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Abstract Additive functions on translation quivers have played an important role in
the representation theory of finite-dimensional algebras, the most prominent ones
are the hammock functions introduced by S. Brenner. When dealing with cluster
categories (and cluster-tilted algebras), one should look at a corresponding class of
functions defined on stable translation quivers, namely the cluster-additive ones. We
conjecture that the cluster-additive functions on a stable translation quiver of Dynkin
type An,Dn,E6,E7,E8 are non-negative linear combinations of cluster-hammock
functions (with index set a tilting set). The present paper provides a first study of
cluster-additive functions and gives a proof of the conjecture in the case An.

Keywords Translation quiver · Additive function · Cluster-additive function ·
Hammocks · Cluster-hammocks · Dynkin quiver · Cluster category · Cluster-tilted
algebra

A translation quiver is of the form Γ = (Γ0,Γ1, τ ), where (Γ0,Γ1) is a locally finite
quiver say with mxy arrows x → y, and τ : (Γ0 \ Γ

p

0 ) → Γ0 is an injective function
defined on the complement of a subset Γ

p

0 ⊆ Γ0, such that for any pair of vertices
y, z ∈ Γ0, with z /∈ Γ

p

0 one has mτz,y = my,z. The vertices in Γ
p

0 are said to be the
projective vertices, those not in the image of τ the injective vertices. If there are
neither projective nor injective vertices, then Γ is said to be stable. A typical exam-
ple of a translation quiver is the Auslander–Reiten quiver of a finite-dimensional k-
algebra A, where k is an algebraically closed field. Such an Auslander–Reiten quiver
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is equipped with an additive function on the set of vertices with values in the set of
positive integers, its value at a vertex x is the length of the corresponding A-module.
Here, a function f : Γ0 → Z is said to be additive provided

f (z) + f (τz) =
∑

y∈Γ0

myzf (y), for all z ∈ Γ0 \ Γ
p

0 .

The importance of dealing with additive functions on translation quivers is well-
known since a long time, of particular relevance have been the hammock functions
introduced by Brenner [3], see also [14]; hammock functions for vertices of the trans-
lation quivers of the form Γ = ZΔ with Δ a Dynkin quiver have been displayed
already by Gabriel [9] in 1980.

The present note is concerned with combinatorial features of cluster categories
(introduced by Buan, Marsh, Reineke, Reiten, Todorov [4], in the special case An

also by Caldero, Chapoton, Schiffler [7]) and cluster-tilted algebras (introduced by
Buan, Marsh, Reiten [5]), and for simplicity we again will assume that we work over
an algebraically closed field. The cluster categories are triangulated categories with
Auslander–Reiten triangles, thus we may consider the corresponding Auslander–
Reiten quivers: these are now stable translation quivers. Thus, let Γ be a stable trans-
lation quiver. Instead of looking at additive functions on Γ , we now will be interested
in what we call cluster-additive functions.

We use the following notation: Any integer z can be written as z = z+ − z− with
non-negative integers z+, z− such that z+z− = 0 (thus z+ = max{z,0} and z− =
max{−z,0}). A function f : Γ0 → Z is said to be cluster-additive on Γ provided

f (z) + f (τz) =
∑

y∈Γ0

myzf (y)+, for all z ∈ Γ0.

Linear combinations of cluster-additive functions usually are not cluster-additive.
Theorems 1 and 2 deal with this topic. Here, we assume that we deal with a stable
translation quiver Γ such that any vertex is starting point of an arrow (we call such a
stable translation quiver proper; in the terminology of Riedtmann [13], it means that
we assume that no component of Γ has tree class A1). Theorem 1 provides a criterion
for sums of cluster-additive functions to be cluster-additive again: If f,g are cluster-
additive functions on Γ , then f + g is cluster-additive if and only if f (x)g(x) ≥ 0
for all vertices x (in this case, we say that f and g are compatible). Theorem 2 shows
that the difference f − g of cluster-additive functions f,g is cluster-additive if and
only if g(x)+ ≤ f (x)+ and g(x)− ≤ f (x)− for all vertices x (if this is the case we
write g ≤ f ).

The remaining parts of the paper deals with translation quivers related to those
of the form ZΔ where Δ is assumed to be a finite directed quiver, or often even a
Dynkin quiver. Recall that any locally finite directed quiver Δ gives rise to a stable
translation quiver ZΔ with vertex set Δ × Z, with arrows (α, i) : (ξ, i) → (η, i) and
(α∗, i) : (η, i) → (ξ, i+1) for any arrow α : ξ → η in Δ and with translation (ξ, i) �→
(ξ, i − 1). Theorem 3 asserts that a cluster-additive function on ZΔ with Δ a finite
directed quiver is uniquely determined by its values on a section and that these values
are arbitrary integers. Thus, if Δ has n vertices, we may identify in this way the set
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of cluster-additive functions on Γ with the set Z
n; but note that this is just a set-

theoretical bijection!
Our main interest lies in the translation quivers ZΔ where Δ is a Dynkin-quiver,

thus the underlying graph is one of the simply laced Dynkin diagrams An, Dn, E6,
E7, or E8. Theorem 4 asserts that for Δ of type An, any cluster-additive function
on ZΔ is a non-negative linear combination of cluster-hammock functions (they are
introduced in Sect. 5). We conjecture that the same assertion holds for all Dynkin
cases. This would be an analog of an old theorem of Butler [6] which asserts that
for a representation-finite algebra A, the additive functions on the Auslander–Reiten
quiver of A are the linear combinations of the hammock functions.

Cluster-additive functions arise naturally in the context of cluster categories and
cluster-tilted algebras (see Sect. 10), thus one may be tempted to focus the attention
to cluster-additive functions on stable translation quivers Γ such as the Auslander–
Reiten quiver of a cluster category, a typical example is ZΔ/F where Δ is a Dynkin
quiver and F = τ−1[1]. It may come as a surprise that instead of looking at ZΔ/F ,
we prefer to consider cluster-additive functions on its cover ZΔ. After all, every
cluster-additive function on ZΔ/F lifts to a cluster-additive function on ZΔ, thus
we deal with a setting which on a first sight appears to be more general. But we
conjecture that all the cluster-additive functions on ZΔ actually are F -invariant, so
that we would get the shift F for free.

The experienced reader will observe that the cluster-additive functions exhibit a lot
of typical features known in cluster theory (as started by Fomin and Zelevinsky [8]
and developed further by a large number of mathematicians): that negative numbers
arise only seldom, that they have to be ignored in some calculations, that there is a
playing field which concerns only non-negative numbers, and if the ball leaves the
field, it is bounced back immediately . . . .

One of the referees of the paper suggested to mention here the “frieze functions”
introduced by Assem, Reutenauer, Smith [1], since they also assign integers to ver-
tices in Auslander–Reiten quivers; the frieze functions are related to the numerators
of cluster variables, whereas the cluster additive functions are related to the denomi-
nators.

