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Abstract We use discrete Morse theory to provide another proof of Bernini, Fer-
rari, and Steingrímsson’s formula for the Möbius function of the consecutive pattern
poset. In addition, we are able to determine the homotopy type of this poset. Earlier,
Björner determined the Möbius function and homotopy type of factor order and the
results are remarkably similar to those in the pattern case. In his thesis, Willenbring
used discrete Morse theory to give an illuminating proof of Björner’s result. Since
our proof parallels Willenbring’s, we also consider the relationship between the two
posets. In particular, we show that some of their intervals are isomorphic, and also
that there is a sequence of posets interpolating between the two all of whom have
essentially the same Möbius function.

Keywords Consecutive pattern · Möbius function · Discrete Morse theory · Factor
order · Permutation patterns · Posets

1 Introduction

The Möbius function of the consecutive pattern poset was determined by Bernini,
Ferrari, and Steingrímsson [2]. We give another proof of their result using discrete
Morse theory. In our demonstration, the definitions needed to state this formula nat-
urally arise from the structure of the poset. Furthermore, the use of discrete Morse
theory allows us to easily determine the homotopy type of the poset. Björner’s for-
mula for the Möbius function of factor order [3] is remarkably similar to that of the
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consecutive pattern poset, so we will also consider the relationship between these two
posets.

Let Sd be the set of all permutations of the first d positive integers. A consecutive
pattern σ = σ(1)σ (2) . . . σ (k) ∈ Sk appears in a permutation τ = τ(1)τ (2) . . . τ (d) ∈
Sd if the letters of some subsequence τ(i + 1)τ (i + 2) . . . τ (i + k) of τ appear in
the same relative order as the letters in σ . For example, in τ = 23415, σ = 123 is
the consecutive pattern corresponding to τ(1)τ (2)τ (3) = 234, and σ = 213 is the
consecutive pattern corresponding to τ(3)τ (4)τ (5) = 415.

The consecutive pattern poset is S = ⋃
d>0 Sd ordered with respect to consecutive

pattern containment. The length of τ , denoted |τ |, is the number of positions in τ . In
particular, if τ ∈ Sd , then |τ | = d . Note that this is the notion of length one uses in
thinking of τ as a word rather than the other standard concept of length in terms of
products of transpositions. A permutation is monotone if its letters are either strictly
increasing or strictly decreasing. The standard form of a sequence of distinct integers
s = s(1)s(2) . . . s(d) is the permutation p = p(1)p(2) . . . p(d) in Sd whose letters
appear in the same relative order as the letters in s. The examples of σ given in the
previous paragraph are the standard forms of the corresponding sequences in τ . Note,
in particular, that a consecutive subsequence of τ must be converted to standard form
to get an element in the consecutive pattern poset.

To state the formula for the Möbius function of the consecutive pattern poset as a
simple recursive formula, we make the following definitions. A prefix of length k of
a permutation τ ∈ Sd is the standard form of the first k letters of τ . If k < d , then the
prefix is proper. For example, prefixes of 53412 include 312 and 4231. Similarly, a
suffix of length k of a permutation τ ∈ Sd is the standard form of the last k letters of τ .
The reader should keep in mind that prefixes and suffixes are not actual subsequences
of τ , but instead refer to the standardizations of certain subsequences. We define the
interior of a permutation τ = τ(1)τ (2) . . . τ (d) ∈ Sd for d > 2 to be the standard
form of the sequence τ(2) . . . τ (d − 1). The interior of τ will be denoted i(τ ). For
example, i(23415) = 231. We define the exterior of a permutation τ to be the longest
permutation which is both a proper prefix and a suffix of τ . The exterior of τ will
be denoted x(τ). For example, x(23415) = 12, while x(326415) = 213. Notice the
exterior is always defined, since the standardization of a single integer is 1.

The following theorem is an equivalent statement of a theorem of Bernini, Ferrari,
and Steingrímsson. For those familiar with this work, note that we use the condition
x(τ) �≤ i(τ ) in place of the carrier element of τ .

Theorem 1.1 ([2]) In the consecutive pattern poset S, if σ ≤ τ then

μ(σ, τ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μ(σ,x(τ )) if |τ | − |σ | > 2 and σ ≤ x(τ) �≤ i(τ ),

1 if |τ | − |σ | = 2, τ is not monotone, and σ ∈ {i(τ ), x(τ )},
(−1)|τ |−|σ | if |τ | − |σ | < 2,

0 otherwise.

To state our proof of this result, we will need to use a theorem of Babson and
Hersh [1]. This result gives a way of applying Forman’s discrete version of Morse
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theory [4] to partially ordered sets. For brevity, we are only going to state the min-
imum number of definitions to apply this theorem. A reader who is interested in
learning more about discrete Morse theory is encouraged to begin with Forman’s
outstanding introduction to this topic [5].

Let P be any poset. The notation x → y will indicate that x covers y in P . Let C :
x = z0 → z1 → ·· · → zn = y be a chain in P . Since each pair of adjacent elements
is related by a cover, C is called a saturated chain. The closed interval of C from
zi to zj is the chain C[zi, zj ] : zi → zi+1 → ·· · → zj . The open interval of C from
zi to zj , C(zi, zj ), is defined similarly. The closed interval C[zi, zi] consisting of
the single element zi will also be written zi , but the context will always indicate
whether we are referring to the element or the interval. Notice that the interval [x, y]
is non-empty when x ≤ y in the poset P , while C[zi, zj ] is non-empty when zi ≥ zj .
A saturated chain C of the interval [x, y] is a maximal chain if z0 = y and zn = x.

