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Abstract An explicit rule is given for the product of the degree two class with an ar-
bitrary Schubert class in the torus-equivariant homology of the affine Grassmannian.
In addition a Pieri rule (the Schubert expansion of the product of a special Schubert
class with an arbitrary one) is established for the equivariant homology of the affine
Grassmannians of SLn and a similar formula is conjectured for Sp2n and SO2n+1.
For SLn the formula is explicit and positive. By a theorem of Peterson these compute
certain products of Schubert classes in the torus-equivariant quantum cohomology of
flag varieties. The SLn Pieri rule is used in our recent definition of k-double Schur
functions and affine double Schur functions.

Keywords Schubert calculus · Affine Grassmannian · Pieri rule · Quantum
cohomology

1 Introduction

Let G be a semisimple algebraic group over C with a Borel subgroup B and maximal
torus T . Let GrG = G(C((t)))/G(C[[t]]) be the affine Grassmannian of G. The T -
equivariant homology HT (GrG) and cohomology HT (GrG) are dual Hopf algebras
over S = HT (pt) with Pontryagin and cup products, respectively. Let W 0

af be the
minimal length cosets in Waf/W where Waf and W are the affine and finite Weyl
groups. Let {ξw | w ∈ W 0

af} be the Schubert basis of HT (GrG). Define the equivariant
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Schubert homology structure constants dw
uv ∈ S by

ξuξv =
∑

w∈W 0
af

dw
uvξw (1)

where u,v ∈ W 0
af. One interest in the polynomials dw

uv is the fact that they are pre-
cisely the Schubert structure constants for the T -equivariant quantum cohomology
rings QHT (G/B) [9, 13]. Due to a result of Mihalcea [12], they have the positivity
property

dw
uv ∈ Z≥0[αi | i ∈ I ]. (2)

Our first main result (Theorem 6) is an “equivariant homology Chevalley formula”,
which describes dw

r0,v
for an arbitrary affine Grassmannian. Our second main result

(Theorem 20) is an “equivariant homology Pieri formula” for G = SLn, which is a
manifestly positive formula for dw

σm,v where the homology classes {ξσm | 1 ≤ m ≤ n−
1} are the special classes that generate HT (GrSLn). In a separate work [10] we use this
Pieri formula to define new symmetric functions, called k-double Schur functions and
affine double Schur functions, which represent the equivariant Schubert homology
and cohomology classes for GrSLn .

2 The equivariant homology of GrG

We recall Peterson’s construction [13] of the equivariant Schubert basis {jw | w ∈
W 0

af} of HT (GrG) using the level-zero variant of the Kostant and Kumar (graded)
nilHecke ring [6]. We also describe the equivariant localizations of Schubert coho-
mology classes for the affine flag ind-scheme in terms of the nilHecke ring; these are
an important ingredient in our equivariant Chevalley and Pieri rules.

2.1 Peterson’s level-zero affine nilHecke ring

Let I and Iaf = I ∪ {0} be the finite and affine Dynkin node sets and (aij | i, j ∈ Iaf)

the affine Cartan matrix.
Let Paf = Zδ ⊕⊕i∈Iaf

ZΛi be the affine weight lattice, with δ the null root and
Λi the affine fundamental weight. The dual lattice P ∗

af = HomZ(Paf,Z) has dual basis
{d} ∪ {α∨

i | i ∈ Iaf} where d is the degree generator and α∨
i is a simple coroot. The

simple roots {αi | i ∈ Iaf} ⊂ Paf are defined by αj = δj0δ +∑i∈Iaf
aijΛi for j ∈ Iaf

where (aij | i, j ∈ Iaf) is the affine Cartan matrix. Then aij = 〈α∨
i , αj 〉 for all i, j ∈

Iaf. Let (ai | i ∈ Iaf) (resp. (a∨
i | i ∈ Iaf)) be the tuple of relatively prime positive

integers giving a relation among the columns (resp. rows) of the affine Cartan matrix.
Then δ =∑i∈Iaf

aiαi . Let c =∑i∈Iaf
a∨
i α∨

i ∈ P ∗
af be the canonical central element.

The level of a weight λ ∈ Paf is defined by 〈c,λ〉.
There is a canonical projection Paf → P where P is the finite weight lattice, with

kernel Zδ ⊕ ZΛ0. There is a section P → Paf of this projection whose image lies in
the sublattice of

⊕
i∈Iaf

ZΛi consisting of level-zero weights. We regard P ⊂ Paf via
this section.



J Algebr Comb

Let W and Waf denote the finite and affine Weyl groups. Denote by {ri | i ∈ Iaf}
the simple generators of Waf. Waf acts on Paf by ri · λ = λ − 〈α∨

i , λ〉αi for i ∈ Iaf and
λ ∈ Paf. Waf acts on P ∗

af by ri · μ = μ − 〈μ,αi〉α∨
i for i ∈ Iaf and μ ∈ P ∗

af. There is
an isomorphism Waf ∼= W � Q∨ where Q∨ =⊕i∈I Zα∨

i ⊂ P ∗
af is the finite coroot

lattice. The embedding Q∨ → Waf is denoted μ �→ tμ. The set of real affine roots
is Waf · {αi | i ∈ Iaf}. For a real affine root α = w · αi , the associated coroot is well-
defined by α∨ = w · α∨

i .
Let S = Sym(P ) be the symmetric algebra, and Q = Frac(S) the fraction field.

Waf ∼= W � Q∨ acts on P (and therefore on S and on Q) by the level-zero action:

wtμ · λ = w · λ for w ∈ W and μ ∈ Q∨. (3)

Since t−θ∨ = rθ r0 we have

r0 · λ = rθ · λ for λ ∈ P . (4)

Finally, we have δ = α0 + θ where θ ∈ P is the highest root. So under the projection
Paf → P , α0 �→ −θ .