1 Preliminaries

Let Γ be a stable translation quiver. We compare additivity and cluster-additivity and
look for the image of a cluster-additive function.

A special cases should be discussed beforehand, namely the stable translation
quivers Γ without arrows. In this case, a function f : Γ0 → Z is cluster-additive
if and only if f is additive, if and only if f (τz) = −f (z) for all vertices z. If we
consider the τ -orbit of the vertex z, then two possibilities have to be distinguished:
either the τ -orbit has an odd number of elements, then we must have f (z) = 0 for any
cluster-additive function on Γ , or else the τ -orbit is infinite or has an even number
of elements, then f (z) is an arbitrary integer, and determines the values of f on the
complete τ -orbit if we label the vertices as xi with i ∈ Z such that τxi = xi−1, the
cluster-additive functions are the functions of the form f (xi) = (−1)ia, where a is a
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fixed integer. Note that this implies that in this special case, the set of cluster-additive
functions is closed under (pointwise) addition and subtraction.

Let us call a stable translation quiver Γ proper, provided any vertex is starting
point of at least one arrow (in the terminology of Riedtmann [13], this can be formu-
lated as follows: no component of Γ is of tree class A1). Observe that a connected
stable translation quiver with at least one arrow is always proper! The stable transla-
tion quivers we are interested in will always be proper. We start with some properties
of functions f : Γ0 → Z. The first property is obvious:

(1) A function f on Γ0 with values in N0 is cluster-additive if and only if it is additive.

(2) If Γ is a proper translation quiver, then any function f : Γ0 → Z which is both
additive and cluster-additive takes values in N0.

Proof Let y0 ∈ Γ0. Since Γ is proper, any vertex is the starting point of an arrow,
thus there is an arrow y0 → z. Now

f (z) + f (τz) =
∑

y

myzf (y)+ =
∑

y

myzf (y)

implies that
∑

y myz(f (y)+ − f (y)) = 0. However we have f (y)+ − f (y) ≥ 0 for
all y. This shows that for myz 	= 0 we must have f (y)+ = f (y). Since my0,z 	= 0, we
see that f (y0)

+ = f (y0). Thus f (y0) ≥ 0. �

(3) Let f be cluster-additive. Let f (z) < 0. Then f (τz) ≥ −f (z) > 0.

Proof By definition, f (τz) + f (z) is a sum of non-negative numbers, thus non-
negative. �

This shows:

(4) Any cluster-additive function with only non-positive values is the zero function.

(5) Let Γ = ZΔ with Δ of Dynkin type. Any cluster-additive function on Γ with only
non-negative values is the zero function.

Proof Let f be cluster-additive on Γ with only non-negative values. Then f is addi-
tive, but according to [11] any additive function on Γ with only non-negative values
is the zero function. �

It follows from (1), (3) and (5) that there are many stable translation quivers with-
out non-zero cluster-additive functions. For example, if Δ is a Dynkin quiver, then
the only cluster-additive function f on Γ = ZΔ/τ is the zero function. Namely, (3)
asserts that f only takes non-negative values, thus f is additive by (1). This means
that f is an additive function on ZΔ with non-negative values. According to (5) this
implies that f is the zero function.
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2 Sums of cluster-additive functions

The sum of two cluster-additive functions usually will not be cluster-additive, a typi-
cal example is the following:

Example Let Γ = ZA2.

As we have mentioned, if Γ is a stable translation quiver of tree class A1, then the
set of cluster-additive functions on Γ is closed under addition. Thus, let us assume
now that Γ is proper.

Two cluster-additive functions f,g on Γ are said to be compatible provided
f (x)g(x) ≥ 0 for all vertices x. Compatibility can be characterized in many different
ways (the proof is obvious):

Lemma Let f1, . . . , fn be cluster-additive functions on Γ . The following conditions
are equivalent:

(i) f1, . . . , fn are pairwise compatible.
(ii) If fi(x) < 0 for some index i and some vertex x, then fj (x) ≤ 0 for 1 ≤ j ≤ n.

(iii) If fi(x) > 0 for some index i and some vertex x, then fj (x) ≥ 0 for 1 ≤ j ≤ n.
(iv) Given a pair i 	= j , there is no vertex x with fi(x) < 0 and fj (x) > 0.

Theorem 1 Let f1, . . . , fn be cluster-additive functions on a proper stable transla-
tion quiver Γ . Then

∑
fi is cluster-additive if and only if the functions are pairwise

compatible.

Before we start with the proof, let us isolate a decisive property of the operator
z �→ z+.

Lemma Let a1, . . . , an be integers. Then

(a) (
∑

i ai)
+ ≤ ∑

i a
+
i .

(b) Equality holds if and only if either all ai are non-negative or all are non-positive.
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Proof Let ai ≥ 0 for 1 ≤ i ≤ m and ai ≤ 0 for m + 1 ≤ i ≤ n, let a = ∑n
i=1 ai .

Then
∑n

i=1 a+
i = ∑m

i=1 ai ≥ ∑n
i=1 ai = a and therefore

∑n
i=1 a+

i ≥ a+. If we have
equality, and a ≥ 0, then 0 = a − ∑n

i=1 a+
i = ∑n

i=m+1 ai shows that ai = 0, for
m + 1 ≤ i ≤ n (since these ai are non-positive). Thus all the ai are non-negative in
this case.

If a ≤ 0, then
∑m

i=1 ai = 0 shows that these ai = 0, since all ai are non-negative
for 1 ≤ i ≤ m. In this case, all ai are non-positive.

Also the converse holds: If all ai are non-negative, then
∑n

i=1 a+
i = ∑n

i=1 ai =
(
∑n

i=1 ai)
+. If all ai are non-positive, then also

∑n
i=1 ai is non-positive, and∑n

i=1 a+
i = 0 = (

∑n
i=1 ai)

+. �

Proof of Theorem 1 Since we assume that Γ is proper, we know that for any vertex
y in Γ , there is a vertex z with myz 	= 0.

First let us assume that f1, . . . , fa are pairwise compatible and let f = ∑
i fi . We

claim that for all vertices y of Γ

f (y)+ =
∑

i

fi(y)+. (∗)

Let T be the set of vertices x ∈ Γ0 such that fi(x) < 0 for at least one i. If y ∈ T ,
then fi(y) ≤ 0 for all 1 ≤ i ≤ n, since we deal with pairwise compatible functions. It
follows that f (y) = ∑

i fi(y) < 0 and therefore f (y)+ = 0. But also fi(y)+ = 0 for
all i, this yields (∗) in case y ∈ T .