Given two maximal chains C : z0 → z1 → ·· · → zn and D : x0 → x1 → ·· · → xn

in an interval [x, y], we say C and D agree to index k if zi = xi for all i ≤ k. We
say C and D diverge from index k if C and D agree to index k and zk+1 �= xk+1.
A total ordering C1 < C2 < · · · < Cn of the maximal chains of an interval is a poset
lexicographic order if it satisfies the following: suppose C < D and C and D diverge
from index k; if C′ and D′ agree to index k + 1 with C and D, respectively, then
C′ < D′.

Suppose C1 < C2 < · · · < Cn is an ordering of the maximal chains of the closed
interval [x, y]. An interval C(zi, zj ) is a skipped interval of a maximal chain C if

C − C(zi, zj ) ⊆ C′ for some C′ < C.

It is a minimal skipped interval (MSI) if it does not properly contain another skipped
interval. We write I (C) for the set of all MSIs of a chain C. To find the set I (C),
consider each interval I ⊆ C(y, x) and see if C − I ⊆ C′ for any C′ ⊆ C, then throw
out any such interval that is nonminimal. In Table 1, we give examples of minimal
skipped intervals in the context of the consecutive pattern poset.

Notice I (C) could contain distinct intervals with non-empty intersection. Babson
and Hersh’s result requires a set of disjoint intervals derived from I (C), which we
will denote J (C). We construct J (C) = {J1, J2, . . .} as follows. Order the intervals
of I (C) based on when they are first encountered in C. Thus, I1 will contain the
element zi of smallest index that appears in any interval in I (C), I2 will contain the
element zj of smallest index that appears in any interval in I (C) other than I1, etc.
Let J1 = I1. Then consider the intervals I ′

2 = I2 − J1, I ′
3 = I3 − J1, and so forth.

Throw out any that are not containment minimal, and pick as J2 the first one which
remains. Continue this process until no intervals remain.

The set of intervals J (C) covers C if its union equals the open interval C(z0, zn).
A chain C is called critical if J (C) covers C. Finally, if a chain C is critical, the
critical dimension of the chain is

d(C) = #J (C) − 1

where # denotes cardinality.
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Theorem 1.2 ([1]) For any poset lexicographic order on the maximal chains of
[x, y],

μ(x, y) =
∑

C

(−1)d(C),

where the sum is over all critical chains C in the poset lexicographic order.

The rest of the paper is organized as follows. In Sect. 2, we use Theorem 1.2 to
reprove Bernini, Ferrari, and Steingrímsson’s formula in Theorem 1.1. In Sect. 3,
we define factor order and consider the relationship between posets ordered by factor
order and the consecutive pattern poset. In particular, we show that certain intervals in
S are isomorphic to intervals in factor order using an alphabet of two letters. We also
define a sequence of posets interpolating between S and factor order on the integers
each of which has a Möbius function which can be described as in Theorem 1.1.

2 Discrete Morse theory and the consecutive pattern poset

Before we can use Babson and Hersh’s Theorem, we first need to use the structure
of the consecutive pattern poset to define an appropriate lexicographic order. Once
this ordering is identified, we must find a useful characterization of the correspond-
ing minimally skipped intervals. This characterization gives us insight into why the
interior and exterior of the word τ are essential to the statement of the formula for the
Möbius function. Once we have a characterization of the MSIs, we will have enough
information to understand the relationship between the sets J (C) and I (C), the ex-
planation of which is the key component in our proof of this recursive formula for the
Möbius function.

To get a sense of the structure of the consecutive pattern poset, we first consider
the covering relations. The following lemma is easy to prove and so its demonstration
is left to the reader.

Lemma 2.1 ([2]) A permutation τ = τ(1)τ (2) . . . τ (d) in the consecutive pat-
tern poset can only cover the standard form of the sequences τ(2) . . . τ (d) and
τ(1) . . . τ (d − 1). These two permutations are distinct unless τ is monotone, in which
case they are equal and monotone.

An expansion of σ ∈ Sk has the form 0 . . .0σ0 . . .0. An embedding of σ into τ =
τ(1)τ (2) . . . τ (d) is an expansion η of σ with length |τ | such that the nonzero entries,
η(i + 1), . . . , η(i + k) are the standard form of the sequence τ(i+1)τ (i+2) . . . τ (i+
k). In addition, we say each entry τ(1), . . . , τ (i) and τ(i+k+1), . . . , τ (d) is reduced
to 0 in η. Note that when τ covers σ , there is a unique embedding unless τ is mono-
tone, in which case we will always be using the suffix embedding 0σ .