Let QWaf =⊕w∈Waf
Qw be the skew group ring, the Q-vector space Q⊗Q Q[Waf]

with Q-basis Waf and product (p ⊗ v)(q ⊗ w) = p(v · q) ⊗ vw for p,q ∈ Q and
v,w ∈ Waf. QWaf acts on Q: q ∈ Q acts by left multiplication and Waf acts as above.

For i ∈ Iaf define the element Ai ∈ QWaf by

Ai = α−1
i (1 − ri). (5)

Ai acts on S since

Ai · λ = 〈α∨
i , λ

〉
for λ ∈ P (6)

Ai · (ss′)= (Ai · s)s′ + (ri · s)(Ai · s′) for s, s′ ∈ S. (7)

The Ai satisfy A2
i = 0 and

AiAjAi · · ·︸ ︷︷ ︸
mij times

= AjAiAj · · ·
︸ ︷︷ ︸

mij times

where

rirj ri · · ·︸ ︷︷ ︸
mij times

= rj rirj · · ·
︸ ︷︷ ︸
mij times

.

For w ∈ Waf we define Aw by

Aw = Ai1Ai2 · · ·Ai	 where (8)

w = ri1ri2 · · · ri	 is reduced. (9)
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The level-zero graded affine nilHecke ring A (Peterson’s [13] variant of the nilHecke
ring of Kostant and Kumar [6] for an affine root system) is the subring of QWaf gen-
erated by S and {Ai | i ∈ Iaf}. In A we have the commutation relation

Aiλ = (Ai · λ)1 + (ri · λ)Ai for λ ∈ P . (10)

In particular

A =
⊕

w∈Waf

SAw. (11)

2.2 Localizations of equivariant cohomology classes

Using the relation

ri = 1 − αiAi (12)

w ∈ Waf may be regarded as an element of A. For v,w ∈ Waf define the elements
ξv(w) ∈ S by

w =
∑

v∈W

(−1)	(v)ξv(w)Av. (13)

Using a reduced decomposition (9) for w and substituting (12) for its simple reflec-
tions, one obtains the formula [1] [2]

ξv(w) =
∑

b∈[0,1]	

(
	∏

j=1

α
bj

ij
rij

)
· 1 (14)

where the sum runs over b such that
∏

bj =1 rij = v is reduced and the product over
j is an ordered left-to-right product of operators. Each b encodes a way to obtain
a reduced word for v as an embedded subword of the given reduced word of w: if
bj = 1 then the reflection rij is included in the reduced word for v. Given a fixed
b and an index j such that bj = 1, the root associated to the reflection rij is by
definition ri1ri2 · · · rij−1 ·αij . The summand for b is the product of the roots associated
to reflections in the given embedded subword.

It is immediate that

ξv(w) = 0 unless v ≤ w (15)

ξ id(w) = 1 for all w. (16)

The element ξv(w) ∈ S has the following geometric interpretation. Let Xaf =
Gaf/Baf be the Kac–Moody flag ind-variety of affine type [7]. For every v ∈ Waf
there is a T -equivariant cohomology class [Xv] ∈ HT (Xaf) and for each w ∈ Waf
there is an associated T -fixed point (denoted w) in Xaf and a localization map
i∗w : HT (Xaf) → HT (w) � HT (pt) [7]. Then ξv(w) = i∗w([Xv]). Moreover, the map
HT (Xaf) → HT (Waf) ∼= Fun(Waf, S) given by restriction of a class to the T -fixed
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subset Waf ⊂ Xaf, is an injective S-algebra homomorphism where Fun(Waf, S) is
the S-algebra of functions Waf → S with pointwise product. The function ξv ∈
Fun(Waf, S) is the image of [Xv]. The image Φ of HT (Xaf) in Fun(Waf, S) satis-
fies the GKM condition [3] [6]: For f ∈ Φ we have1

f (w) − f (rβw) ∈ βS for all w ∈ Waf and affine real roots β. (17)

Lemma 1 Suppose u,v ∈ Waf with 	(uv) = 	(u) + 	(v). Then

ξuv(uv) = ξu(u)
(
u · ξv(v)

)
. (18)

Lemma 2 Suppose v,w ∈ Waf. Then

ξv(w) = (−1)	(v)w · (ξv−1(
w−1)). (19)

2.3 Peterson subalgebra and Schubert homology basis

Let K ⊂ G denote the maximal compact subgroup of G. The homotopy equiva-
lence between GrG and the based loop space ΩK endows the equivariant homology
HT (GrG) and cohomology HT (GrG) with the structure of dual Hopf algebras. The
Pontryagin multiplication in the homology HT (GrG) is induced by the group struc-
ture of ΩK . We let {ξw} denote the equivariant Schubert basis of HT (GrG), dual (via
the cap product) to the basis {ξw} of HT (GrG).

The Peterson subalgebra of A is the centralizer subalgebra P = ZA(S) of S in A.

Theorem 3 [13] There is an isomorphism HT (GrG) → P of commutative Hopf alge-
bras over S. For w ∈ W 0

af let jw denote the image of ξw in P. Then jw is the unique
element of P with the property that jw

w = 1 and jx
w = 0 for any x ∈ W 0

af \ {w} where
jx
w ∈ S are defined by

jw =
∑

x∈Waf

jx
wAx. (20)

Moreover, if jx
w �= 0 then 	(x) ≥ 	(w) and jx

w is a polynomial of degree 	(x) − 	(w).

The Schubert structure constants for HT (GrG) are obtained as coefficients of the
elements jw .

Proposition 4 ([13]) Let u,v,w ∈ W 0
af. Then

dw
uv =

{
jwv−1

u if 	(w) = 	(v) + 	(wv−1)

0 otherwise.
(21)

1Using equivariance for the maximal torus Taf ⊂ Gaf, the GKM condition characterizes the image of
localization to torus fixed points. However, after forgetting equivariance down to the smaller torus T ,
elements of Φ are characterized by additional conditions, which were determined in [4].
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Due to the fact [9, 13] that the collections of Schubert structure constants for
HT (GrG) and QHT (G/B) are the same and Mihalcea’s positivity theorem for equiv-
ariant quantum Schubert structure constants, we have the positivity property

Proposition 5 jx
w ∈ Z≥0[αi | i ∈ I ] for all w ∈ W 0

af and x ∈ Waf.