Now assume y /∈ T . Then fi(y) ≥ 0 for all i, thus f (y) = ∑
i fi(y) ≥ 0, therefore

f (y)+ = f (y) =
∑

i

fi(y) =
∑

i

fi(y)+,

and we see that (∗) is satisfied also in this case.
Now consider some vertex z.

f (τz) + f (z) =
∑

i

fi(τz) +
∑

i

fi(z) =
∑

i

(
fi(τz) + fi(z)

)

=
∑

i

(∑

y

myzfi(y)+
)

=
∑

y

myz

∑

i

fi(y)+

=
∑

y

myzf (y)+,

where we use that all the functions fi are cluster additive as well as the equality (∗)
for all y. This shows that f is cluster additive.

Now let us assume that f = ∑
fi is cluster additive. Let z be a vertex of Γ . Then,

as above, we have

f (τz) + f (z) =
∑

i

fi(τz) +
∑

i

fi(z) =
∑

i

(
fi(τz) + fi(z)

)
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=
∑

i

(∑

y

myzfi(y)+
)

=
∑

y

myz

∑

i

fi(y)+,

thus

0 = f (τz) + f (z) −
∑

i

myzf (y)+

=
∑

y

myz

∑

i

fi(y)+ −
∑

y

myzf (y)+

=
∑

y

myz

(∑

i

fi(y)+ − f (y)+
)

.

According to assertion (a) of the Lemma, all the brackets in the last line are non-
negative, thus all the summands myz(

∑
i fi(y)+ − f (y)+) are non-negative. Since

their sum is zero, all these summands are zero.
It follows that for any y we have

∑

i

fi(y)+ = f (y)+

(since there is z with myz 	= 0). According to the assertion (b) of the Lemma, we
conclude that all the values fi(y) for 1 ≤ i ≤ n are non-negative or all are non-
positive. But this means that the functions f1, . . . , fn are compatible. �

3 Subtraction

Let us introduce the following partial ordering on the set of cluster additive functions
on Γ . If f,g are cluster additive functions on Γ , we write g ≤ f provided g(x)+ ≤
f (x)+ as well as g(x)− ≤ f (x)− for all vertices x of Γ . (Note that g ≤ f implies
that |g(x)| ≤ |f (x)| for all vertices x.)

Theorem 2 Let f,g be cluster additive functions on the proper stable translation
quiver Γ . Then f − g is cluster additive if and only if g ≤ f .

Proof First, let us assume that g ≤ f . We claim that

(f − g)(x)+ = f (x)+ − g(x)+

for all vertices x. Namely, if g(x) > 0, then g(x) = g(x)+ ≤ f (x)+, and therefore
f (x) = f (x)+, thus g(x) ≤ f (x) and therefore (f − g)(x) = f (x) − g(x) ≥ 0, thus

(f − g)(x)+ = (f − g)(x) = f (x) − g(x) = f (x)+ − g(x)+.
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Also, if g(x) < 0, then g(x)+ = 0, and 0 < −g(x) = g(x)− ≤ f (x)−, thus f (x)+ =
0. Also, f (x)− = −f (x) and therefore g(x) ≥ f (x), thus (f − g)(x) = f (x) −
g(x) ≤ 0. It follows that

(f − g)(x)+ = 0 = f (x)+ − g(x)+.

Finally, if g(x) = 0, then also g(x)+ = 0 and

(f − g)(x)+ = f (x)+ = f (x)+ − g(x)+.

Let z be a vertex of Γ , then

(f − g)(τz) + (f − g)(z) = f (τz) − f (z) + g(τz) − g(z)

=
∑

y

myzf (y)+ −
∑

y

myzg(y)+

=
∑

y

myz(f − g)(y)+.

This shows that f − g is cluster additive.
Conversely, assume that f − g is cluster additive. Since the sum f = (f − g) + g

of the cluster additive functions f − g and g is cluster additive, we know by The-
orem 1 that f − g and g are compatible functions, thus (f − g)(x)g(x) ≥ 0 for
all vertices x, thus f (x)g(x) ≥ g(x)g(x) for all x. If g(x) > 0, then this implies
that f (x) ≥ g(x) > 0, thus f (x)+ ≥ g(x)+ and f (x)− = g(x)−. If g(x) < 0, then
f (x) ≤ g(x) < 0, therefore g(x)− = −g(x) ≤ −f (x) = f (x)− and g(x)+ = 0 =
f (x)+. Of course, if g(x) = 0, then g(x)+ = 0 ≤ f (x)+ and g(x)− = 0 ≤ f (x)−.
This shows that g ≤ f . �

4 The restriction of cluster additive functions to a section

We consider now cluster additive functions on a translation quiver Γ = ZΔ, where
Δ is a (usually finite) directed quiver. The subset Δ0 × {0} is a section of Γ (by
definition, the sections of ZΔ are the subsets η(Δ′

0 × {0}), where η : ZΔ′ → ZΔ is
an isomorphism of translation quivers).

Theorem 3 Let Δ be a finite directed quiver. Any function f : Δ0 × {0} → Z can be
extended uniquely to a cluster additive function on ZΔ.

This may be reformulated as follows:

Corollary 1 The restriction furnishes a bijection between the set of cluster additive
functions on ZΔ and the functions f : Δ0 × {0} → Z.

Proof of Theorem 3 Let ξ be a source in Δ. Then f is defined for (ξ,0) and all its
direct successors, thus we use the defining property of a cluster additive function in
order to define f (ξ,1). Inductively we define in this way f (η, j) for all vertices η of
Δ and all j > 0. The dual procedure yields the values f (η, j) for j < 0. �
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Remark 1 Note that we need here that Δ is finite. For example, if Δ is the linearly
ordered quiver of type A

∞∞, then any function f : ZΔ → N0 which is constant on
the sections Δ × {i}, for all i ∈ Z, is additive, thus cluster additive and of course not
determined by the value taken on one of these sections.

We also may look at Γ = ZΔ with Δ a locally finite (but not necessarily finite)
directed quiver. A section S of Γ may be said to be generating provided we obtain all
vertices from S of Γ using reflections (see [2]) at sinks and at sources. If Δ a finite,
then any section is generating, but in general not. If Γ = ZA∞∞, then a section S is
generating if and only if no arrow in S belongs to an infinite path. The corollary can
be generalized as follows: Let S be a generating section. Then the restriction function
f �→ f |S is bijective.

Remark 2 The extension of a function f : Δ0 ×{i} → Z to a cluster additive function
on Γ can be achieved by using what one may call cluster reflections. Given a locally
finite quiver Δ and a vertex x of Δ, which is a sink or a source, then the cluster reflec-
tion σx maps any function f : Δ0 → Z to the function σxf with (σxf )(y) = f (y)

for y 	= x and (σxf )(x) = −f (x) + ∑
y mxyf (y)+ and σxf should be considered

as a function on (σxΔ)0, where σxΔ is obtained from Δ by changing the orienta-
tion of all the arrows involving x (thus replacing a source by a sink and vice versa).
Starting with a source x of Δ = Δ × {i}, then we may identify σxΔ with the section
obtained by deleting x and adding τ−1x; given a function f : Δ → Z, and looking
for its cluster additive extension, then we have to use σxf on the section σxΔ.