Let [σ, τ ] be an interval in
⋃

d>0 Sd . Let

C : τ = ρ0
l1→ ρ1

l2→ ·· · ln−1→ ρn−1
ln→ ρn = σ
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Table 1 Comparing I (C) and J (C) for our poset lexicographic ordering of the maximal chains of
[1,213546]. Note that I (C) = J (C) except for the last chain, which has ρ2 in two I (C) intervals

Chain Id ρ0 l1 ρ1 l2 ρ2 l3 ρ3 l4 ρ4 l5 ρ5

I (C) intervals for [1,213546]
1-2-3-4-5 213546 1 012435 2 001324 3 000213 4 000012 5 000001

1-2-3-6-4 213546 1 012435 2 001324 3 000213 6 [000210] 4 000010

1-2-6-3-4 213546 1 012435 2 001324 6 [001320] 3 000210 4 000010

1-2-6-5-3 213546 1 012435 2 001324 6 [001320] 5 [001200] 3 000100

1-6-2-3-4 213546 1 012435 6 [012430] 2 001320 3 000210 4 000010

1-6-2-5-3 213546 1 012435 6 [012430] 2 001320 5 [001200] 3 000100

1-6-5-2-3 213546 1 012435 6 012430 5 [012300] 2 001200 3 000100

6-1-2-3-4 213546 6 [213540] 1 012430 2 001320 3 000210 4 000010

6-1-2-5-3 213546 6 [213540] 1 012430 2 001320 5 [001200] 3 000100

6-1-5-2-3 213546 6 [213540] 1 012430 5 [012300] 2 001200 3 000100

6-5-1-2-3 213546 6 213540 5 [213400] 1 012300 2 001200 3 000100

6-5-4-1-2 213546 6 [213540 5 213400] 4 [213000] 1 012000 2 001000

6-5-4-3-1 213546 6 [213540 5 [213400] 4 213000] 3 [210000] 1 010000

New J (C) intervals for [1,213546]
6-5-4-3-1 213546 6 [213540 5 213400] 4 [213000] 3 [210000] 1 010000

be a maximal chain in [σ, τ ], where the li are defined as follows. Using the convention
of the previous paragraph for the monotone case, each cover ρi−1 → ρi defines a
unique embedding of ρi in ρi−1. Inductively, this defines an embedding ηi of ρi in τ .
We let li be the position zeroed out in passing from ηi−1 to ηi . Examples of maximal
chains written in this form are given in Table 1.

Note that this construction gives each maximal chain its own unique sequence
l1 . . . ln which we can use to identify it. We call this sequence a maximal chain’s
chain id. It is easy to see that lexicographically ordering these chain ids produces a
poset lexicographic order on the maximal chains of [σ, τ ]. This is the order we will
use to find the MSIs of the maximal chains C, and ultimately the sets J (C) which
will allow us to apply Theorem 1.2.

Table 1 also contains an example of this poset lexicographic ordering and the
resulting MSIs. The table signifies the MSIs of each maximal chain by surrounding
the appropriate permutations with brackets, and contains one example of a maximal
chain with overlapping MSIs, namely, the last chain which has ρ2 in two intervals of
I (C).

To facilitate the exposition, we make the following definitions. A descent in a
maximal chain is a permutation ρi where li > li+1. We say ρi is a strong descent if
li > li+1 + 1, and a weak descent if li = li+1 + 1. An ascent in a maximal chain is a
permutation ρi where li < li+1. In Table 1, the chain with chain id 6 − 5 − 1 − 2 − 3
has ρ1 = 21354 as a weak descent, ρ2 = 2134 as a strong descent, and ρ3 = 123 as
an ascent.
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Lemma 2.3 Let C : τ = ρ0
l1→ ρ1

l2→ ·· · ln−1→ ρn−1
ln→ ρn = σ be a maximal chain in

[σ, τ ]. If ρi is a strong descent, then ρi is an MSI in C.

Proof Since li − li+1 > 1, we know that ρi is the standard form of the longest proper
prefix of ρi−1 and ρi+1 is the standard form of the interior of ρi−1. Let u be the
longest proper suffix of ρi−1.

Suppose u is not a monotone permutation. Then

C′ : ρ0
l1→ ·· · li−2→ ρi−2

li−1→ ρi−1
li+1→ u

li→ ρi+1
li+2→ ·· · ln→ ρn

is a lexicographically earlier chain than C. Hence, ρi is a skipped interval in C. Since
ρi is an interval consisting of a single element, ρi is an MSI.

Suppose u is a monotone permutation. Then li cannot be reduced in u. However,
the chain

D′ : ρ0
l1→ ·· · li−2→ ρi−2

li−1→ ρi−1
li+1→ u

li+2→ ρi+1
li+3→ ·· · ln→ ρn−1

ln+1→ ρn

is a lexicographically earlier chain than C because each ρj for j > i is monotone.
Hence, ρi is an MSI in this case as well. �

Considering this result in Table 1 suggests that Lemma 2.3 accounts for a small
proportion of the MSIs in this poset lexicographic order. The next result, however,
gives a great deal of information about the critical chains in this order.

Lemma 2.4 Let C : τ = ρ0
l1→ ρ1

l2→ ·· · ln−1→ ρn−1
ln→ ρn = σ be a maximal chain in

[σ, τ ]. If ρi is an ascent, then it is not contained in any MSI.