Given u ∈ W 0
af let tu = tλ where λ ∈ Q∨ is such that tλW = uW .

Since the translation elements act trivially on S and Waf ⊂ A via (12), we have
tλ ∈ P for all λ ∈ Q∨, so that tλ ∈⊕v∈W 0

af
Sjv . For any w ∈ W 0

af, we have

tw =
∑

v∈W 0
af

(−1)	(v)ξv
(
tw
)
jv =

∑

v∈W 0
af

(−1)	(v)ξv(w)jv

by the definitions and Lemma 1.
Define the W 0

af × W 0
af-matrices

Awv = (−1)	(v)ξv(w) (22)

B = A−1. (23)

The matrix A is lower triangular by (15) and has nonzero diagonal terms, and is hence
invertible over Q = Frac(S). We have

jv =
∑

w∈W 0
af

w≤v

Bwv tw.

Taking the coefficient of Ax for x ∈ Waf, we have

jx
v = (−1)	(x)

∑

w∈W 0
af

w≤v

Bwv ξx
(
tw
)
. (24)

Note that if Ω ⊂ W 0
af is any order ideal (downwardly closed subset) then the restric-

tion A|Ω×Ω is invertible. In the sequel we choose certain such order ideals and find
a formula for the inverse of this submatrix. Since the values of ξx are given by (14)
we obtain an explicit formula for jx

v for v ∈ Ω and all x ∈ Waf.

3 Equivariant homology Chevalley rule

Theorem 6 For every x ∈ Waf \ {id}, ξx−1
(rθ ) ∈ θS and

jr0 =
∑

x∈W\{id}

(
θ−1ξx−1

(rθ )Ax + ξx−1
(rθ )Ar0x

)
. (25)
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Proof For x �= id, the GKM condition (17) and (15) implies that ξx−1
(rθ ) ∈ θS. Ω =

{id, r0} ⊂ W 0
af is an order ideal. The matrix A|Ω×Ω and its inverse are given by

(
1 0
1 θ

) (
1 0

−θ−1 θ−1

)
.

Since id = t id and tθ∨ = t r0 (as tθ∨ = r0rθ ), we have

(−1)	(y)j
y
r0 = −θ−1ξy(id) + θ−1ξy(tθ∨).

By the length condition in Theorem 3 we have

(−1)	(y)j
y
r0 = θ−1ξy(tθ∨) for y �= id.

By (15) j
y
r0 = 0 unless y ≤ tθ∨ = r0rθ . So assume this.

Suppose r0y < y. Write y = r0x. Then

(−1)	(y)ξy(tθ∨) = (−1)	(y)(α0)
(
r0 · ξx(rθ )

)= (−1)	(x)θ
(
rθ · ξx(rθ )

)= θ ξx−1
(rθ ).

If r0y > y then we write y = x ≤ rθ and

(−1)	(x)ξx(tθ∨) = (−1)	(x)r0 · ξx(rθ ) = (−1)	(x)rθ · ξx(rθ ) = ξx−1
(rθ )

as required. �

The formula (14) shows that ξx−1
(rθ ) ∈ Z≥0[αi | i ∈ I ]. The same holds for

θ−1ξx−1
(rθ ). Indeed,

Lemma 7 α−1ξx(rα) ∈ Z≥0[αi | i ∈ I ] for any positive root α.

Proof The reflection rα has a reduced word i = i1i2 · · · ir−1ir ir−1 · · · i1 which is sym-
metric. Consider the different embeddings j of reduced words of x into i, as in (14).
If j uses the letter ir , then the corresponding term in (14) has θ as a factor. Otherwise,
j uses is but not is+1, . . . , ir , for some s. But then there is another embedding of j′ of
the same reduced word of x into i, which uses the other copy of the letter is in i. The
two terms in (14) which correspond to j and j′ contribute A(β−rα ·β) = A(〈α∨, β〉α)

where A ∈ Z≥0[αi | i ∈ I ], and β is an inversion of rα . It follows that 〈α∨, β〉 > 0.
The lemma follows. �

Remark 8 The polynomials ξx−1
(rθ ) appearing in (25) may be computed entirely in

the finite Weyl group and finite weight lattice.

Remark 9 In [8, Proposition 2.17], we gave an expression for the non-equivariant part
of jr0 , consisting of the terms jx

r0
Ax where 	(x) = 1 = 	(r0). This follows easily from

Theorem 6 and the fact [6] that ξ ri (w) = ωi −w ·ωi , where ωi is the ith fundamental
weight.
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3.1 Application to quantum cohomology

The equivariant homology Chevalley rule (Theorem 6) may be used to obtain a new
formula for some Gromov–Witten invariants for QHT (G/P ) where P � G is a
parabolic subgroup.2

For this subsection we adopt the notation of [9], some of which we recall presently.
Our goal is Proposition 10, which is the equivariant generalization of [9, Prop. 11.2].

Consider the Levi factor of P . It has Dynkin node subset IP ⊂ I , Weyl group
WP ⊂ W , coroot lattice Q∨

P ⊂ Q∨, root system RP ⊂ R and positive roots R+
P . De-

note the natural projection Qaf → Q by β �→ β . Define

(WP )af = WP � Q∨
P

(
R+

P

)
af = {β ∈ R+

af | β ∈ RP

}

(
WP

)
af = {x ∈ Waf | x · β > 0 for all β ∈ (R+

P

)
af

}
.

Every element w ∈ Waf has a unique expression w = w1w2 with w1 ∈ (WP )af and
w2 ∈ (WP )af; denote by πP : Waf �→ (WP )af the map that sends w �→ w1.

Recall that the ring HT (GrG) has an S-basis {ξx | x ∈ W−
af }. It has an ideal

JP =
⊕

x∈W−
af \(WP )af

Sξx.