Altogether we see that the restrictions of a cluster additive function on Γ to the
various sections of Γ are obtained from each other by a sequence of cluster reflec-
tions.

5 Cluster-hammock functions

Here we introduce some basic cluster additive functions. As before, we consider a
translation quiver Γ = ZΔ, where Δ is a finite directed quiver, but later we will
assume that Δ is a Dynkin quiver.

Recall the definition of the left hammock function h′
p for a vertex p of Γ (and

that left hammock functions with finite support are called hammock functions). First,
h′

p(p) = 1. Second, if z is not a successor of p, then h′
p(z) = 0. Third, assume that

h′
p(y) is defined for all proper predecessors y of z; if there is an arrow y → z with

h′
p(y) > 0, then

h′
p(z) = −h′

p(τz) +
∑

y

myzh
′
p(y),

otherwise h′
p(z) = 0.

It is well-known that all the values h′
p(z) are non-negative; the support of h′

p will
be denoted by Hp . If Δ is a Dynkin quiver (thus of type An, Dn, E6, E7, or E8), then
Hp is finite and there is a unique vertex νp with h′

p(νp) 	= 0 such that any vertex y
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with h′
p(y) 	= 0 is a predecessor of νp; the map ν : Γ0 → Γ0 is called the Nakayama

shift (see [9], where also typical hammock functions are displayed; but note that in
contrast to the definition given in this paper, but also in [3] and [14], Gabriel extends
the function h′

p|Hp to an additive function on all of ZΔ). The shift ντ−1 is usually

denoted by [1], the shift ντ−2 by F .
We insert here that ZΔ for Δ a Dynkin quiver may be interpreted as the

Auslander–Reiten quiver of the derived category Db(mod A), where A is the path
algebra of the opposite quiver of Δ, see [10]. Given an indecomposable A-module
X, we denote by [X] the corresponding vertex in ZΔ. In this interpretation, [1] cor-
responds to the shift functor of the derived category and F to the functor [1]τ−1 (also
denoted by F ) which is used in order to define the corresponding cluster category,
see [4].

If Δ is connected and not one of these Dynkin quivers, then the support Hp of h′
p

is infinite, for any vertex p of ZΔ.
For any vertex x of Γ , we now define a cluster additive function hx as follows:

Let S be any section containing x, let hx(x) = −1 and hx(y) = 0 for y 	= x in S .
According to Theorem 3, we know that hx extends in a unique way to a cluster

additive function hx on Γ and this extension is independent of the choice of S . We
call hx the cluster hammock function for the vertex x.

Proof of the independency There is a section S ′ with x the unique sink of S ′ and a
section S ′′ with x the unique source of S ′′, and all other sections containing x are
obtained from S ′ or also S ′′ by reflections at sinks or sources different from x. The
corresponding cluster reflections σy do not change the value 0. �

Note that the proof shows that hx(y) = 0 for all vertices y 	= x which belong to
the convex hull of S ′ and S ′′.

From now on, we will assume that Δ is a Dynkin quiver (if not stated otherwise).

Lemma Let Γ = ZΔ with Δ a Dynkin quiver, then hx is F -invariant. The support
of hx consists of

• the F -orbit of x and hx takes the value −1 on these vertices, as well as
• the F -orbits of the hammock Hτ−1x and here hx takes positive values, namely

hx(y) = h′
τ−1x

(y) for y ∈ Hτ−1x.



J Algebr Comb (2012) 36:475–500 485

Here is a schematic illustration, where we write p = τ−1x (the vertical dotted
lines mark a fundamental domain for the action of F ):

We have mentioned that hx is F -invariant: hx(y) = hx(Fy) for all y ∈ Γ . But this
means also that hx = hFx . Thus, when dealing with a set of cluster hammock func-
tions, we may restrict to look at those indexed by elements in some fixed fundamental
domain for F .

Let us mention a property of the hammock functions h′
p (and of hτp) which will

be used in the next section. If there is a sectional path from p to a vertex y, then
h′

p(y) ≥ 1 (or better: in this case, h′
p(y) is the number of sectional paths from p

to y).
We call a subset T of ZΔ confined provided there is a section S such that T is

contained in the convex hull of S and τ S[1]; note that this is the Auslander–Reiten
quiver Γ (A) of a hereditary algebra A of type Δ, with S the indecomposable projec-
tive A-modules, and τ S[1] the indecomposable injective A-modules.

We call a subset T of Γ a tilting set provided we can identify Γ as a translation
quiver with Db(mod A) for some hereditary algebra A such that T are just the posi-
tions of the indecomposable direct summands of a tilting A-module. Subsets of tilting
sets are called partial tilting sets.

Lemma Let X,Y be non-isomorphic indecomposable A-modules. Then Ext1(X,Y )

= 0 if and only if h[Y ]([X]) = 0.

Proof There is the Auslander–Reiten formula Ext1(X,Y ) � D Hom(τ−Y,X) and
dim Hom(τ−Y,X) = h′

[τ−1Y ]([X]) = h[Y ]([X]). �

Corollary A subset T of Γ is partial tilting if and only if T is confined and hx(x
′) =

0 for all pairs x 	= x′ in T .

6 Non-negative linear combinations of cluster hammock functions

Again, we deal with a translation quiver Γ = ZΔ, where Δ is a Dynkin quiver, say
with n vertices.

Proposition 1 Consider a set h1, . . . , hn of cluster hammock functions. These func-
tions are pairwise compatible if and only if there is a tilting set T such that any hi is
of the form hx with x ∈ T .



486 J Algebr Comb (2012) 36:475–500

Proof Let T be a tilting set and x, x′ ∈ T . We have to show that hx,hx′ are com-
patible. This is clear if hx = hx′ . Thus assume that hx 	= hx′ , thus x and x′ do not
belong to the same F -orbit of Γ0. Let hx′(y) < 0, then y belongs to the F -orbit
of x′, thus hx(y) = hx(x

′) = 0. This shows that hx(y)hx′(y) = 0. Similarly, we
see: if hx(y) < 0, then hx(y)hx′(y) = 0. For the remaining vertices y we have both
hx(y) ≥ 0 and hx′(y) ≥ 0, thus also hx(y)hx′(y) ≥ 0.

Conversely, assume that the functions h1, . . . , hn are pairwise compatible. First,
we show that for hi 	= hj , and hj = hy for some vertex y, then hi(y) = 0. Namely,
hi(y)hy(y) = hi(y)hj (y) ≥ 0, and hy(y) = −1 shows that hi(y) ≤ 0. But hi(y) < 0
would imply that hi = hy , a contradiction. Thus hi(y) = 0.

