

∑

(B,B ′)∈B
f

(
XB|X′B ′)f

(
XB|XB ′). (5.1)

Proof Since A, B are not balanced, there exists a planar perfect matching M on
Y  Y ′ such that

|AM | �= |BM |, (5.2)

where AM denotes the set of pairs (A,A′) ∈ A having M as a feasible matching:
M ∈ M(A,A′), and similarly for B.
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We fix such an M , and our aim is to construct a planar network G = (V ,E) that
satisfies the following properties: for each proper pair (C,C′) for (Y,Y ′),
(P1) If M ∈ M(C,C′), then G has a unique (XC|X′C′)-flow and a unique

(XC|X′C ′)-flow, i.e., |ΦXC|X′C′ | = |ΦXC|X′C ′ | = 1.
(P2) If M /∈ M(C,C′), then at least one of ΦXC|X′C′ and ΦXC|X′C ′ is empty.

Assuming that such a G does exist, assign the weight w(v) := 1 to each vertex v.
By (P1) and (P2), for the function f = fw and a proper pair (C,C′) ⊆ (Y,Y ′), each
of the values f (XC|X′C′) and f (XC|X′C ′) is equal to one if M ∈ M(C,C′), and
at least one of them is zero otherwise. This implies

∑

(A,A′)∈A
f

(
XA|X′A′)f

(
XA|X′A ′) = |AM |,

∑

(B,B ′)∈B
f

(
XB|X′B ′)f

(
XB|X′B ′) = |BM |,

and now the required inequality (5.1) follows from (5.2).
It suffices to construct the desired network G in the case n = |X| + |Y | and n′ =

|X′| + |Y ′| (for we can add a source si for i ∈ [n] − (X ∪ Y) (if exists) as an isolated
vertex, and can do similarly for sinks). So we may assume, w.l.o.g., that X,Y form a
partition of [n], and X′, Y ′ do that of [n′].

We first describe the construction when X = X′ = ∅, which is the crucial special
case. Subsequently we will explain that this construction can be easily extended to
arbitrary X,X′.

Thus, we deal with n = |Y | = |Y ′| sources s1, . . . , sn and n sinks t1, . . . , tn. As
usual, the sources (sinks) lie in the lower (resp., upper) half of a circumference O

in the plane, and their indices grow from left to right. The other vertices of G lie in-
side O . All edges will be represented by directed straight-line segments. The graph G

is constructed in five steps.

Step 1 For each couple π ∈ M , we draw the segment between corresponding ter-
minals, denoted by Lπ . Namely: (a) if π = ij ∈ M lh, Lπ connects the sources si , sj
(a lower horizontal segment); (b) if π = ij ∈ Muh, Lπ connects the sinks ti , tj (an
upper horizontal segment); and (c) if π = ij ∈ Mvert, Lπ connects the source si and
sink tj (a vertical segment). In case (c), we direct Lπ from si to tj . These segments
are pairwise disjoint (since M is planar).

Step 2 For each π = ij ∈ M lh, the lower horizontal segment Lπ is transformed
into a graph whose vertices are si , sj and j − i distinct points in the interior of the
segment. The edges are the j − i + 1 subsegments connecting consecutive vertices.
We distinguish between two sorts of vertices, called odd and even ones, so that si , sj
are regarded as odd, and the odd and even vertices alternate along Lπ . Each edge is
directed from the odd to even vertex. So Lπ becomes a path with alternating edge
directions, and its end vertices si , sj have leaving edges.

Each upper horizontal segment Lπ=ij is transformed into a path in a similar fash-
ion, but now we direct each edge from the even to odd vertex. So the end vertices
ti , tj of Lπ are odd and have entering edges.
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Step 3 The horizontal segments (regarded as graphs) are connected by additional
edges. To define them, let us say that a couple π = ij ∈ M lh is a predecessor of an-
other couple π ′ ∈ M lh if [π] ⊃ [π ′]. If, in addition, there is no π ′′ ∈ M lh between
π and π ′ (i.e. [π] ⊃ [π ′′] ⊃ [π ′]), π is called the immediate predecessor of π ′.
Accordingly, π ′ is called a successor of π in the former case, and an immediate
successor in the latter case. A couple is maximal (minimal) if it has no predecessor
(resp., no successor). The set of successors (immediate successors) of π is denoted
by Succ(π) (resp., by ISucc(π)); moreover, we order the couples in ISucc(π), say,
π1 = i1j1, . . . , πr = ir jr , so that jd < id+1 for d = 1, . . . , r − 1. It is easy to see that
i1 = i + 1, jr = j − 1 and id+1 = jd + 1 for each d (when r ≥ 1).

Note that each path Lπd
has exactly (jd − id + 1)/2 even vertices. Also Lπ has

exactly (j − i − 1)/2 nonterminal odd vertices v (i.e., v �= si , sj ). Then

1

2

r∑

d=1

(jd − id + 1) = 1

2
(jr − i1 + 1) = 1

2
(j − i − 1),

yielding the equality

∣∣Vodd(π)
∣∣ =

∑(∣∣Veven(π ′)
∣∣ : π ′ ∈ ISucc(π)

)
,

where Vodd(π ′′) (Veven(π ′′)) denotes the set of nonterminal odd vertices (resp., of
even vertices) in a path Lπ ′′ . Observe that within the circle O∗ surrounded by O ,
the region confined by the segments for {π} ∪ ISucc(π) is convex and does not meet
any other segment for M . Ordering the vertices in each of the two equally sized sets
W(π) := ⋃

(Veven(π ′) : π ′ ∈ ISucc(π)) and Vodd(π) from left to right, we draw a
directed edge (segment) from each vertex of the former to the corresponding vertex
of the latter. These edges are pairwise disjoint; we call them lower bridges for π . See
the picture where π = 16 and the dark and light circles indicate even and nonterminal
odd vertices in Lπ , respectively.