The set T = {ξπP (tλ) | λ ∈ Q̃} is multiplicatively closed, where Q̃ = {λ ∈ Q∨ |
〈λ,αi〉 ≤ 0 for all i ∈ I } is the set of antidominant elements of Q∨. Finally let
ηP : Q∨ → Q∨/Q∨

P be the natural projection. Then by [9, Thm. 10.16] there is an
isomorphism

ΨP : (HT (GrG)/JP

)[
ξ−1
πP (tλ) | λ ∈ Q̃

]∼= QHT (G/P )(q)

where (q) denotes localization at the quantum parameters. For x ∈ W−
af ∩ (WP )af

with x = wtλ for w ∈ W and λ ∈ Q∨, we have w ∈ WP and λ ∈ Q̃. Then ΨP (ξx) =
qηP (λ)σ

w
P where σw

P is the quantum Schubert class in QHT (G/P ) associated with
w ∈ WP .

Proposition 10 Let w ∈ WP . Then

σ
πP (rθ )
P σw

P =
∑

id�=u≤rθ
	(uw)=	(w)−	(u)

θ−1ξu−1
(rθ )qηP (θ∨)σ

uw
P

+
∑

id�=u≤rθ
	(uw)=	(w)−	(u)

(uw)−1θ∈R+\R+
P

ξu−1
(rθ )qηP (θ∨−(uw)−1θ∨)σ

πP (rθ uw)
P .

2This notation for P will be used only in this subsection and should not cause confusion for the reader
with its previous use as the weight lattice of G.
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Proof Choose λ ∈ Q∨ such that 〈λ,αi〉 = 0 for i ∈ IP and 〈λ,αi〉 � 0 for i ∈ I \ IP .
Then 〈λ,α〉 = 0 for α ∈ RP and 〈λ,α〉 � 0 for α ∈ R+ \ R+

P .
We have x = wtλ ∈ W−

af ∩ (WP )af by [9, Lemmata 3.3, 10.1]. Define the set

Ax = {u ∈ Waf | 	(ux) = 	(u) + 	(x) and ux ∈ W−
af

}
. (26)

Using the characterization of the Schubert basis in Theorem 3, for z ∈ W−
af the

coefficient of jz in jr0jx is given by the coefficient of Az in jr0Ax . We obtain

ξr0ξx =
∑

1�=u≤rθ
u∈Ax

(
θ−1ξu−1

(rθ )ξux + χ(r0 ∈ Aux)ξ
u−1

(rθ )ξr0ux

)
(27)

where χ(true) = 1 and χ(false) = 0. We shall apply the map ΨP to the above expres-
sion. First it is desirable to factor out the dependence of the right hand side on λ.

Suppose u ∈ W (which holds for u ≤ rθ ∈ W ). We claim that u ∈ Ax if and only if
	(uw) = 	(w)− 	(u). Suppose u ∈ Ax . Since ux ∈ W−

af we have 	(ux) = 	(uwtλ) =
	(tλ) − 	(uw) and 	(u) + 	(x) = 	(u) + 	(tλ) − 	(w). Since 	(ux) = 	(u) + 	(x) it
follows that 	(uw) = 	(w) − 	(u). Conversely suppose 	(uw) = 	(w) − 	(u). Since
w ∈ WP it follows that uw ∈ WP . In particular uwtλ ∈ W−

af . Therefore 	(ux) =
	(u) + 	(x) and u ∈ Ax .

Let us fix the assumption that u ∈ W and 	(uw) = 	(w) − 	(u). Then u ∈ Ax and
ux ∈ (WP )af since uw ∈ WP . One may show that:

(1) r0ux > ux if and only if (uw)−1 · θ ∈ R+ and (ux)−1 · α0 ∈ Z>0δ − (uw)−1 · θ .
(2) r0ux /∈ (WP )af if and only if (uw)−1 · θ ∈ R+

P .
(3) r0ux /∈ W−

af if and only if uxαi = α0 for some i ∈ I .

It follows that under the assumption on u, (uw)−1θ ∈ R+ \ R+
P if and only if r0ux >

ux, r0ux ∈ W−
af , and r0ux ∈ (WP )af.

We now apply the map ΨP . By [9, Remark 10.1] r0 ∈ W−
af ∩ (WP )af. Since r0 =

rθ t−θ∨ we have ΨP (ξr0) = qηP (−θ∨)σ
πP (rθ )
P .

By [9, Prop. 10.5, 10.8] πP (w) = w, πP (tλ) = tλ and πP (x) = x. Therefore
ΨP (ξx) = qηP (λ)σ

w
P .

Let 1 �= u ≤ rθ and u ∈ Ax . It follows that uw ∈ WP and ux = uwtλ ∈ (WP )af.
Then ΨP (ξux) = qηP (λ)σ

uw
P .

Finally let 1 �= u ≤ rθ be such that u ∈ Ax , r0 ∈ Aux , and r0ux ∈ (WP )af. We have
r0ux = rθ t−θ∨uwtλ = rθuwtλ−(uw)−1θ∨ . Therefore ΨP (r0ux) =
qηP (λ−(uw)−1θ∨)σ

πP (rθ uw)
P . Applying ΨP to (27) yields the required equation. �

4 Alternating equivariant Pieri rule in classical types

We first establish some notation for G = SLn, Sp2n, and SO2n+1. Our root system
conventions follow [5].
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4.1 Special classes

We give explicit generating classes for HT (GrG).

4.1.1 HT (GrSLn)

Define the elements

σ̂p = rp−1 · · · r1 (28)

σp = rp−1 · · · r1r0 = σ̂pr0. (29)

So 	(σ̂p) = p − 1 and 	(σp) = p. These elements have associated translations

tp := tσp+1 = trp ···r2r1·θ∨ for 0 ≤ p ≤ n − 2. (30)

4.1.2 HT (GrSp2n
)

For 1 ≤ p ≤ 2n − 1 we define the elements σ̂p ∈ W by

σ̂p = rp−1 · · · r2r1 for 1 ≤ p ≤ n

σ̂p = r2n−p−1 · · · rn−2rn−1 · · · r2r1 for n + 1 ≤ p ≤ 2n − 1.