Now, let h1 = hx for some x ∈ Γ0. Let S be the section in Γ such that τ−2F−1x

is the unique source. Let S ′ = S[1], this is the section with unique source τ−1x.
Clearly, the convex hull F of S and S ′ is a fundamental domain for F , thus hi = hxi

for some xi ∈ F . Since τ−1x is the unique source of S ′, we see that hx(z) > 0 for all
z ∈ S ′. Assume that some xj belongs to S ′, then x 	= xj , thus hx 	= hxj

(since x, xj

belong to the fundamental domain F of F ), but then we know that hx(xj ) = 0, a
contradiction. In this way, we see that all the vertices xi belong to the convex hull of
S and τ S ′ = τ S[1], thus the set T = {x1, . . . , xn} is confined. Since also hx(x

′) = 0
for x 	= x′ in T , we see that T is a tilting set. �

Corollary A linear combination h = ∑
x∈T nxhx with positive integers nx is cluster

additive if and only if T is a partial tilting set.

Proof This is a direct consequence of Theorem 1 and Proposition 1. �

Proposition 2 Let f = ∑
x∈T nxhx for some tilting set T and nx ∈ N0, then f (x) =

−nx for x ∈ T and f (y) ≥ 0 provided the intersection of T and the F -orbit of y is
empty. Thus

f =
∑

x∈T
nxhx = −

∑

x∈T
f (x)hx =

∑

x∈T
f (x)−hx =

∑

x∈Γ 0

f (x)−hx,

where Γ 0 is the convex hull of some section S and τ S[1].

Conjecture Let Γ = ZΔ where Δ is a Dynkin quiver and let f be cluster additive
on Γ . Then f is a non-negative linear combination of cluster hammock functions
(and therefore of the form

∑

x∈T
nxhx

for a tilting set T and integers nx ∈ N0, for all x ∈ T ).

If this conjecture is true, then any cluster additive function satisfies the following
properties:

(a) f is F -invariant.
(b) {x ∈ Γ0 | f (x) < 0} is the union of the F -orbits of a partial tilting set.
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(c) There is a partial tilting set T with

f =
∑

x∈T
f (x)−hx.

A proof of the conjecture in the case An will be given in Sect. 9. We also note that
it is not difficult to exhibit explicitely all the cluster additive functions on ZΔ, where
Δ is a quiver of type D4, thus verifying the conjecture also in this case.

7 The rectangle rule

Lemma Let f be cluster additive on the following translation quiver with s ≥ 1,
t ≥ 1:

Then for y = y(s, t) with f (x) ≤ 0, we have

f (y) = f (x)− +
∑

1≤i≤s

f (ai)
− + f (as)

+ +
∑

1≤j≤t−1

f (bj )
− + f (bt )

+.

In particular, f (y) ≥ f (x)− ≥ 0.

Proof By induction on s and t .
If s = t = 1, then f (y) = f (a1)

+ + f (b1)
+ − f (x).

Now assume that we know the formula for some s, t . Let us increase s by 1, thus
we deal with

For t = 1, we have x′ = as and y′ = as+1, otherwise x′ = y(s, t − 1) and y′ =
y(s + 1, t − 1).



488 J Algebr Comb (2012) 36:475–500

Now, consider first the case t = 1. Then (since f (y) ≥ 0):

f
(
y′′) = f

(
y′)+ + f (y) − f

(
x′)

= f (as+1)
+ + f (x)− +

∑

1≤i≤s−1

f (ai)
− + f (as)

+

+
∑

1≤j≤t−1

f (bj )
− + f (bt )

+ − f (as)

= f (as+1)
+ + f (x)− +

∑

1≤i≤s

f (ai)
− +

∑

1≤j≤t−1

f (bj )
− + f (bt )

+

where the last equality comes from f (as)
+ − f (as) = f (as)

−.
Second, let t ≥ 2. Then both f (y) ≥ 0, f (y′) ≥ 0, thus

f
(
y′′) = f

(
y′) + f (y) − f

(
x′)

= f (x)− +
∑

1≤i≤s

f (ai)
− + f (as+1)

+ +
∑

1≤j≤t−2

f (bj )
− + f (bt−1)

+

+ f (x)− +
∑

1≤i≤s−1

f (ai)
− + f (as)

+ +
∑

1≤j≤t−1

f (bj )
− + f (bt )

+

− f (x)− −
∑

1≤i≤s−1

f (ai)
− − f (as)

+ −
∑

1≤j≤t−2

f (bj )
− − f (bt−1)

+

= f (x)− +
∑

1≤i≤s

f (ai)
− + f (as+1)

+ +
∑

1≤j≤t−1

f (bj )
− + f (bt )

+,

as we want.
By symmetry, the same argument works, if we increase t instead of s. This com-

pletes the proof. �

Extended version Let f be cluster additive on the following translation quiver with
s ≥ 1, t ≥ 1:

Then for y = y(s + 1, t) with f (x) ≤ 0, we have

f (y) = f (x)− +
∑

1≤i≤s

f (ai)
− +

∑

1≤j≤t−1

f (bj )
− + f (bt )

+.
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Proof We add a vertex as+1 and arrows as → as+1 and as+1 → d , so that we obtain
a rectangle. Also, we extend f to be defined on the rectangle by setting f (as+1) = 0.
Then the extended function satisfies the cluster additivity condition on all the meshes
of the rectangle and we can apply the lemma.

�

There is also a corresponding double extended version for dealing with ZΔ where
Δ is of type As+t+1.

Double extended version Let f be cluster additive on the following translation
quiver with s ≥ 1, t ≥ 1:

Then for y = y(s + 1, t + 1) with f (x) ≤ 0, we have

f (y) = f (x)− +
∑

1≤i≤s

f (ai)
− +

∑

1≤j≤t

f (bj )
−.

8 Wings

Let s ≥ 0, t ≥ 1, let y be a wing vertex of rank s + t + 1, say with sectional paths

p[1] → p[2] → · · · → p[s + t + 1] = y, y = [s + t + 1]q → ·· · → [2]q → [1]q.

Lemma Assume that

f
(
p[s]) ≤ 0, f

(
p[s + i]) ≥ 0, for 1 ≤ i ≤ t, f

(
p[s + t + 1]) ≤ 0.

Then

f
([t]q) = − min

1≤i≤t
f

(
p[s + i]).
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Also, f is non-negative on all vertices between p[s +1] and [1+ t]q different from y.

Here is a sketch which exhibits the vertices in question in case s ≥ 1:

The case s = 0 looks as follows:

Proof Let us use the following labels for the relevant vertices of the wing:

In particular

x = p[s], z = [t]q, bi = p[s + i], ai = τ−ip[s − i].
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Note that we have added the vertex as to the wing, (with additional arrows as−1 → as

and as → b′
1) and we put f (as) = 0, as in the proof of the extended rectangle rule.