Proof We will prove this lemma by contradiction. Suppose C[ρr, ρs] is an MSI that
contains ρi . Notice that ρi may only be preceded by ascents in this interval because
if there are descents, the last one that occurs before ρi would be a strong descent. By
Lemma 2.3, this would be an MSI, contradicting the minimality of C[ρr, ρs]. Thus, it
suffices to derive a contradiction for ρi = ρr , the first ascent in the interval C[ρr, ρs].

Since C[ρr, ρs] is an MSI of C[τ, σ ] if and only if it is an MSI of C[ρr−1, ρs+1],
it suffices to consider the case r = 1. However, if r = 1 then ρ1 being an ascent
forces l1 = 1. This implies ρ1 appears in all chains preceding C. Therefore, ρ1 can
be removed from any skipped interval in which it appears and that interval will still
be skipped, contradicting the fact that C[ρ1, ρs] is minimal. �

Notice that Lemma 2.4 implies that all MSIs of a chain C consist entirely of de-
scents. Thus, only the lexicographically last chain in an interval can possibly be criti-
cal. The next lemma covers the two basic cases of MSIs in a chain C. We have already
encountered the first case, while the second case is new.

Lemma 2.5 Suppose τ is not monotone and |τ | ≥ 2:

1. There are two maximal chains in the interval [i(τ ), τ ], and if C is the second
chain, then it has a decreasing chain id and a unique MSI, C(τ, i(τ )).
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2. If x(τ) �≤ i(τ ), then there are two maximal chains in the interval [x(τ), τ ]. If C is
the second chain, then it has a decreasing chain id and a unique MSI, C(τ, x(τ )).

Proof The first case follows from Lemma 2.3. For the second case, once we remove
the first or last element, there is only one copy of x(τ) left in τ . Therefore, there are
two maximal chains in the interval [x(τ), τ ]: the first chain, which ends at the suffix
embedding, and the last chain, which ends at the prefix embedding. Since x(τ) is the
longest prefix of τ which is also a suffix, and the first chain contains only suffixes of
τ while the last chain contains only prefixes of τ , these two chains have only x(τ)

and τ in common. Therefore, C(τ, x(τ )) is an MSI, completing the proof. �

We can illustrate this lemma using the intervals [123,21354] and [21,21354].
Note the interior of 21354 is 123, so that the maximal chains of [123,21354] are
21354 → 1243 → 123 and 21354 → 2134 → 123, giving C(21354,123) as an MSI
in the second chain. The exterior of 21354 is 21 and the interior is 123 with 21 �≤ 123,
so the maximal chains of [21,21354] are 21354 → 1243 → 132 → 21 and 21354 →
2134 → 213 → 21, giving C(21354,21) as an MSI in the second chain.

Note that there can be no overlap between these two types of MSI. Proposition 2.6
generalizes Lemma 2.5(2), and the theorem that follows shows that we have identified
all cases of MSIs. It will be convenient to adopt the convention that a sequence li+1
consisting of a single label is not decreasing, corresponding to the fact that the interval
C(ρi, ρi+1) is empty and so not an MSI.

Proposition 2.6 Let C : τ = ρ0
l1→ ρ1

l2→ ·· · ln−1→ ρn−1
ln→ ρn = σ be a maximal chain

in the interval [σ, τ ]. Suppose there are i and j such that ρj = x(ρi) �≤ i(ρi), and the
sequence li+1, . . . , lj is decreasing. Then C(ρi, ρj ) is an MSI in C.

Proof Since the sequence li+1, . . . , lj is decreasing, ρi cannot be monotone and j ≥
i + 2. So Lemma 2.5(2) implies that C(ρi, ρj ) is an MSI in the subchain of C that
is its intersection with [ρj ,ρi]. The proof is concluded by noting that if ρ ≤ φ are
elements of any maximal chain C then C(φ,ρ) is an MSI of C[φ,ρ] if and only if it
is an MSI of C. �

Theorem 2.7 The interval C(ρi, ρj ) is an MSI of a maximal chain C if and only
if C(ρi, ρj ) = ρi+1 and ρi+1 is a strong descent, or ρj = x(ρi) �≤ i(ρi), and the
sequence li+1, . . . , lj is decreasing.

Proof The reverse implication follows from Lemma 2.3 and Proposition 2.6.
Suppose C(ρi, ρj ) is an MSI in C. By Lemma 2.4, the sequence li+1, . . . , lj is a

decreasing sequence. If ρi+1 is a strong descent, then ρi+1 is an MSI by Lemma 2.3.
This implies C(ρi, ρj ) = ρi+1. If ρi+1 is not a strong descent, then, by containment-
minimality, none of the descents are strong descents. Also, our sequence is decreas-
ing, so we conclude that ρj is a prefix of the permutation ρi .

Since there is only one chain ending at the prefix embedding of ρj in ρi , and
[ρi, ρj ] contains another chain previous to C(ρj ,ρi), there must be a second embed-
ding of ρj in ρi . Let k be the largest index so that ρk contains at least two embeddings
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of ρj . Then ρk+1 contains only the prefix embedding of ρj , implying that ρj is a suf-
fix of ρk and ρk contains exactly these two embeddings of ρj . But ρj is also a prefix
of ρk . Thus x(ρk) = ρj because if a permutation longer than ρj was x(ρk), then ρk+1
would have more than one embedding of ρj . Since ρk contains exactly two embed-
dings of ρj , a prefix embedding and a suffix embedding, it follows that ρj �≤ i(ρk).
So by Proposition 2.6, C(ρk,ρj ) is an MSI of C. Thus, by containment-minimality,
it must be the case that k = i. �

Theorem 2.7 completes the characterization of the MSIs in an interval [σ, τ ] of the
consecutive pattern poset. Notice the definitions of the interior and exterior, and the
inequality between them, naturally arise when determining the MSIs. In particular,
they are determined by the lexicographic ordering of the maximal chains.