For 1 ≤ p ≤ 2n − 1 define σp ∈ W 0
af and tp−1 ∈ Waf by

σp = σ̂pr0 (31)

tp−1 = tσp = tσ̂p ·θ∨ . (32)

4.1.3 HT (GrSO2n+1)

For 1 ≤ p ≤ 2n − 1 we define the elements σ̂p ∈ W 0
af by

σ̂p =

⎧
⎪⎪⎨

⎪⎪⎩

id if p = 1
rprp−1 · · · r3r2 if 2 ≤ p ≤ n

r2n−pr2n−p+1 · · · rn−1rnrn−1 · · · r3r2 if n + 1 ≤ p ≤ 2n − 2
r0r2r3 · · · rn−1rnrn−1 · · · r3r2 if p = 2n − 1.

For 1 ≤ p ≤ 2n − 1 define σp ∈ W 0
af by

σp = σ̂pr0. (33)

For 1 ≤ p ≤ 2n − 2 define tp−1 ∈ Waf by

tp−1 = tσp = tσ̂p ·θ∨ . (34)

For 1 ≤ p ≤ 2n − 1 let σ ′
p be σp but with every r0 replaced by r1. Then define

t2n−2 = t2ω∨
1

= σ2n−1σ
′
2n−1.
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Then we conjecture that

Bσ2n−1,σq = ± 1

ξσ2n−1(σ ′
qσ2n−1)

for 1 ≤ q ≤ 2n − 1 (35)

where B is defined in (23). The sign is − for q ≤ 2n − 2 and + for q = 2n − 1.

4.1.4 Special classes generate

Let k′ = n − 1 for G = SLn and k′ = 2n − 1 for G = Sp2n or G = SO2n+1. Let
P̂ := S[[jσm | 1 ≤ m ≤ k′]] be the completion of P ∼= HT (GrG) generated over S by
series in the special classes. It inherits the Hopf structure from P. The Hopf structure
on P is determined by the coproduct on the special classes.

Proposition 11 For G = SLn,Sp2n, SO2n+1, Q ⊗Z P ⊂ Q ⊗Z P̂.

Proof It is known that the special classes generate the homology H∗(GrG) non-
equivariantly for G = SLn,Sp2n, SO2n+1 see [11, 14]. Furthermore, the equivari-
ant homology Schubert structure constant dw

uv is a polynomial in the simple roots of
degree 	(w) − 	(u) − 	(v), and when 	(w) = 	(u) + 	(v), it is equal to the non-
equivariant homology Schubert structure constant. It follows easily from this that
each equivariant Schubert class can be expressed as a formal power series in the
equivariant special classes. �

Remark 12 For G = SLn and G = Sp2n the special classes generate H∗(GrG)

over Z.

4.2 The alternating equivariant affine Pieri rule

Let k = n − 1 for G = SLn, k = 2n − 1 for G = Sp2n, and k = 2n − 2 for G =
SO2n+1. Our goal is to compute jx

σm
for 1 ≤ m ≤ k; note that for G = SO2n+1, the

element σ2n−1 has been treated in (35). For this purpose consider the Bruhat order
ideal Ω = {id = σ0, σ1, . . . , σk} in W 0

af. Since j0 = id, to compute jx
σp

for p ≥ 1 we
may assume x �= id by length considerations. It suffices to invert the matrix A given
in (22) over Ω \ {id} × Ω \ {id}.

Define the matrices Mpm = (−1)mξσm(σp) for 1 ≤ p,m ≤ k, Nmq = ξ σ̂mrθ (σ̂qrθ )

for 1 ≤ m,q ≤ k, and the diagonal matrix Dpq = δpq ξ tp−1(tp−1) for 1 ≤ p,q ≤ k.

Conjecture 13

MN = D. (36)

Conjecture 14 For 1 ≤ m ≤ k and x �= id we have

jx
σm

= (−1)	(x)
m−1∑

q=0

ξ σ̂mrθ (σ̂q+1rθ )

ξ tq (tq)
ξx(tq). (37)

In particular jx
σm

= 0 unless 	(x) ≥ m and x ≤ tq for some 0 ≤ q ≤ m − 1.
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Conjecture 14 follows immediately from Conjecture 13: we have M−1 = ND−1,
and (37) follows from (24).

Theorem 15 Conjecture 14 holds for G = SLn.

The proof appears in Appendix A. Examples of (36) appear in Appendix B.

5 Effective Pieri rule for HT (GrSLn)

The goal of this section is to prove a formula for jx
σm

that is manifestly positive. In

this section we work with G = SLn, W = Sn, and Waf = S̃n. We first establish some
notation. For a ≤ b write

ub
a = rara+1 · · · rb (38)

db
a = rbrb−1 · · · ra (39)

αb
a = αa + αa+1 + · · · + αb (40)

for upward and downward sequences of reflections and for sums of consecutive roots.
In particular we have θ = α1 + α2 + · · · + αn−1 = αn−1

1 .

5.1 V ’s and Λ’s

The support Supp(b) of a word b is the set of letters appearing in the word. For a
permutation w, Supp(w) is the support of any reduced word of w. A V is a reduced
word (for some permutation) that decreases to a minimum and increases thereafter.
Special cases of V ’s include the empty word, any increasing word and any decreasing
word. A Λ is a reduced word that increases to a maximum and decreases thereafter.
A (reverse) N is a reduced word consisting of a V followed by a Λ, such that the
support of the V is contained in the support of the Λ. For example, the words 32012,
23521, and 32012453 are a V , Λ, and N , respectively.

By abuse of language, we say a permutation is a V if it admits a reduced word that
is a V . We use similar terminology for Λ’s and N ’s.