Using the new labels, the assumptions read:

f (x) ≤ 0, f (bi) ≥ 0, for 1 ≤ i ≤ t, f (y) ≤ 0

and the assertion is that f is non-negative on the shaded area (the vertices between
b1 and a′′

s different from y) and that

f (z) = −min
(
f (bi) | 1 ≤ i ≤ t

)
.

The rectangle rule asserts that f is bounded below by f (x)− on the rectangle be-
tween τ−1x and a′

s = b′
t . By assumption, f is non-negative on the vertices b1, . . . , bt .

Thus, concerning the non-negativity assertion, it remains to show that f is non-
negative on the vertices a′′

1 , . . . , a′′
s .

The rectangle rule asserts that

f
(
a′
i

) = f (x)− +
i−1∑

j=1

f (aj )
− + f (ai)

+ +
t−1∑

j=1

f (bj )
− + f (bt )

+.

Since f (y) ≤ 0 and f (a′
1) ≥ 0, we have f (a′′

1 ) = f (a′
1) − f (bt ) ≥ 0. Assume by

induction that we know that f (a′′
i ) = f (a′

i ) − f (bt ) ≥ 0, then we get

f
(
a′′
i+1

) + f
(
a′
i

) = f
(
a′′
i

)+ + f
(
a′
i+1

)+

= f
(
a′′
i

) + f
(
a′
i+1

)

= f
(
a′
i

) − f (bt ) + f
(
a′
i+1

)

and therefore

f
(
a′′
i+1

) = f
(
a′
i+1

) − f (bt ).

By the rectangle rule for a′
i+1 we see that f (a′

i+1) − f (bt ) ≥ 0 provided i + 1 ≤ s.
It remains to calculate the value f (z).
Using induction on i, we show that

f
(
b′′
i

) = f (bi) − min
(
f (bj ) | 1 ≤ j < i

)

for i ≥ 2.
The rectangle rule for b′

i yields

f
(
b′
i

) = f (x)− +
s−1∑

j=1

f (aj )
− + f (as)

+ +
i−1∑

j=1

f (bj )
− + f (bi)

+

= f (x)− +
s−1∑

j=1

f (aj )
− + f (bi),
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since f (as) = 0 and all f (bj ) ≥ 0. Similarly, for b′
i+1 we get:

f
(
b′
i+1

) = f (x)− +
s−1∑

j=1

f (aj )
− + f (bi+1),

thus

f
(
b′
i+1

) − f
(
b′
i

) = f (bi+1) − f (bi).

For i = 2, we have

f
(
b′′

2

) = f
(
b′

2

) − f
(
b′

1

)
,

since f (b′
2) ≥ 0, thus

f
(
b′′

2

) = f
(
b′

2

) − f
(
b′

1

) = f (b2) − f (b1) = f (b2) − min
(
f (bj ) | 1 ≤ j < 2

)
,

as we have claimed.
Similarly, we have for all i ≥ 2

f
(
b′′
i+1

) = f
(
b′′
i

)+ + f
(
b′
i+1

) − f
(
b′
i

)

= f
(
b′′
i

)+ + f (bi+1) − f (bi).

By induction, we may assume that

f
(
b′′
i

) = f (bi) − min
(
f (bj ) | 1 ≤ j < i

)
,

and we have to distinguish two cases:
First, assume that f (b′′

i ) ≤ 0. Then f (b′′
i )+ = 0 and f (bi) ≤ min(f (bj ) | 1 ≤ j <

i), so that min(f (bj ) | 1 ≤ j ≤ i) = f (bi). Thus

f
(
b′′
i+1

) = f
(
b′′
i

)+ + f (bi+1) − f (bi)

= 0 + f (bi+1) − min
(
f (bj ) | 1 ≤ j ≤ i

)
,

as we want to show.
In the second case, f (b′′

i ) ≥ 0, thus f (b′′
i )+ = f (b′′

i ) and f (bi) ≥ min(f (bj ) |
1 ≤ j < i), so that min(f (bj ) | 1 ≤ j ≤ i) = min(f (bj ) | 1 ≤ j < i). Thus

f
(
b′′
i+1

) = f
(
b′′
i

)+ + f (bi+1) − f (bi)

= f (bi) − min
(
f (bj ) | 1 ≤ j < i

) + f (bi+1) − f (bi)

= −min
(
f (bj ) | 1 ≤ j ≤ i

) + f (bi+1).

Thus we see that

f
(
b′′
t

)+ = f (bt ) − min
(
f (bi) | 1 ≤ i ≤ t

)
.
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On the other hand, the calculations in the first part of the proof had shown that
f (a′′

s ) ≥ 0 and that

f
(
a′′
s

) − f
(
a′
s

) = −f (bt ).

It follows that

f (z) = f
(
b′′
t

)+ + f
(
a′′
s

) − f
(
a′
s

) = f
(
b′′
t

)+ + f
(
a′′
s

)+ − f
(
a′
s

)

= f
(
b′′
t

)+ − f (bt ) = f (bt ) − min
(
f (bi) | 1 ≤ i ≤ t

) − f (bt )

= −min
(
f (bi) | 1 ≤ i ≤ t

)
.

This completes the proof. �

9 The case Γ = ZAn

Consider now the case Γ = ZΔ with Δ of type An.

Theorem 4 Let Γ = ZΔ with Δ of type An. Then any cluster additive function on Γ

is a non-negative linear combination of cluster hammock functions.

If n = 1, then any cluster additive function on Γ is a non-negative multiple of one
of the two cluster hammock functions. Thus, we can assume that n ≥ 2.

Let f be a cluster additive function on Γ .

(1) If z is a vertex of Γ with f (z) ≤ 0, then there is a vertex z′ 	= z with f (z′) ≤ 0
and a sectional path from z to z′ or from z′ to z.

Proof Since n ≥ 2, there is an arrows a1 → a0 = z. Choose m maximal such that
there exists a sectional path

am → ·· · → a1 → a0 = z.

If f (ai) ≤ 0 for some 1 ≤ i ≤ m, then let z′ = ai . Otherwise we consider the wing
with corners

p[1] = am, z, [1]q = τ−mam.

The wing lemma (with s = 0) asserts that f (z′) ≤ 0 (even f (z′) < 0) for z′ =
τ−1a1. �

(2) If f (z) < 0 for some vertex z, then f (z) = f (Fz) and

f (z)−hz ≤ f.