A similar edge set is constructed for each non-minimal upper couple π ∈ Muh,
connecting the set Vodd(π) of nonterminal odd vertices in Lπ and the set W(π) of
even vertices in Lπ ′ among π ′ ∈ ISucc(π). The only difference is that such edges,
called upper bridges for π , are now directed from odd to even vertices.

The following observation is useful:

For each π ∈ M lh,
∣∣Veven(π)

∣∣ = ∣∣{π} ∪ Succ(π)
∣∣, and similarly for π ∈ Muh.

(5.3)
(This follows from the equality |Veven(π)| = (j − i + 1)/2, where π = ij , and the
fact that the successors of π form a perfect matching on {i + 1, . . . , j − 1}, implying
|Succ(π)| = (j − i − 1)/2.)
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Step 4 Let M lh
max (Muh

max) be the set of maximal couples in M lh (resp., Muh). The
segments of couples in M lh

max ∪Muh
max confine a convex region Ω within the circle O∗.

Consider the sets Q := ⋃
(Veven(π) : π ∈ M lh

max) and Q′ := ⋃
(Veven(π) : π ∈

Muh
max); we order the vertices in each of them from left to right. Property (5.3) and the

equalities |Y | = |Y ′| = 2|M| lead to the following relations:

|Q| = ∣∣M lh
∣∣ = 1

2

(|Y | − ∣∣Mvert
∣∣) = 1

2

(∣∣Y ′∣∣ − ∣∣Mvert
∣∣) = ∣∣Muh

∣∣ = ∣∣Q′∣∣. (5.4)

So |Q| = |Q′|. We draw a directed edge from each vertex of the sequence Q to the
corresponding vertex of Q′. These (pairwise non-crossing) edges are called middle
bridges.

Step 5 When Mvert �= ∅, the graph G′ constructed during the previous steps need
not be planar since some middle bridges may intersect vertical segments. The final
step transforms G′ within small neighborhoods of such intersection points.

More precisely, for π = ij ∈ Mvert, the (directed) vertical segment Lπ goes from
the source si to the sink tj and lies in the convex region Ω (defined above). The set
Bπ of edges of G′ intersecting Lπ consists of some middle bridges. (One can see that
i − j is even and that Bπ = ∅ if i = j .) Let zπ,b denote the intersection point of Lπ

and b ∈ Bπ . Also for a middle bridge b, we denote by Rb the set of vertical segments
intersecting b.

To transform G′ into the desired graph G, we first turn each vertical segment
Lπ=ij into the directed path (going from si to tj ) whose inner vertices are the points
zπ,b for b ∈ Bπ , and similarly turn each middle bridge b (directed “upwards”) into the
directed path whose inner vertices are the points zπ,b for Lπ ∈ Rb . Next we iteratively
modify the graph as follows. At each iteration, choose a vertex z = zπ,b in the current
graph, split z into two vertices z′ and z′′, and connect them by edge eπ,b from z′ to
z′′, called the extra edge generated by π,b.

Geometrically, we choose z′, z′′ to be two points in the segment b within a small
neighborhood of z so that z′ lies below z′′. Then b (regarded as path) is modified in
a natural way: if b is of the form . . . , e, z, ẽ, . . . (where e and ẽ are the edges in b

entering and leaving z, respectively), then we make e enter z′ and make ẽ leave z′′;
this turns b into the directed path . . . , e, z′, eπ,b, z

′′, ẽ, . . . . The local transformation
of the path L := Lπ at z is different: if L is of the form . . . , e, z, ẽ, . . . , we make e

entering z′′, and ẽ leaving z′, obtaining the non-directed path . . . , e, z′′, eπ,b, z
′, ẽ, . . .

(in which eπ,b has the backward direction). Geometrically, L turns into a zigzag-
shaped line. The transformation at z = zπ,b is illustrated in the picture:
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Eventually we obtain the desired graph G. We refer to the edges of G generated
by vertical segments (resp., middle bridges) of G′ and different from extra edges as v-
edges (resp., b-edges). Thus, under the transformation G′ �→ G, each middle bridge b

turns into a directed path with |Rb| + 1 b-edges and |Rb| extra edges which alternate.
In its turn, each vertical segment L = Lπ turns into a “zigzag” path with |Bπ | + 1
v-edges and |Bπ | extra edges; these edges alternate and are, respectively, the forward
and backward edges in the path.

We will distinguish between two sorts of edges in G, referring to the lower and
upper bridges and b-edges as thick edges, and to the remaining edges as thin ones. The
picture below illustrates the construction for an instance of M . Here n = 7, M lh =
{16,23,45}, Muh = {12,47,56}, and Mvert = {73}, and the left fragment shows the
segment representation of M after Step 1. The graph G is drawn in the right fragment
where the dark circles indicate even vertices and those formed by splitting, the light
circles indicate nonterminal odd vertices, and the thin and thick edges are as defined
above.