A permutation is connected if its support is connected (that is, is a subinterval of
the integers). The following basic facts are left as an exercise.

Lemma 16 A permutation that is a V , admits a unique reduced word that is a V .
Similarly for a connected Λ or a connected N .

Lemma 17 A connected permutation is a V if and only if it is a Λ, if and only if it is
an N .
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5.2 tq -factorizations

For 0 ≤ q ≤ n − 2, we call

q(q − 1) · · ·101 · · · (n − 1)(n − 2) · · · (q + 1) (41)

the standard reduced word for tq . Since this word is an N it follows that any x ≤ tq is
an N . We call the subwords q(q − 1) · · ·1, 12 · · · (n − 2) and (n − 2) · · · (q + 1) the
left, middle, and right branches.

Lemma 18 If x ∈ S̃n admits a reduced word in which i + 1 precedes i for some
i ∈ Z/nZ then x �≤ ti .

Proof Suppose x ≤ ti . Since the standard reduced word of ti has all occurrences of
i preceding all occurrences of i + 1, it follows that x has a reduced word with that
property. But this property is invariant under the braid relation and the commuting
relation, which connect all reduced words of x. �

Let c(x) denote the number of connected components of Supp(x). If J and J ′ are
subsets of integers then we write J < J ′ −1 if max(J ) < min(J ′)−1. The following
result follows easily from the definitions.

Lemma 19 Suppose x ≤ tq . Then x has a unique factorization x = v1 · · ·vry1 ×
y2 · · ·ys , called the q-factorization, where each vi, yi has connected support such
that

(1) Supp(vi) < Supp(vi+1) − 1 and Supp(yi) < Supp(yi+1) − 1
(2) Supp(v1 · · ·vr) ⊂ [0, q]
(3) Supp(y1 · · ·ys) ⊂ [q + 1, n − 1]
(4) Each vi is a V

(5) Each yi is a Λ.

We say that vr and y1 touch if q ∈ Supp(vr ) and q + 1 ∈ Supp(y1). We denote

ε(x, q) =
{

1 if vr and y1 touch
0 otherwise.

(42)

Note that ε(x, q) depends only on Supp(x) and q .
Each k in the q-factorization of x ≤ tq , is (S1) in the left branch of some vi , or

(S2) in the right branch of some vi , or (S3) at the bottom of a vi , or (S1′) in the left
branch of some yi , or (S2′) in the right branch of some yi , or (S3′) at the top of a yi .
We call these sets S1, S2, S3, S1′, S2′, and S3′. Note that k can belong to both S1
and S2, or both S1′ and S2′.

For each x and each q such that x ≤ tq , we define the polynomials

M(x,q) = (αq

0

)ε(x,q)
∏

k∈S2

αk−1
0

∏

k∈S1′
αk

0
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L(x, q) =
∏

k∈S1

α
q
k

R(x, q) =
∏

k∈S2′

(−αk
q+1

)
.

We also define R(x, q,m) =∏k∈S2′∩[m,n−1](−αk
q+1).

5.3 The equivariant Pieri rule

Let
{
q ∈ [0,m − 1] | x ≤ tq

}= {q1 < q2 < · · · < qp} (43)

and

βi = α
qi+1
1+qi

(44)

be the root associated with the reflection rβi
that exchanges the numbers 1 + qi and

1 + qi+1. For a root β and f ∈ S define

∂βf = β−1(f − rβf ).

Theorem 20 We have

jx
σm

= (−1)	(x)−m+p−1M(x,q1)∂βp−1 · · · ∂β2∂β1Y(x,m)

where Y(x,m) = (α
q1
0 )c(x)−1R(x, q1,m).

The proof of Theorem 20 is given in Sect. 6.

5.4 Positive formula

Define S̃2
′ = S2′ ∩ [m,n − 1], and let K = S̃2

′ ∪ {n − 1, . . . , n − 1} = {k1 ≥ k2 ≥
· · · ≥ kd} be the multiset where the element (n − 1) is added to S̃2

′
(c(x) − 1) times.

Theorem 21

jx
σm

= (αn−1
q1+1

)ε(x,q)
∏

k∈S2

αn−1
k

∏

k∈S1′
αn−1

k+1

∑

R⊂[1,|K|]
|R|=p−1

∏

i∈[1,|K|]\R
α

ki

qs(i,R)+1 (45)

where s(i,R) = #{r ∈ R | i < r} + 1.

The proof of Theorem 21 is given in Sect. 6.

Example 22 Let n = 8, m = 4, and x = r0r4r5r7r4r2r1. The components of Supp(x)

are [0,2], [4,5], and [7] so that c(x) = 3. We have p = 3 with (q1, q2, q3) = (0,2,3),
v1 = r0, y1 = r2r1, y2 = r4r5r4, y3 = r7, ε(x, q1) = 1, S1 = S2 = ∅, S3 = {0}, S1′ =
{4}, S2′ = {1,4}, S3′ = {2,5,7}, S2′ ∩ [m,n − 1] = {4}. Thus K = {7,7,4}. Then
writing αb

a = xa − xb+1, and noting that αn−1
0 = 0, Theorem 20 yields
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jx
σm

= (α7
1

)1
α7

5∂α3∂α1+α2

(
α7

1

)2
α4

1

= (x1 − x8)(x5 − x8)∂x3−x4∂x1−x3(x1 − x8)
2(x1 − x5)

= (x1 − x8)(x5 − x8)∂x3−x4

(
(x1 − x8)(x1 − x5) + (x3 − x8)(x1 − x5)

+ (x3 − x8)
2)

= (x1 − x8)(x5 − x8)
(
(x1 − x5) + (x3 − x8) + (x4 − x8)

)

= (α7
1

)(
α7

5

)(
α4

1 + α7
3 + α7

4

)

agreeing with Theorem 21.