We are now ready to prove Bernini, Ferrari, and Steingrímsson’s formula using
discrete Morse theory. We have broken the proof up into several cases to make it
easier to follow.

Theorem 1.1 ([2]) In the consecutive pattern poset, if σ ≤ τ then

μ(σ, τ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μ(σ,x(τ )) if |τ | − |σ | > 2 and σ ≤ x(τ) �≤ i(τ ),

1 if |τ | − |σ | = 2, τ is not monotone, and σ ∈ {i(τ ), x(τ )},
(−1)|τ |−|σ | if |τ | − |σ | < 2,

0 otherwise.

Proof Let [σ, τ ] be an interval in the consecutive pattern poset. Suppose first that
|τ | − |σ | < 2. Then σ = τ or |σ | = |τ | − 1. By the definition of the Möbius function,
we have μ(σ, τ) = 1 in the first case and μ(σ, τ) = −1 in the second case. Thus, the
formula for μ(σ, τ) holds when |τ | − |σ | < 2.

Now suppose |τ | − |σ | = 2. Then, by the usual Möbius function recursion,
μ(σ, τ) = 0 if there is one element in the interval (σ, τ ) and μ(σ, τ) = 1 when there
are 2 elements in the interval (σ, τ ). Since τ covers at most two elements, these are
the only possibilities. If τ is monotone, then μ(σ, τ) = 0 since (σ, τ ) contains a sin-
gle element. If τ is not monotone and σ = i(τ ), then reducing either the first or last
position of τ gives us an element in (σ, τ ), implying μ(σ, τ) = 1. If τ is not mono-
tone and σ = x(τ), then regardless of whether we reduce the first two positions or
last two positions of τ , we get σ . Thus, (σ, τ ) has 2 elements implying μ(σ, τ) = 1.
If the above cases do not hold, then σ is either a prefix or a suffix of τ , but not both. In
these cases, (σ, τ ) has 1 element implying μ(σ, τ) = 0. Thus, the formula for μ(σ, τ)

holds when |τ | − |σ | = 2.
We now turn to the case |τ | − |σ | > 2. We will use Theorem 1.2 to calculate

μ(σ, τ) from the critical chains in [σ, τ ]. By Lemma 2.4, the chain id of a critical
chain must be decreasing. Since a strong descent is followed by an ascent unless it
is the last element in a chain, all the descents must be weak descents except possibly
the last one. It follows that the only maximal chain in [σ, τ ] that could be critical is
the one which is lexicographically last. Call this chain

C : τ = ρ0
l1→ ρ1

l2→ ·· · ln−1→ ρn−1
ln→ ρn = σ.
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Suppose first that σ ≤ x(τ) �≤ i(τ ). We wish to show that x(τ) is an element in
the chain C. Let k = |τ | − |x(τ)|. Since x(τ) is not contained in i(τ ), the prefix of τ

of length |x(τ)| + 1 cannot be monotone even if x(τ) is monotone. This observation,
along with the fact that σ ≤ x(τ), allows us to conclude that |τ |, |τ | − 1, . . . , |τ | −
(k − 1) is a valid beginning for the chain id of a maximal chain D in [σ, τ ]. Notice
that each of these entries is the largest possible entry that does not already appear
in the sequence. Thus, any chain whose chain id differs from the chain id of D in
the first k entries is lexicographically earlier than D. So in the chain C, l1 = |τ |,
l2 = |τ | − 1, . . . , lk = |τ | − (k − 1) which forces ρk = x(τ).

Consider the subcase when σ = x(τ). The previous paragraph implies that the se-
quence l1, . . . , lk is decreasing and this is the full chain id. Thus Theorem 2.7 implies
C(τ, x(τ )) is the only interval in J (C). So by Theorem 1.2, μ(σ, τ) = 1. Of course,
in this case μ(σ,x(τ )) = μ(σ,σ ) = 1 as well, so the formula holds.

Next we consider σ < x(τ). Since lk was the largest possible entry remaining,
lk+1 < lk , implying that x(τ) is a descent. Let C′ be the restriction of C to the interval
[σ,x(τ )]. We will show that #J (C) = 2 + #J (C′), allowing us to apply Theorem 1.2
to complete the case σ ≤ x(τ) �≤ i(t).