Note that the obtained G is acyclic (as all edges not contained in “horizontal seg-
ments” are “directed upwards”). Also we will take advantages from the following
features of G which can be seen from the above construction:

(5.5) (i) Each source has one leaving edge and no entering edge, whereas each sink
has one entering edge and no leaving edge.

(ii) Each inner (i.e., nonterminal) vertex is of degree 3, and it has either two
thin entering edges and one thick leaving edge, or two thin leaving edges
and one thick entering edge.

(iii) The connected components of the subgraph of G induced by the thin edges
correspond to the lower horizontal paths Lπ for π ∈ M lh, the upper hor-
izontal paths Lπ for π ∈ Muh, and the (straight or zigzag) paths Lπ for
π ∈ Mvert, each of these paths having alternately directed edges.

It will be convenient to represent each thin path Lπ as the union of two matchings
(one being formed by the forward edges, and the other by the backward edges), de-
noted by N1

π ,N2
π . Also we denote the set of thick edges entering (leaving) vertices

of Lπ by Zin
π (resp. Zout

π ). In particular, Zin
π is the set of lower bridges for π when

π ∈ M lh, and Zout
π is the set of upper bridges for π when π ∈ Muh.
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We assert that G satisfies properties (P1) and (P2) for the given M . To show this,
we consider a proper pair (C,C′) for (Y,Y ′) and argue as follows.

(a) Suppose M ∈ M(C,C′). Take the subgraph F of G induced by the edge set
U consisting of all thick edges and the following thin edges. For each π ∈ M lh, U

includes exactly one of the matchings N1
π ,N2

π in Lπ , namely, the one containing the
edge leaving the source si , where i is the element of π ∩ C (which is unique since
M is feasible for (C,C′)). Similarly, for each π ∈ Muh, U includes the matching in
Lπ that contains the edge entering the sink tj , where {j} = π ∩ C′. And for each
π = ij = Mvert, if i ∈ C (and therefore, j ∈ C′), then U includes the matching in Lπ

covering both si and tj (which is formed by v-edges), whereas if i /∈ C (and j /∈ C′),
then U includes the matching formed by extra edges (which may be empty).

Using (5.5) and the fact that G is acyclic, one can conclude that F consists of
pairwise disjoint directed paths going from SC to TC′ , i.e., F is a (C|C′)-flow in G.
Acting similarly w.r.t. C and C ′, we construct a (C|C ′)-flow F ′ in G.

(b) Next we show that in case M ∈ M(C,C′) the flows F and F ′ as above
are unique. Consider an arbitrary flow F̃ from some sources to some sinks in G.
From (5.5) it easily follows that for each π ∈ M ,

(5.6) (i) If F̃ ∩ Lπ is a matching Nα
π , α ∈ {1,2}, then F̃ contains both Zin

π ,Zout
π .

(ii) Conversely, if F̃ contains a set Z ∈ {Zin
π ,Zout

π } and if Z �= ∅, then F̃ ∩ Lπ

is exactly one of N1
π ,N2

π (regarding these objects as edge sets).

We explain that (5.6) determines F̃ uniquely if F̃ is a (C|C′)-flow. Indeed, from
the construction of G it easily follows that there is an ordering π(1), . . . , π(m) (m =
|Y |) of the couples in M such that for k = 1, . . . ,m, at least one of the sets Zin

π(k) and

Zout
π(k)

is entirely contained in
⋃k−1

d=1(Z
in
π(d)

∪ Zout
π(d)

) (which is automatically holds

when π(k) is a minimal couple in M lh ∪ Muh since some of Zin
π(k),Z

out
π(k) are empty).

Now we argue as follows. If π(k) is a minimal couple in M lh and if {i} = π(k)∩C,
then each of N1

π(k),N
2
π(k) consists of a single edge and, obviously, F̃ contains exactly

one of them, namely, the edge incident to si . Applying (5.6)(i) to this π(k), we obtain
that F̃ contains Zout

π(k)
(as well as Zin

π(k)
= ∅). Similarly, if π(k) is a minimal couple

in Muh, then F̃ is determined within Lπ(k) and contains Zin
π(k) (and Zout

π(k) = ∅). In a

general case, assume by induction that for d = 1, . . . , k−1, F̃ is determined on Lπ(d)

and contains Zin
π(d) ∪ Zout

π(d). Then, due to the above ordering, F̃ contains at least one

of Zin
π(k),Z

out
π(k). Hence, by (5.6)(ii), F̃ ∩ Lπ(k) is Nα

π(k) for some α ∈ {1,2}. (This

remains true when Zin
π(k) ∪ Zout

π(k) = ∅, which is possible only if π(k) = ij ∈ Mvert

and i = j .) Moreover, α is determined by considering the end vertices (terminals)
of Lπ(k) and checking which of them (or none, or both) belongs to SC ∪ TC′ (since
such a terminal must be covered by Nα

π(k)). Now (5.6)(i) enables us to conclude with

Zin
π(k) ∪ Zout

π(k) ⊆ F̃ , justifying the induction.