6 Proof of Theorems 20 and 21

6.1 Simplifying (37)

Let 0 ≤ q ≤ m − 1. By (14) and Lemma 2 we have

ξ σ̂mrθ (σ̂q+1rθ ) = um−1
q+1 · ξ σ̂mrθ (σ̂mrθ )

= (−1)mum−1
q+1 σ̂mrθ · ξ rθ σ̂−1

m
(
rθ σ̂

−1
m

)

= (−1)mσ̂q+1rθ · ξ rθ σ̂−1
m
(
rθ σ̂

−1
m

)
.

We also have

ξ tq (tq) = ξσq+1(σq+1)
(
σq+1 · ξ rθ σ̂−1

m
(
rθ σ̂

−1
m

))(
σq+1rθ σ̂

−1
m · ξdm−1

q+1
(
dm−1
q+1

))

= ξσq+1(σq+1)
(
σ̂q+1rθ · ξ rθ σ̂−1

m
(
rθ σ̂

−1
m

))(
um−1

q+1 · ξdm−1
q+1
(
dm−1
q+1

))

= (−1)m−q−1ξσq+1(σq+1)
(
σ̂q+1rθ · ξ rθ σ̂−1

m
(
rθ σ̂

−1
m

))
ξ

um−1
q+1
(
um−1

q+1

)
.

Define

D(q,m) = ξσq+1(σq+1)ξ
um−1

q+1
(
um−1

q+1

)
. (46)

so that by Theorem 15,

jx
σm

= (−1)	(x)

m−1∑

q=0

(−1)q+1

D(q,m)
ξx(tq). (47)

Explicitly we have

ξσq+1(σq+1) = αqα
q

q−1 · · ·αq

1 α
q

0 (48)

ξ
um−1

q+1
(
um−1

q+1

)= αq+1α
q+2
q+1 · · ·αm−1

q+1 . (49)
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6.2 Evaluation at tq

Proposition 23 If x ≤ tq , then

ξx(tq) = (αq

0

)c(x)
M(x, q) L(x, q) R(x, q). (50)

Proof We compute ξx(tq) using (14) by computing all embeddings of reduced words
of x into the standard reduced word (41) of tq . We refer to the q-factorization of x.
Each k ∈ S1 must embed into the left branch of the N , and has associated root α

q
k .

Each k ∈ S2 embeds into the middle branch of the N and has associated root αk−1
0 .

Each k ∈ S1′ embeds into the middle branch of the N and has associated root αk
0 .

Each k ∈ S2′ embeds into the right branch of the N and has associated root −αk
q+1.

Each k ∈ S3 is either 0 and has associated root α
q

0 , or can be embedded into the
left or middle branch of the N , and the sum of the two associated roots for these
positions is α

q
k + αk−1

0 = α
q

0 . Each k ∈ S3′ is either n − 1, which has associated
root −αn−1

q+1 = α
q

0 , or can be embedded into the middle or right branch of the N ,

and the sum of associated roots is αk
0 − αk

q+1 = α
q

0 . Since all the various choices
for embeddings of elements of S3 and S3′ can be varied independently, the value of
ξx(tq) is the product of the above contributions. Each minimum of a vi and maximum
of a yj contributes α

q

0 . If there is a component of x which contains both q and q + 1
(that is, if vr and y1 touch) then it is unique and contributes two copies of α

q

0 . All this
yields (50). �

6.3 Rotations

We now relate ξx(tq) with ξx(tq ′). Let rp,q denote the transposition that exchanges
the integers p and q .

Proposition 24 Let x ≤ tq and consider the q-factorization of x. Let a be such that
this reduced word of x contains the decreasing subword (q +a)(q +a −1) · · · (q +1)

but not (q + a + 1)(q + a) · · · (q + 1). If q + 1 /∈ Supp(x), then set a = 1. Then

ξx(tq+1) = ξx(tq+2) = · · · = ξx(tq+a−1) = 0 (51)

and

ξx(tq+a) = M(x,q) r1+q,1+q+a

(
α

q

0

)c(x)
L(x, q) R(x, q) (52)

Let y↑ denote y with every ri changed to ri+1. The following lemma follows
easily by induction.

Lemma 25 Let y be increasing with support in [b, a − 1]. Then

yda
b = da

b y↑
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Proof of Proposition 24 We assume that q + 1 ∈ Supp(x), for otherwise the claim is
easy.

By Lemma 18 we have x �≤ tq+i for 1 ≤ i ≤ a − 1. Equation (51) follows from
(15). We now prove (52). The first goal is to compute the q + a-factorization of x.
Since x ≤ tq we may consider the q-factorization of x. The decreasing word (q +
a − 1) · · · (q + 2)(q + 1) must embed into the right hand branch, that is, [q + 1, q +
a − 1] ⊂ S2′. The hypotheses imply that q + a �∈ S2′. There are two cases: either
q +a ∈ S1′ or q +a ∈ S3′ (so that q +a +1 �∈ Supp(x)). We treat the former case, as
the latter is similar: the two cases correspond to the touching and nontouching cases
for the q + a-factorization of x, whose existence we now demonstrate.

Suppose q + a ∈ S1′. Then there is a y′
1 with Supp(y′

1) ⊂ [q + a + 1, n − 1] and
a y with an increasing reduced word such that Supp(y) ⊂ [q + 1, q + a − 1] and
y1 = yrq+ay

′
1d

q+a−1
q+1 = yd

q+a

q+1 y′
1. Suppose vr and y1 touch. Then v′

r := vryd
q+a

q+1 is
an N and therefore a V . Moreover x ≤ tq+a since x has a q + a-factorization given
by the q-factorization of x but with vr and y1 replaced by v′

r and y′
1, respectively.