Proof According to (1), there is a vertex y = z′ with f (y) ≤ 0 and a sectional path
from z to y or from y to z. Up to duality, we can assume that there is a sectional
path from y to z (otherwise we consider instead of Γ the opposite translation quiver).
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Also, we can assume that we choose y such that the path from y to z is of smallest
possible length (thus f is positive on all the vertices between y and z). Consider the
wing with corners

p[1], y, [1]q,

thus there are sectional paths

p[1] → p[2] → · · · → p[m] = y, y = [m]q → ·· · → [2]q → [1]q
and z is one of the vertices [i]q with 1 ≤ j < m. Let s ≥ 0 be maximal with f (p[s]) ≤
0 and t = m − s − 1. We claim that t ≥ 1 and that z = [t]q .

First of all, for t = 0, the rectangle rule would imply that f ([j ]q) ≥ 0 for 1 ≤ j <

m, but z is of the form [j ]q and f (z) < 0.
This means that we can use the wing lemma, it asserts that

f
([t]q) = −min

{
f

(
p[s + i]) | 1 ≤ i ≤ t

}

and that f ([j ]q) ≥ 0 for 1 + t ≤ j ≤ s + t . Since f (z) < 0, with z of the form [j ]q
and j ≤ s + t , it follows that j ≤ t . On the other hand, we know that f is positive on
all vertices between y and z, thus we see that j = t .

Let x = p[s], bi = p[s + i], and z = [t]q and note that we have f (x) ≤ 0, f (y) ≤
0, and f (bi) ≥ 1 for 1 ≤ i ≤ t . This yields the upper wing in the following picture,
namely the wing with corners

p[1], y, [1]q.

According to the wing lemma, we know that

f (z) = −min
(
f (bi) | 1 ≤ i ≤ t

)
< 0.

But starting with x and y, we may also look at the wing with corners

[n]q, x, p[n],
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and use the dual argument: the dual of the wing lemma concerns the vertex F−1z (as
well as the vertices between F−1z and x), it yields

f
(
F−1z

) = −min
(
f (bi) | 1 ≤ i ≤ t

)
.

This shows that

f (z) = f
(
F−1z

)
.

Also, the rectangle rule for F−1z (or the dual rectangle rule for z) assert that f is
bounded from below by f (z)− = −f (z) on the rectangle starting with τ−1F−1z and
ending with τz (the shaded area).

Using induction as well as duality, we see that f (F az) = f (z) for all a ∈ Z. Also,
it follows that

f (z)−hz ≤ f. �

Proof of Theorem 4 Choose some section S . Given a function g on the set of vertices
of Γ , we write

|g|S =
∑

x∈S

∣∣g(x)
∣∣,

thus |g|S = 0 if and only if g(x) = 0 for all x ∈ S . In case g is cluster additive, we
know from Sect. 1 that |g|S = 0 if and only if g is the zero function.

We want to show any cluster additive function f on Γ is a non-negative linear
combination of cluster hammock functions. We use induction on |f |S . If |f |S = 0,
then f is the zero function.

Now assume that |f |S > 0. According to the assertion (5) in Sect. 1, there is some
vertex z with f (z) < 0.

According to Theorem 2 and (2), we know that hz ≤ f (z)−hz ≤ f . We see by
Theorem 2 that f − hz is cluster additive again, and |f − hz|S < |f |S . Thus, by
induction, f −hz is a non-negative linear combination of cluster hammock functions
and then also f = (f − hz) + hz is a non-negative linear combination of cluster
hammock functions. This completes the proof. �

10 Cluster-tilted algebras

Let A be a finite-dimensional hereditary k-algebra (k an algebraically closed field).
Let T be a tilting A-module, T the set of isomorphism classes of indecomposable
direct summands of T , and F T the union of the F -orbits which contain elements
of T . Let B be the opposite endomorphism ring of T in the cluster category C =
Db(mod A)/F (see [4]), thus B is a cluster tilted algebra.

Define a function dT on the Auslander–Reiten quiver Γ of Db(mod A) as follows:
Consider the projection

Db(mod A) −→ Db(mod A)/F = CA −→ CA/〈T 〉 = mod B,

and denote it by π (here, we use that we can identify CA/〈T 〉 with mod B according
to [5]).
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Let y be a vertex of Γ , thus the isomorphism class of an indecomposable object
in Db(mod A). If y is not in F T , then π(y) is the isomorphism class of an indecom-
posable B-module and we denote by dT (y) its k-dimension. On the other hand, if the
F -orbit of y contains an element x of T , and x = [X], where X is an indecomposable
direct summand of T , then let dT (y) = −nx , where nx is the Krull–Remak–Schmidt
multiplicity of X in T , note that this is also the k-dimension of the corresponding
simple B-module Sx . In this way we obtain a function

dT : Γ0 → Z

which obviously is F -invariant.
Of course, instead of looking at the k-dimension of the B-modules, one may also

consider their length. In this way, one similarly defines the function

lT : Γ0 → Z

with lT (y) the length of π(y) in case y is not in F T , and with lT (y) = −1 otherwise.
If the tilting module T is multiplicity free, then lT = dT . For a general tilting module
T , let T ′ be multiplicity free with the same indecomposable direct summands as T ,
then lT = dT ′ .

Let us assume now that A is the path algebra of a Dynkin quiver.

Lemma The function dT on Γ is cluster additive and we have

dT =
∑

x∈T
nxhx.

Proof We use the projection π of Γ = ZΔ onto the Auslander–Reiten quiver of B as
defined above, in particular the identification of CA/〈T 〉 with mod B given by [5].

Let us consider the mesh of ZΔ ending in z, say with arrows yi → z, 1 ≤ i ≤ s.
We assume that the vertices yr+1, . . . , ys belong to F T , and y1, . . . , yr not.

First, consider the case that neither z nor τz belong to F T , thus we may consider
the Auslander–Reiten sequence ending in Z. By the assumption on the yi , we see that
the Auslander–Reiten sequence has the form

0 → τZ →
r⊕

i=1

Y
mi

i → Z → 0,

with indecomposable B-modules Z and Yi such that [Z] = z, [Yi] = yi and where
mi = myi,z. It follows that

dT (z) + dT (τz) = dimZ + dim τZ

=
r∑

i=1

mi dimYi =
r∑

i=1

myi,zdT (yi)

=
s∑

i=1

myi,zdT (yi)
+,
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since dT (yi) < 0 for r + 1 ≤ i ≤ s.
Next, let τz belong to F T , thus z is a projective vertex, say z = [Z] for some

indecomposable projective B-module Z. By the assumption on the yi , the radical of
Z has the form radZ = ⊕r

i=1 Y
mi

i and Z/ radZ has dimension nτz. This means

dT (z) + dT (τz) = dimZ − dimZ/ radZ = dim radZ

=
r∑

i=1

mi dimYi =
r∑

i=1

myi,zdT (yi)

=
s∑

i=1

myi,zdT (yi)
+.

Finally, we have to consider the case where z belongs to F T . This case is dual to
the previous one, now τz = [X] for some indecomposable injective B-module X and
the socle of X has dimension nz.