So F̃ = F . The uniqueness of a (C|C ′)-flow is shown similarly. This yields (P1).
(c) To check (P2), consider a proper pair (C,C′) for (Y,Y ′) such that there exist

both a (C|C′)-flow F and a (C|C ′)-flow F ′ in G. Our goal is to show that M ∈
M(C,C′), i.e., that the following hold: (c1) |π ∩ C| = 1 for π ∈ M lh; (c2) |π ∩
C′| = 1 for π ∈ Muh; and (c3) (i ∈ C) ⇔ (j ∈ C′) for π = ij ∈ Mvert. We consider
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the above ordering π(1), . . . , π(r) on M and use induction on k, assuming that the
corresponding relation among (c1)–(c3) holds for each π(d) with d < k.

When π(k) is a minimal couple in M lh, π(k) ⊆ C would imply that F contains
both edges of the 2-edge path Lπ(k), which is impossible (since these edges enter
the same vertex). For a similar reason, π(k) ∩ C = ∅ would imply the nonexistence
of F ′. So π(k) satisfies (c1). Similarly a minimal couple in Muh satisfies (c2). Also if
π(k) = ij ∈ Mvert and i = j , then Lπ(k) consists of a single edge, and (c3) is trivial.
For a general k, using induction and arguing as in part (b), we may assume that there
is a nonempty set among Zin

π(k),Z
out
π(k) which is contained in both F,F ′. Then there

are α,β ∈ {1,2} such that F ∩Lπ(k) = Nα
π(k) and F ′ ∩Lπ(k) = N

β

π(k). The matchings

Nα
π(k),N

β

π(k) determine the location of the end vertices (terminals) u,v of Lπ(k) w.r.t.
C,C′ and their complements to Y,Y ′, and each of u,v is related to exactly one of
C ∪ C′ and C ∪ C ′. This implies α �= β , and validity of (c1)–(c3) for π(k) follows.
Finally, (5.6)(i) provides that each of F,F ′ contains both Zin

π(k),Z
out
π(k), completing

the proof of (P2).
It remains to consider the situation when some of X,X′ or both are nonempty.

It reduces to the previous case by replacing each element of X (X′) by a couple
of elements in Y (resp., Y ′) and adding such couples to the matching in question.
More precisely, an element i ∈ X is replaced by consecutive elements i′, i′′ added to
Y (which are inserted into the linearly ordered set X ∪ Y in place of i). Similarly,
an element j ∈ X′ is replaced by consecutive elements j ′, j ′′ added to Y ′. Then the
resulting sets Ỹ and Ỹ ′ have the same size, equal to |Y | + 2|X| = |Y ′| + 2|X′|. Ac-
cordingly, we extend each planar perfect matching M on Y  Y ′ to a planar perfect
matching M̃ on Ỹ  Ỹ ′ by adding the lower (upper) horizontal couple πi = i′i′′ for
each i ∈ X (resp., πj = j ′j ′′ for each j ∈ X′). Note that the added couples are min-
imal for the corresponding partial orders, and the pairs (C̃ ⊆ Ỹ , C̃′ ⊆ Ỹ ′) having M̃

as a feasible matching are exactly those obtained from the pairs (C ⊆ Y,C′ ⊆ Y ′)
satisfying M ∈ M(C,C′) by adding to C one element from {i′, i′′} for each i ∈ X,
and adding to C′ one element from {j ′, j ′′} for each j ∈ X′.

Let G̃ be the graph obtained by applying the previous construction to such an M̃ .
Then each couple πi , i ∈ X, generates the 2-edge path Lπi connecting the sources
si′ , si′′ , and similarly for X′ and sinks. Shrinking each Lπi into one point, regarded as
the source si when i ∈ X and as the sink ti when i ∈ X′, we obtain the desired graph
G for X,X′, Y,Y ′ and M . It is straightforward to verify that properties (P1), (P2) for
G̃, Ỹ , Ỹ ′, M̃ imply those for G,X,X′, Y,Y ′,M .

This completes the proof of Theorem 5.1, and Theorem 3.1 follows. �

Note that any FG-function f = fw on E n,n′
obtained by the construction in the

above proof takes nonnegative integer values (since the weighting w is nonnegative).
This together with the fact that the function of minors of a totally nonnegative matrix
is an FG-function gives the following:

Corollary 5.2 2-patterns A0, B0 � Πm,m′ are balanced if and only if the correspond-
ing quadratic relations (concerning any n,n′,X,X′, Y,Y ′ as above) hold for any
function f : E n,n′ → Z≥0 which is the function of minors of a totally nonnegative
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n′ × n matrix. Furthermore, when A0, B0 � Πm,m′ are not balanced, for any corre-
sponding n,n′,X,X′, Y,Y ′, there exists, and can be explicitly constructed, a totally
nonnegative n′ ×n matrix such that the function f of its minors obeys inequality (5.1)
(where A := γY,Y ′(A0) and B := γY,Y ′(B0)).

6 Applications to Schur functions

It is well known that Schur functions (polynomials) are expressed as minors of a
certain matrix, by Jacobi–Trudi’s formula. Therefore, these functions satisfy many
quadratic relations, in particular, ones of Plucker type. In [8, 9] and some other works
(see a discussion in [8]), one shows how to establish quadratic relations for ordinary
and skew Schur functions by use of a lattice paths method based on the Gessel–
Viennot interpretation of semistandard Young tableaux [11]. This lattice path method
is, in fact, a specialization to a particular planar network of the flow approach that we
described in Sects. 2, 3. Below we give a brief discussion on this subject.