Since the sequence l1, . . . , lk is decreasing, Theorem 2.7 implies C(τ, x(τ )) is the
first interval in J (C). We claim that x(τ) is the second interval in J (C). If x(τ) is a
strong descent, then this follows from the same theorem. If x(τ) is a weak descent,
then ρk+1 is the longest prefix of x(τ), implying there are at least two copies of ρk+1
contained in τ . Let j be the largest value such that ρj contains at least two copies of
ρk+1. Since j was picked to be maximum and ρ1, . . . , ρj are weak descents, ρj must
contain exactly two copies of ρk+1 and they must be the prefix and suffix embeddings.
It follows that ρk+1 � i(ρj ). Furthermore, x(ρj ) = ρk+1 because the prefix with one
additional letter, x(τ), appears only once in ρj . Thus, x(ρj ) �≤ i(ρj ). Since the se-
quence lj+1, . . . , lk+1 is decreasing, Theorem 2.7 implies C(ρj ,ρk+1) is an MSI in
C. By the process of constructing J (C) from I (C), x(τ) = C(ρj ,ρk+1) − C(ρ0, ρk)

is the second MSI in J (C), proving the claim. Since x(τ) is an MSI consisting
of one element, all the remaining intervals in J (C) are contained in the interval
(σ, x(τ )). Therefore, J (C) = J (C′) ∪ {C(τ, x(τ )), x(τ )} and #J (C) = 2 + #J (C′).
So by Theorem 1.2, μ(σ, τ) = μ(σ,x(τ )), proving the formula for |τ | − |σ | > 2 and
σ ≤ x(τ) �≤ i(τ ).

It remains to consider what happens when |τ |− |σ | > 2 and σ ≤ x(τ) � i(τ ) does
not hold. To show μ(σ, τ) = 0, we proceed by contradiction. If μ(σ, τ) �= 0, then, by
Theorem 1.2, J (C) must cover C. This implies that J1 = C(ρ0, ρj ) is an MSI for
some ρj . Recall that Theorem 2.7 gives two possibilities for MSIs. If J1 = ρ1 and
ρ1 is a strong descent, then since |τ | − |σ | > 2, ρ2 is an ascent. This contradicts the
fact that C has a decreasing chain id. Alternatively, we must have ρj = x(τ) and, by
Theorem 2.7, σ ≤ ρj = x(τ) � i(τ ), contradicting our assumption that this does not
hold. So μ(σ, τ) = 0, completing the proof. �

We can also provide a simple characterization of the homotopy type of an interval
in the consecutive pattern poset. Given two elements x and y of a poset P , the order
complex Δ(x,y) is the abstract simplicial complex whose simplices are the chains
in the open interval (x, y). By using discrete Morse theory to investigate the chains
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of (σ, τ ), one can easily obtain information about the homotopy type of the order
complex.

Theorem 2.8 Let [σ, τ ] be an interval in the consecutive pattern poset. Then Δ(σ, τ)

is homotopic to a sphere or is contractible, depending on whether the interval has 1
or 0 critical chains, respectively. In the former case, the dimension of the sphere is
d(C), the critical dimension of the critical chain C.

Proof In [1], Babson and Hersh showed that the order complex of a poset is ho-
motopy equivalent to a CW complex with exactly one cell of dimension d for each
critical chain of critical dimension d in the interval (as well as a dimension 0 cell). In
particular, the cell corresponds to a critical simplex in C containing the lowest rank
element from each of the intervals in J (C).

In the case of the consecutive pattern poset, Lemma 2.4 implies that a critical chain
must have a decreasing chain id. Thus, only the lexicographically last chain can be
critical. If [σ, τ ] does not have a critical chain, then Δ(σ, τ) is homotopy equivalent
to a CW complex with only the 0-cell. Thus, the order complex is contractible in this
case. If [σ, τ ] has one critical chain C, then Δ(σ, τ) is homotopy equivalent to a CW
complex with a 0-cell and one cell of dimension d(C). The unique way to attach this
cell to the 0 cell is through a map which is constant on the boundary, resulting in a
sphere of dimension d(C). �

3 Factor order and the consecutive pattern poset

The Möbius function of factor order was determined by Björner [3]. We begin this
section by defining this partial order.

Let A be any set. The Kleene closure, A∗, is the set of all finite length words
over A. So if w is a word and w(i) is the ith letter in w, then

A∗ = {
w = w(1)w(2) . . .w(n) : 0 ≤ n < ∞ and w(i) ∈ A for all i

}
.

The length of w, denoted |w|, is the number of letters in w. Factor order on A∗
is the partial order on A∗ defined by letting u ≤ w if w contains a subsequence of
consecutive letters w(i + 1)w(i + 2) . . .w(i + n) such that u(j) = w(i + j) for 1 ≤
j ≤ n = |u|. When u ≤ w, we call u a factor of w. If we take Z+ to be the set A,
the word 1121 is a factor of the word 2112121. A word u is flat if u(1) = · · · = u(n),
where n = |u|.

A prefix of a word w ∈ A∗ is a factor of w that includes the first letter of w.
Similarly, a suffix of w is a factor of w that contains the last letter of w. A prefix
or suffix is proper if it is not equal to w. Define the outer word o(w) of w to be
the longest factor that appears as both a proper prefix and suffix in w. For example,
o(2112121) = 21. Notice that o(w) can be the empty word, as is the case for o(2111).
Define the inner word i(w) of w to be the factor i(w) = w(2) . . .w(n − 1), where
n = |w|. For example, i(2112121) = 11212.