The Jordan–Hölder theorem for mod B shows that dT is just the sum of the
various functions nxhx with x ∈ T ; namely, if y is a vertex of Γ , such that π(y)

is the isomorphism class of an indecomposable B-module N , then hx(y) is just the
Jordan–Hölder multiplicity of the simple B-module Sx in N . �

We can use the cluster algebras in order to prove our conjecture for an F -invariant
cluster additive function f provided two conditions on the position of the vertices x

with f (x) ≤ 0 are satisfied.

Proposition Let f be a cluster additive function on Γ = ZΔ with Δ a Dynkin quiver.
Assume that f is F -invariant and that there is a tilting set T with the following two
properties:

(a) If x belongs to T , then f (x) ≤ 0.
(b) If f (x) < 0, then x belongs to the F -orbit of an element of T .

Then f is a non-negative linear combination of cluster hammock functions.

Proof We identify Γ = ZΔ with the Auslander–Reiten quiver of Db(mod A) where
A is a finite-dimensional hereditary algebra and where T is a tilting A-module such
that T is the set of isomorphism classes of indecomposable direct summands of T .
Let B be the opposite endomorphism ring of T in CA = Db(mod A)/F . We form the
factor category Db(mod A)/〈F iT | i ∈ Z〉, this is the module category of a Galois
cover B̃ of B (with Galois group Z). Thus, the Auslander–Reiten quiver Γ ′ = Γ (B̃)

of mod B̃ is the translation subquiver obtained from Γ by deleting the F -orbits of
the vertices in T .

Denote by f ′ the restriction of f to Γ ′. By assumption (b), f ′ takes values in N0,
is cluster additive, thus additive on Γ (B̃) and F -invariant; thus it induces an additive
function f ′′ on Γ ′′ = Γ (B) = Γ (B̃)/F = Γ ′/F with values in N0. According to
Butler [6], f ′′ is additive on all exact sequences, thus it is a linear combination of the
“hammock functions” h′′

p for mod B , where p runs through the set of indecomposable
projective B-modules. If we compose these functions h′′

p with the projection Γ ′ →
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Γ ′/F = Γ ′′, we obtain just the restriction of h′
p to Γ ′, where p = τ−1x for some

x ∈ T . Thus, there are integers np such that

f ′′ =
∑

p

nph′′
p,

and therefore

f |Γ ′ = f ′ =
∑

p

nph′
p|Γ ′.

If P ′ is an indecomposable projective B-module with isomorphism class p′ and S′ is
its top (a simple B-module), then

np′ =
∑

p

nph′′
p

([
S′]) = f ′′([S′]) ≥ 0

(here we use that f ′ takes values in N0), thus all the coefficients np are non-negative.
We have seen that f and h = ∑

p nph′
p coincide on Γ ′, it remains to show that

they also coincide on T . Let x ∈ T , thus p = τ−1x is in Γ ′
0 and

f (x) = −f (p) +
∑

y∈Γ0

my,pf (y)+

= −f (p) +
∑

y∈Γ ′
0

my,p(s)f (y)+

= −h(p) +
∑

y∈Γ ′
0

my,p(s)h(y)+

= −h(p) +
∑

y∈Γ0

my,p(s)h(y)+

= h(x),

where we have used that both f and h are cluster additive, that they coincide on Γ ′
and have positive values only on vertices in Γ ′

0 (condition (a)). This completes the
proof that f = h. �

If a cluster additive function on Γ is a non-negative linear combination of cluster
hammock functions, then also the following properties are satisfied:

(d) f = dT for some partial tilting module T .
(e) If f takes values in {−1} ∪ N0, then f = dT for some multiplicity-free partial

tilting module T , if f takes values in Z \ {0}, then f = dT for some tilting mod-
ule T .

We end this section by giving an interpretation of the exchange property of cluster
tilting objects in a cluster category in terms of the cluster hammock functions. Thus,
suppose that we deal with a tilting set T in ZΔ, where Δ is a Dynkin quiver. Let us
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look at the hammock hx for some x ∈ T . Let T ′ = T \ {x}. We claim that there are
precisely two F -orbits of vertices of Γ which are not in the support of any function
hy with y ∈ T ′. Of course, one of these vertices is x itself, since hy(x) = 0 for all
y ∈ T ′. In order to find the other orbit, we only have to consider the vertices z which
do not belong to F T . As above, we know that π(z) is the isomorphism class [N ] of
an indecomposable B-module, say N . Now either [N ] = [Sx], then indeed hy(z) = 0
for all y ∈ T ′ (since N has no composition factor of the form Sy ), or else N is not
isomorphic to Sx , but then N has at least one composition different from Sx , say Sy

with y ∈ T ′, and therefore hy(z) 	= 0. This shows that the second orbit consists of the
vertices z such that π(z) = [Sx]. (But a warning is necessary: the position of z with
π(z) = [Sx] in the support of hx does not only depend on hx itself, as already the
case A2 shows.)

11 Final remarks

1. The main results and conjectures of this note concern the translation quivers ZΔ

with Δ a quiver whose underlying graph is a simply laced Dynkin diagram. But there
is no problem to extend the considerations to the case of an arbitrary (not necessarily
simply laced) Dynkin diagram (thus dealing with the cases Bn, Cn, F4, G2). In
order to do so, we need the notion of a valued translation quiver.

A valued translation quiver Γ = (Γ0,Γ1, τ,m,m′) is given by a translation quiver
(Γ0,Γ1, τ ) with the property that there is at most one arrow x → y for any pair x, y

of vertices and two functions m,m′ : Γ1 → N1 such that

m(τz, y) = m′(y, z) and m′(τz, y) = m(y, z),

for any arrow y → z in Γ with z a non-projective vertex. In case m = m′, then we
may consider (Γ0,Γ1, τ,m,m′) as an ordinary translation quiver by replacing any
arrow x → y by m(x,y) arrows.

For example, the valued translation quiver ZB3 has the following form (in such
pictures it is sufficient to add the pair of numbers (m(x, y),m′(x, y)) to an arrow
x → y only in case at least one of the numbers is greater than 1):

The valued translation quiver Γ = (Γ0,Γ1, τ,m,m′) is said to be stable, if
(Γ0,Γ1, τ ) is stable.

Given a stable valued translation quiver Γ , a function f : Γ0 → Z should be called
cluster additive provided

f (z) + f (τz) =
∑

y∈Γ0

m(y, z)f (y)+, for all z ∈ Γ0.
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2. We should stress that cluster additive functions are definitely also of interest
when dealing with stable translation quivers which are not related to translation quiv-
ers of the form ZΔ with Δ a finite directed quiver. Examples of cluster additive
functions on the translation quiver ZD∞ (as well as on ZA

∞∞) have been exhibited in
[12].
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