Recall that a partition of length r is an r-tuple λ of weakly decreasing nonnegative
integers λ1 ≥ λ2 ≥ · · · ≥ λr . The Ferrers diagram of λ is meant to be the array Fλ of
cells with r left-aligned rows containing λi cells in ith row (the row indices will grow
from the bottom to the top). For N ∈ N, an N -semistandard Young tableau of shape
λ is a filling T of Fλ with numbers from [N ] so that the numbers weakly increase in
each row and strictly increase in each column. We associate to T the monomial xT

that is the product of variables x1, . . . , xN , each xk being taken in the degree equal
to the number of occurrences of k in T . Then the Schur function for λ and N is the
polynomial

sλ = sλ(x1, . . . , xN) :=
∑

T

xT ,

where the sum is over all N -semistandard Young tableaux of shape λ. Besides, one
often considers a skew Schur function sλ/μ, where μ is an r-partition with μi ≤ λi ; it
is defined in a similar way w.r.t. the skew Ferrers diagram Fλ/μ obtained by remov-
ing from Fλ the cells of Fμ, along with its semistandard fillings. When needed, an
“ordinary” diagram Fλ is regarded as the skew one Fλ/μ, where μ = (0, . . . ,0), and
similarly for tableaux.

There is an important one-to-one correspondence between the r-partitions λ and
the r-element subsets Aλ of the set Z>0 of positive integers (or a set [n] for n ≥
λ1 + r). This is given by

λ = (λ1 ≥ · · · ≥ λr) ⇐⇒ Aλ := {λr + 1, λr−1 + 2, . . . , λ1 + r}. (6.1)

Let us form the directed square grid Γ = Γ (N) whose vertices are the points (i, j)

for i ∈ Z>0 and j ∈ [N ] and whose edges e are directed upwards or to the right, i.e.,
e = ((i, j), (i, j + 1)) or ((i, j), (i + 1, j)) (instead, one can take a finite truncation
of this grid). The vertices si := (i,1) and ti := (i,N) are regarded as the sources and
sinks in Γ , respectively, and we assign to each horizontal edge e at level h the weight
to be the indeterminate xh:

w(e) := xh for e = (
(i, h), (i + 1, h)

)
, i ∈ Z>0, h = 1, . . . ,N. (6.2)
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Now using the Gessel–Viennot model [11] (in a slightly different form), one can
associate to an N -semistandard skew Young tableau T with shape λ/μ the system
PT = (P1, . . . ,Pr) of directed paths in Γ , where for k = 1, . . . , r :

(6.3) Pk corresponds to (r + 1 − k)th row of T ; it goes from the source sk+μr+1−k
to

the sink tk+λr+1−k
; and for h = 1, . . . ,N , the number of horizontal edges of Pk

at level h is equal to the number of occurrences of h in the kth row of T .

So the sources used in PT are the si for i ∈ Aμ, and the sinks are the tj for
j ∈ Aλ. Observe that the semistandardness of T implies that these paths are pairwise
disjoint, i.e., PT is an (Aμ|Aλ)-flow in Γ . One can see the converse as well: if P is
an (Aμ|Aλ)-flow in Γ , then the filling T of Fλ/μ determined, in a due way, by the
horizontal edges of paths in P is just a semistandard skew Young tableau, and one has
PT = P . This gives a nice bijection between corresponding flows and tableaux. The
next picture illustrates an example of a semistandard Young tableau T with N = 6,
r = 5, λ = (6,5,3,3,2) and μ = (2,2,1,1,0), and its corresponding flow PT =
(P1, . . . ,P5).

Note that when T is “ordinary” (i.e., μ = 0), the sources used in PT are
s1, s2, . . . , sr . We say that this PT is a co-flag flow (it becomes a flag flow if we
reverse the edges of Γ and swap the sources and sinks).

The above bijection between the N -semistandard skew Young tableaux with shape
λ/μ and the (Aμ|Aλ)-flows in Γ (N) implies that (ordinary of skew) Schur functions
are “values” of the flow-generated function fw for Γ and the weighting w as in (6.2).
(It leads to no confusion that the weights are given on the horizontal edges of Γ

and belong to a polynomial ring.) This gives rise to establishing quadratic relations
on Schur functions, by properly translating SQ-relations on FG-functions. Below we
give two examples (the reader may try to extend the list of examples by using SQ-
relations from Sect. 4).

1. A particular relation on ordinary Schur functions with r = 2 can be derived
from PSQ-relations on quadruples. This reads as

s(k,i)s(�,j) = s(�,i)s(k,j) + s(j−1,i)s(�,k+1), (6.4)

where i < j ≤ k < �. Letting (i′, j ′, k′, �′) := (i +1, j +1, k+2, �+2) and f := fw ,
one can see that (6.4) turns into

f
([2]| i′k′)f

([2]| j ′�′) = f
([2]| i′�′)f

([2]| j ′k′) + f
([2]| i′j ′)f

([2]|k′�′),
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which, in view of i′ < j ′ < k′ < �′, is nothing else than the co-flag counterpart of
the AP4-relation (1.2) in case X = ∅. (Note that relation (6.4) can be generalized by
adding to each 2-component partition a fixed partition (λ1, . . . , λr ′) such that either
λr ′ ≥ � or i ≥ λ1.)