The following theorem of Björner gives a formula for the Möbius function of
factor order.
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Theorem 3.1 ([3]) In factor order, if u ≤ w then

μ(u,w) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μ(u,o(w)) if |w| − |u| > 2 and u ≤ o(w) �≤ i(w),

1 if |w| − |u| = 2, w is not flat, and u ∈ {o(w), i(w)}
(−1)|w|−|u| if |w| − |u| < 2,

0 otherwise.

This formula is remarkably similar to Bernini, Ferrari, and Steingrímsson’s for-
mula. Willenbring’s proof of Björner’s formula, which utilizes discrete Morse theory,
parallels the one given in the previous section [7]. It is thus natural to wonder whether
there is some relationship between these two posets. We will give two reasons for this
correspondence. For the first, we will show that certain intervals in S are isomorphic
to intervals in factor order over a two letter alphabet. For the second, we will con-
struct a sequence of posets interpolating between factor order on the positive integers
and a poset containing S. All these posets have Möbius functions satisfying the same
recursion and this can be proved uniformly.

Let A = {a, b} and partially order A∗ by factor order. Then it is clear that the num-
ber of words of length n is 2n. Consider the set of 213 and 231 avoiding permutations
(where these are general, not consecutive, patterns). Simion and Schmidt [6] were the
first to show that the set of such permutations in Sn is counted by 2n−1. They gave
two proofs, one inductive and one combinatorial, and we will use a different combi-
natorial proof. Consider constructing a σ = σ(1)σ (2) . . . σ (n) avoiding 213 and 231
by choosing the elements σ(i) in increasing order of the index i. Then at each stage,
σ(i) must be either the largest or the smallest of the elements not already chosen, for
if it was not then it would act as the 2 in a copy of either 213 or 231. So there are two
choices for σ(i) for all i < n (and only one choice left over for σ(n)). Thus, the total
number of choices is 2n−1.

The map suggested by the paragraph above, in which a word in A∗ of length n− 1
is mapped to a 213 and 231 avoiding permutation of length n based on the letter
that appears at each position i, gives a bijection between these two sets. Indeed, for
the forward map f , when we see an a in position i < n, we will record the lowest
number remaining from the set {1, . . . , n} in position i of the permutation, and when
we see a b, we will record the highest number remaining from the set {1, . . . , n}. The
unused number appears as the last number in the permutation. Clearly, the inverse
map f −1 considers each position i of the permutation from left to right (except the
last), recording an a if it is the lowest number remaining in the set {1, . . . , n+ 1}, and
a b if it is the highest number.

For example, f (abbab) = 165243 and f (babab) = 615243, while we have
f −1(1) = ∅, f −1(12345) = aaaa, and f −1(15234) = abaa. We now show that this
bijection is an order isomorphism if we consider factor order on {a, b}∗ and consec-
utive pattern order on the permutations avoiding 213 and 231.

Proposition 3.2 Let A = {a, b}. Then the map f described above is an isomorphism
from the poset A∗ in factor order to the subposet of the consecutive pattern poset S

consisting of all permutations that avoid the non-consecutive patterns 213 and 231.



J Algebr Comb

Proof We will only show that f is order preserving as the proof for f −1 is similar.
Suppose u ≤ w in A∗ and let w′ be the factor of w with w′ = u. At each stage
of the algorithm for f we always pick the smallest or largest remaining element in
constructing f (w). It follows that f (w′) = f (u) is a consecutive pattern in f (w) and
so f (u) ≤ f (w) as desired. �

Question 3.3 For every interval [σ, τ ] of the consecutive pattern poset S, does there
exist an alphabet A and an interval [u,w] in factor order on A∗ with [σ, τ ] ∼= [u,w]
(isomorphism of posets)? What about the same question with the roles of S and A∗
reversed?

We will now give another explanation of the similarity of the two Möbius recur-
sions by exhibiting infinitely many posets satisfying such a formula. Let [0,∞] be
the totally ordered set 0 < 1 < 2 < · · · < ∞. Consider P∗ where P is the positive in-
tegers. We are going to construct a partially ordered set Pk on P∗ for each k ∈ [0,∞]
such that P0 will be factor order on P∗ and S will be a subposet of P∞.

We first need to generalize the notion of standardization. If w ∈ P∗ then define the
height of w(i) to be

h
(
w(i)

) = #
{
j | 1 ≤ j ≤ w(i) and j �∈ w

}
.

For example, if w = 24825 then h(w(1)) = h(w(4)) = 1, h(w(2)) = h(w(5)) =
2, h(w(3)) = 4. For k ∈ [0,∞] and w = w(1)w(2) . . .w(n) we define the k-
standardization of w to be

stk(w) = u(1)u(2) . . . u(n) where u(i) = w(i) − min
{
h
(
w(i)

)
, k

}

for 1 ≤ i ≤ n. Continuing our example,

st0(24825) = 24825,

st1(24825) = 13714,

st2(24825) = 12613,

st3(24825) = 12513,

stk(24825) = 12413,

for all k ≥ 4. It should be clear that stk(w) gives the same sequence as repeatedly
applying st1 to w a total of k times. Note that st0(w) = w and st∞(w) is the usual
standardization of a sequence of positive integers. In particular, if the elements of w

are distinct then st∞(w) is the standard form of w.
To define the poset Pk , it suffices to define its covers and then take the tran-

sitive closure. So we let w = w(1)(2) . . .w(n) cover stk(w(1) . . .w(n − 1)) and
stk(w(2) . . .w(n)). Continuing our example, in P2 the word w = 24825 would cover
st2(2482) = 1261 and st2(4825) = 2613. This partial order can be given another de-
scription as follows. Call u a k-factor of w if there is a factor w′ = w(i + 1)w(i +
2) . . .w(i + j). Such that

st|w|−|u|
k

(
w′) = u.
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Then u ≤ w in Pk if and only if u is a k-factor of w. Returning to our example
again, a 2-factor of w = 24825 is u = st22(482) = 241 and in P2 we have the interval
[u,w] = {241,1261,2613,24825}.