2. The next example is shown in [9] by use of Dodgson’s condensation formula
for matrix minors. It says that a partition (λ1, . . . , λr ) with λr > 0 yields

s(λ1,...,λr−1) s(λ2,...,λr ) = s(λ2,...,λr−1) s(λ1,...,λr ) + s(λ2−1,...,λr−1) s(λ1+1,...,λr−1+1).

(6.5)
For each of the six partitions λ(i) in this relation, i = 1, . . . ,6 (from left to right),
we take the set Aλ(i) as in (6.1) and form the corresponding subsets S(i), T (i) of
sources and sinks in Γ , respectively. In addition, for i = 1,3,5, we shift each of the
sets S(i), T (i) by one position to the right (which leads to equivalent sets of flows,
as well as their weights, in Γ ). Then we obtain the following six source-sink index
pairs (from left to right, as before), denoting X := {2, . . . , r − 1} and X′ := {λ2 + r −
1, λ3 + r − 2, . . . , λr−1 + 2}:

(
Xr|X′(λ1 + r)

)
,

(
1X| (λr + 1)X′),

(
X|X′),

(
1Xr| (λr + 1)X′(λ1 + r)

)
,

(
Xr| (λr + 1)X′),

(
1X|X′(λ1 + r)

)
.

Now define i := 1, k := r , i′ := λr + 1, k′ := λ1 + r . Then i < k, i′ < k′, X ∩ {i, k} =
∅, X′ ∩ {i′, k′} = ∅, and (6.5) turns into the following relation for f = fw:

f
(
Xk|X′k′)f

(
iX| i′X′) = f

(
X|X′)f

(
iXk| i′X′k′) + f

(
Xk| i′X′)f

(
iX|X′k′),

which is just Dodgson’s condensation formula (cf. (1.8)).

7 FG-functions over a semiring with division

In this section, we assume that S is a commutative semiring with division, i.e., S

contains 1 and the operation 
 is invertible (i.e., (S,
) is an abelian group). Two
important special cases mentioned in the Introduction are: the set R>0 of positive
reals, and the tropicalization Ltrop of a totally ordered abelian group L, in particular,
the set Rmax of reals with the operations ⊕ = max and 
 = +. It turns out that for
such a S, the set FG = FGn(S) of flag-flow-generated functions on 2[n] possesses
the following nice properties:

(7.1) (i) All these functions f can be generated by flows in one planar network,
namely, in the half-grid Γ

�
n (see Fig. 1);

(ii) FG coincides with the set of functions f : 2[n] → S satisfying P3-
relation (4.1) for all i, j, k,X (so (4.1) provides the other PSQ-relations);

(iii) FG has as a basis the set In of intervals in [n] (including the “empty
interval” ∅), called the standard basis for FG;

(iv) The values of f are expressed as (algebraic or tropical) Laurent polyno-
mials in its values on In.
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Here a basis for this FG is meant to be a collection I ′ ⊂ 2[n] such that the restriction
map f �→ f I ′ gives a bijection between FG and SI ′

; in other words, any function in
FG is determined by its values on I ′, and the latter values can be chosen arbitrarily
in S.

The facts exhibited in (7.1) are discussed in [4] (mostly for S := Rmax) and in
[2, 7] (concerning (iv)). The arguments given there can be directly extended to an
arbitrary S as above, and below we give a brief outline (which is sufficient to restore
the details with help of [4]). As before, an interval {p,p + 1, . . . , q} in [n] is denoted
by [p..q].
A. An important feature of Γ

�
n = (V ,E) is that for any nonempty interval I = [q..r]

in [n], there exists exactly one feasible flow φI from SI to the sinks t1, . . . , t|I |;
namely, φI goes through the vertices (i, j) occurring in the rectangle [r] × [r −
q + 1] (more precisely, satisfying i ≤ r , j ≤ r − q + 1 and i ≥ j ). Therefore,
given a weighting w : V → S, the values of f = fw on the nonempty intervals
[q..r] are viewed as

f
([q..r]) =

⊙

j≤i≤r, 1≤j≤r−q+1

w(i, j). (7.2)

Note that the number n(n+1)
2 of vertices of Γ

�
n is equal to the number of

nonempty intervals in [n] and system (7.2) is non-degenerate. So, using the di-
vision in S, denoted as /, we can in turn express the weights of vertices via the
values of f on the intervals. This is computed as

w(i, j) =
{

(f (Ii,j ) 
 f (Ii−1,j−1))/(f (Ii−1,j ) 
 f (Ii,j−1)) for i > j,

f (Ii,j )/f (Ii,j−1) for i = j,
(7.3)

denoting by Ii′,j ′ the interval [(i′ − j ′ + 1)..i′] and letting f (Ii′,0) := 1.
Thus, the correspondence w �→ fw gives a bijection between the set of weight-

ings w : V → S and the set SI +
n , where I +

n denotes the set of nonempty intervals
in [n].

B. We know that for a weighting w, the value of f = fw on any nonempty subset
A ⊆ [n] is represented by a “polynomial” in variables w(v), v ∈ V , namely, by
an ⊕-sum of products 
(w(v) : v ∈ V ′) for some subsets V ′ ⊆ V . Substituting
into this polynomial the corresponding terms from (7.3), we obtain an expression
of the form

f (A) = ⊕(Pk : k = 1, . . . ,N),

where each Pk is a “monomial” 
(f (I )
σk(I ) : I ∈ I +
n ) with integer (possibly

negative) degrees σk(I ). This means that f (A) is a Laurent polynomial (w.r.t. the
addition ⊕ and multiplication 
) in variables f (I), I ∈ I +

n .

(Analyzing possible flows in Γ
�
n , one can show that the degrees σk(I ) are

bounded and, moreover, belong to {−1,0,1,2}. This is proved in [4] for the trop-
ical case and can be directly extended to an arbitrary commutative semiring S

with division.)
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C. A simple fact (cf. [4]) is that any function f : 2[n] → R obeying TP3-relation (1.6)
is determined by its values on In. The proof of this fact is directly extended to S

in question, as follows (a sketch). If S ⊆ [n] is not an interval, define i := min(S),
k := max(S), X := S − {i, k}, and choose an element j in [i..k] − S. Then for a
function f on 2[n] obeying P3-relation (4.1), the value f (S) is expressed via the
values f (S′) on five sets S′ = Xi,Xj,Xk,Xij,Xjk. Since max(S′) − min(S′) <

max(S) − min(S), we can apply induction on max(S) − min(S).
Using this fact and reasonings above, we obtain that In is indeed a basis for

the functions in FGn(S) and that all these functions are generated by flows in
Γ

�
n (so they are bijective to weightings w : V → S, up to their values on ∅, and

possess the Laurentness property as above).

Next we explain how to extend the properties exhibited in (7.1) to the set
FGn,n′(S) of flow-generated functions on E n,n′

taking values in a commutative
semiring S with division. Instead of P3-relation (4.1) which has shown its impor-
tance in the flag flow case, a central role will now will be played by three special
SQ-relations. The first one is

f
(
Xik|X′k′) 
 f

(
Xj |X′)

= (
f

(
Xij |X′k′) 
 f

(
Xk|X′)) ⊕ (

f
(
Xjk|X′k′) 
 f

(
Xi|X′)), (7.4)

where i < j < k and X are as before, k′ ∈ [n′] and X′ ⊆ [n′] − {k′}. We refer to (7.4)
as the generalized P3-relation. (The pair of 2-patterns for it is equivalent to the pair of
1-patterns for (4.1). In fact, for our purposes it suffices to assume that k′ > max(X′).)
The second one is the SQ-relation symmetric to (7.4):

f
(
Xk|X′i′k′) 
 f

(
X|X′j ′)

= (
f

(
Xk|X′i′j ′) 
 f

(
X|X′k′)) ⊕ (

f
(
Xk|X′j ′k′) 
 f

(
X|X′i′

))
. (7.5)

And the third one is Dodgson’s type relation (4.7) for i, k,X, i′, k′,X′ such that
(cf. (1.8)):

k − i = k′ − i′, X = [i + 1..k − 1], and X′ = [
i′ + 1..k′ − 1

]
. (7.6)

Let Kn,n′(S) be the set of functions f : E n,n′ → S satisfying (7.4), (7.5), and (4.7)
with (7.6). Besides, define In,n′ to be the set of pairs (I ⊆ [n], I ′ ⊆ [n′]) such that
both I and I ′ are intervals and |I | = |I ′|; we refer to (I, I ′) as a (consistent) double
interval. Two subsets of double intervals are distinguished: let D1

n,n′ consist of those

(I, I ′) that the first interval I is initial (i.e., contains 1), and D2
n,n′ of those (I, I ′)

that the second interval I ′ is initial; we say that such an (I, I ′) is a pressed double
interval.

Theorem 7.1 For F := FGn,n′(S), K := Kn,n′(S), and D := D1
n,n′ ∪ D2

n,n′ , the fol-
lowing properties hold:

(i) K coincides with F.
(ii) D is a basis for the functions in F.
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(iii) For each f ∈ F, the values of f are Laurent polynomials (over S) in the values
f (I |I ′), (I, I ′) ∈ D.

Proof Instead of the half-grid Γ
�
n used in the flag flow case, we now work with the

grid Γ = Γn,n′ = (V ,E) (see Fig. 1). Let us associate to each vertex (k, k′) of Γ the
integer rectangle R(k, k′) := [k] × [k′] and the pressed double interval D(k, k′) :=
(I, I ′) ∈ D, where I = [i..k] and I ′ = [i′..k′] (then min{i, i′} = 1). (D(k, k′) is well-
defined due to |I | = |I ′|.) Observe that Γ has a unique (I |I ′)-flow φ: its vertices are
exactly those in R(k, k′). Therefore, for a weighting w : V → S, the FG-function
f = fw satisfies

f
(
D(k, k′)

) = 
(
w(p,q) : (p, q) ∈ R(k, k′)

)
.

Then w is expressed via the values of f on D as

w(k, k′) = (
f

(
D(k, k′)

) 
 f
(
D(k − 1, k′ − 1)

))

/(
f

(
D(k − 1, k′)

) 
 f
(
D(k, k′ − 1)

))
,

letting f (D(p,q)) := 1 if p = 0 or q = 0. Thus, w �→ fw gives a bijection between
the set of weightings w : V → S and SD+

, where D+ := D − {(∅,∅)}.
Next, let f ∈ K and consider a pair (S,S′) ∈ E n,n′

. Let i := min(S), k := max(S),
i′ := min(S′), k′ := max(S′). We show that f (S|S′) is determined by the values of f

on D, by considering three cases.