Directly from the definitions one sees that P0 is factor order on P∗, and that the
consecutive pattern poset S is the subposet of P∞ consisting of all words which are
permutations. It is also easy to see that S is a convex subposet of P∞, which means
that if u,w ∈ S, then all elements of the interval [u,w] in P∞ are in S. It follows that
μ(u,w) is the same in P∞ and in S.

To state the recursive formula for the Möbius function of Pk , we need the nat-
ural analogues of interior/inner and exterior/outer. Define the k-interior of w =
w(1) . . .w(n) to be

ik(w) = st2k
(
w(2) . . .w(n − 1)

)
.

A k-prefix of w is a k-factor where the subword standardized contains w(1). A k-
suffix is defined similarly. The k-exterior of w is xk(w), the longest proper k-factor
which is both a k-prefix and a k-suffix.

The last ingredient of the recursive formula for μ in Pk is the analogue of a mono-
tone permutation in S and of a flat word in factor order. We say that an element
w ∈ Pk is k-irreducible if it covers only one element. The reason for this terminology
is that, in a poset which is a lattice, an element is join-irreducible if it covers only
one element. To see why this is the correct notion to capture monotonicity and flat-
ness, we will prove a lemma. In it, a word w of length n is monotone increasing if
w(1) < w(2) < · · · < w(n) and similarly for monotone decreasing.

Lemma 3.4 In Pk a word w = w(1)w(2) . . .w(n), n ≥ 1, is k-irreducible if and only

1. w is monotone increasing and w(i) ≤ k + i − 1 for 1 ≤ i ≤ n, or
2. w(1) = w(2) = · · · = w(n), or
3. w is monotone decreasing and w(i) ≤ n − i + k for 1 ≤ i ≤ n.

Proof It is easy to check that any word satisfying one of the three given conditions
covers a unique element, so we will only prove the forward direction. Let

u = stk(w(1) . . .w(n − 1), v = stk
(
w(2) . . .w(n)

)
.

Assume that w is k-irreducible so that u = v.
Suppose first that w(1) < w(2). It follows that h(w(1)) ≤ h(w(2)). This implies

u(1) < u(2). But u = v, so v(1) < v(2) which gives w(2) < w(3). Continuing in this
way, we find that w is monotone increasing. Assuming w(1) > w(2) or w(1) = w(2)

lead to the monotone decreasing or all equal cases, respectively.
From here on, we will assume that w is monotone increasing as the third case is

similar and the second is easier. Also assume, toward a contradiction, that w(1) > k.
Since w is increasing, h(w(1)) = w(1) − 1 ≥ k. So u(1) = w(1) − k. Applying the
same reasoning to w(2) > k + 1 when producing v gives v(1) = w(2) − k. But then
u(1) = w(1) − k < w(2) − k = v(1), contradicting the fact that u = v. If follows that
w(1) ≤ k.

We now show that w(1) ≤ k implies w(2) ≤ k + 1 as the same argument can be
used to inductively show that w(i) ≤ k + i − 1 for all 1 ≤ i ≤ n. Indeed, w(1) ≤
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k gives u(1) = 1 and so v(1) = 1 as well. But this forces w(2) ≤ k + 1 from the
computation for v. This finishes the proof. �

Note that in P0, the first of these cases cannot happen as it would require
w(1) ≤ 0 + 1 − 1 = 0. Similarly, the third case cannot happen by considering w(n).
So 0-irreducible corresponds to flat words. In S, case 2 cannot happen by definition.
Furthermore, since k = ∞, the restrictions on w(i) hold trivially. So we are left with
only the monotone conditions.

Theorem 3.5 In Pk , k ∈ [0,∞], if u ≤ w then

μ(u,w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(u,xk(w)) if |w| − |u| > 2 and u ≤ xk(w) �≤ ik(w),

1 if |w| − |u| = 2, w is not k-irreducible, and

u ∈ {ik(w), xk(w)},
(−1)|w|−|u| if |w| − |u| < 2,

0 otherwise.

Furthermore, Δ(u,w) is homotopic to a sphere or is contractible, depending on
whether the interval has 1 or 0 critical chains, respectively. In the former case, the
dimension of the sphere is d(C), the critical dimension of the critical chain C.

The proof of this theorem is virtually identical to the proofs of Theorems 1.1
and 2.8 given previously. One need only use either the definition of k-irreducible or
Lemma 3.4 as appropriate every time a fact about monotone permutations is needed.
So it turns out that consecutive pattern order and factor order are just two extremes
of an infinite family of posets whose Möbius functions have the same structure.
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