(a) Suppose that S is not an interval. Letting X := S − {i, k} and X′ := S′ − {k′},
choosing an element j ∈ [i..k] − S, and using (7.4), we express f (S|S′) via the
values of f on the other five pairs occurring there. Since for each of those five
pairs (S̃|S̃′), the number max(S̃) + max(S̃′) − min(S̃) − min(S̃′) is strictly less
than k + k′ − i − i′, we can apply induction and conclude that f (S|S′) is de-
termined by the values of f on those pairs in E n,n′

where the first term is an
interval.

(b) Suppose that S is an interval but S′ is not. Acting symmetrically to the previous
case and using (7.5), we conclude that f (S|S′) is determined by the values of f

on double intervals.
(c) Suppose that (S,S′) is a double interval but not a pressed one. Set ĩ := i − 1 and

ĩ′ := i′ − 1; then ĩ ≥ 1 and ĩ′ ≥ 1. Let X := S − {k} and X′ := S′ − {k′} and
apply (4.7) to ĩ, k,X, ĩ′, k′,X′. Then f (S|S′) is expressed via the values of f on
five double intervals (I |I ′) such that max(I ) + max(I ′) + min(I ) + min(I ′) is
strictly less than k + k′ + i + i′. So we can apply induction.

As a result, we obtain that any function f ∈ K is determined by its values on D. On
the other hand, we have seen that any choice of f0 : D+ → S determines a (unique)
weighting w in Γ , which in turn determines a function f ∈ F with f D+ = f0. These
observations imply that K = F and that D is a basis for F. The Laurentness concern-
ing F and D is clear. �

In light of this theorem, when we deal with a commutative semiring with division,
any SQ-relation is a consequence of the SQ-relations of three types: the generalized
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P3-relation, its symmetric one, and Dodgson’s type relation. In particular, this is so
when we deal with SQ-relations on minors of totally positive matrices.

One more property involving the basis D = D1
n,n′ ∪ D2

n,n′ extends the correspond-
ing fact for totally positive matrices.

Proposition 7.2 Let A = (aij ) be a real n × n′ matrix (regarding i as the col-
umn index) and let f A(I |I ′), (I, I ′) ∈ E n,n′

, be the function of minors of A. Sup-
pose f A(I |I ′) �= 0 for all pressed double intervals (I, I ′) ∈ D. Then f A is a flow-
generated function.

Proof Let w be the weighting on vertices of the grid Γn,n′ determined by the values
of f A on D, as in the proof of Theorem 7.1 (w is well-defined since f A is nowhere
zero within D). Let A′ be the n× n′ matrix obtained from w by Lindström’s method.
Then the minors of A and A′ related to D coincide; so it suffices to show that A is
determined by these minors. To see the latter, observe that the entries aij with i = 1
or j = 1 are such minors. Suppose we have already “restored” the entries aij for a
set Q of index pairs such that ij ∈ Q, i′ ≤ i, and j ′ ≤ j imply i′j ′ ∈ Q; we assume
that Q contains all ij with min{i, j} = 1 as well. Then, unless Q = [n] × [n′], there
exists a pair ij /∈ Q such that Q contains each pair i′j ′ �= ij with i′ ≤ i and j ′ ≤ j .
Let (I, J ) and (I ′, J ′) be the pressed double intervals with max(I ) = i, max(J ) = j ,
max(I ′) = i−1 and max(J ′) = j −1. Then the product aij ·f A(I ′|J ′) is expressed as
a polynomial in the value f A(I |J ) and entries apq with pq ∈ Q. Now f A(I ′|J ′) �= 0
enables us to compute aij (and the new set Q ∪ {aij } of “restored” entries satisfies
the above condition). �

We conclude this paper with extending the SQ-relations to minors of matrices.

Proposition 7.3 Let A be an n × n′ matrix over a commutative ring R. Then the
function f A of minors of A obeys all SQ-relations for n,n′.

Proof Assuming R = R, consider the parameterized matrix P(t) = A + tB , where
B is an arbitrary totally positive n′ × n matrix and t ∈ R. (By the way, such a B

can be generated by use of the grid Γn,n′ with a weighting in R>0.) When t is large
enough, P(t) becomes totally positive, and therefore the function f(t) := f P(t) of its
minors becomes an FG-function, implying that such an f obeys all SQ-relations S.
Substituting f into S gives a polynomial Q in t . Since Q turns into zero when t is
large, Q is the zero polynomial. Hence f(0) = f A obeys S as well (when R = R).
Moreover, Q at 0 is a polynomial, with integer coefficients, in the entries aij of the
matrix A (each being regarded as indeterminate). So it is the zero polynomial in aij ,
and we can take an arbitrary commutative ring for R, obtaining the result. �
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Note Added in Proof As is shown in the arxiv version of this paper (see arXiv:1102.2578v2 [math.CO],
the Appendix), the function of minors of any matrix over a commutative ring is an FG-function.

http://arxiv.org/abs/arXiv:1102.2578v2
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