To verify that v′
r is a V , by the touching assumption, q ∈ Supp(vr ) and we have

v′
r = vryd

q+a

q+1 = vrd
q+a

q+1 y↑ = d
q+a

q+2 vrrq+1y
↑ which expresses v′

r in a V .
Suppose vr and y1 do not touch, that is, q /∈ Supp(vr ). We have the V given by

v′
r+1 = yd

q+a

q+1 = d
q+a

q+1 y↑. Then x ≤ tq+a , as x has the q + a factorization given by
the q-factorization of x except that there is a new V , namely, v′

r+1 and the first y is
y′

1 instead of y1.
In every case we calculate that

M(x,q + a) = M(x,q)

L(x, q + a) =
(

q+a∏

k=q+2

α
q+a
k

)
d

q+a

q+1 L(x, q)

R(x, q + a) = d
q+a

q+1

(
q+a−1∏

k=q+1

(−αk
q+1

)−1

)
R(x, q)

=
(

q+a−1∏

k=q+1

(
α

q+a
k

)−1

)
d

q+a

q+1 R(x, q).

The calculation for L and R follows from the fact that [q + 2, q + a] ⊂ S1q+a , but
[q +1, q +a −1] ⊂ S2′

q . The calculation for M follows from the fact that Supp(y) ⊂
S2q and Supp(y↑) ⊂ S2q+a , together with the following boundary cases:

If q + a + 1 ∈ Supp(x) then q + a ∈ S1q+a ∩ S1′
q . Thus q + a contributes a factor

of α
q+a

0 to M(x,q). This factor appears in M(x,q + a) as the factor (α
q+a

0 )ε(x,q+a),
since ε(x, q + a) = 1.

If q ∈ Supp(x) one has ε(x, q) = 1 and q + 1 ∈ S2q+a contributes a factor of α
q

0
to M(x,q + a). This factor appears in M(x,q) as the factor (α

q

0 )ε(x,q) = α
q

0 .

Using that d
q+a

q+1 α
q

0 = α
q+a

0 , d
q+a

q+1 (−α
q+a

q+1 ) = αq+a , and r1+q,1+q+aα
q+a

q+1 =
−α

q+a

q+1 , the above relations between M(x,q), L(x, q), R(x, q) and their counter-
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parts for q + a, together with Proposition 23, yield

ξx(tq+a) = (αq+a

q+1

)−1
M(x,q)d

q+a

q+1

(−α
q+a

q+1

)(
α

q

0

)c(x)
L(x, q) R(x, q).

To obtain (52), since r1+q,1+q+a = d
q+a

q+1 u
q+a

q+2 , it suffices to show that

(−α
q+a

q+1

)(
α

q

0

)c(x)
L(x, q)R(x, q) is invariant under u

q+a

q+2.

However, it is clear that α
q

0 and L(x, q) are invariant, and the only part of R(x, q)

that must be checked is the product
∏

k∈S2′∩[q+1,q+a](−αq+1,k). However, we have

S2′ ∩ [q + 1, q + a] = [q + 1, q + a − 1], and indeed the product
∏q+a

k=q+1(−αk
q+1)

is invariant under u
q+a

q+2 , as required. �

Recall the definition of qj from (43). In light of the proof of Proposition 24, we
write

M(x) = M(x,qj ) for any 1 ≤ j ≤ p. (53)

Recall the definition of βi from (44). For i ≤ j we also define

β
j
i = βi + βi+1 + · · · + βj = α

qj+1
qi+1.

Let

Yi(x,m) = (αqi

0

)c(x)−1
R(x, qi,m) for 1 ≤ i ≤ p (54)

so that Yi(x,m) = rβi−1Yi−1(x,m).
Recall the definitions of D(q,m) and Yi(x,m) from (46).

Lemma 26

(−1)m−1−qj −p+j
ξx(tqj

)

D(qj ,m)
= M(x)Yj (x,m)

(β
j−1
1 β

j−1
2 · · ·βj−1

j−1 )(β
j
j β

j+1
j · · ·βp−1

j )
.

Proof The proof proceeds by induction on j . Let Dj be the denominator of the right
hand side. Suppose first that j = 1. Consider the embedding of x into tq1 . By the
definition of q1, it follows that L(x, q1)α

q1
0 = ξσq1+1(σq1+1). By the definition of the

qj , we also have S2′ ∩ [q1 + 1,m − 1] = [q1 + 1,m − 1] \ {q2, q3, . . . , qp}. These
considerations and Proposition 23 imply that

ξx(tq1) = (αq1
0

)c(x)
M(x)L(x, q1)R(x, q1)

= (−1)m−1−q1
(
α

q1
0

)c(x)
M(x)D(q1,m)R(x, q1,m)

p∏

j=2

(−α
qj

q1+1

)−1

= (−1)m−1−q1−p+1D(q1,m)M(x)Y1(x,m)D−1
1 .
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This proves the result for j = 1. Suppose the result holds for 1 ≤ j ≤ p −1. We show
it holds for j + 1. By induction we have

(
α

qj

0

)c(x)
L(x, qj )R(x, qj ) = D(qj ,m)Yj (x,m)

Dj

.

Proposition 24 yields

ξx(tqj+1)

D(qj+1,m)
= M(x)rβj

(α
qj

0 )c(x)L(x, qj )R(x, qj )

D(qj+1,m)

= M(x)

D(qj+1,m)
rβj

D(qj ,m)Yj (x,m)

Dj

= M(x)Yj+1(x,m)

D(qj+1,m)
rβj

D(qj ,m)

Dj

.

It remains to show

(−1)qj+1−qj −1 D(qj+1,m)

Dj+1
= rβj

D(qj ,m)

Dj

.

We have D(qj ,m) =∏qj

k=0 α
qj

k

∏m−1
k=qj +1 αk

qj +1. For k ∈ [0, qj ] we have rβj
α

qj

k =
α

qj+1
k . For k ∈ [qj + 1, qj+1 − 1] we have rβj

αk
qj +1 = −α

qj+1
k+1 , rβj

α
qj+1
qj +1 = −α

qj+1
qj +1,

and for k ∈ [qj+1 + 1,m − 1] we have rβj
αk

qj +1 = αk
qj+1+1. Therefore

rβj
D(qj ,m) = (−1)qj+1−qj

qj∏

k=0

α
qj+1
k

qj+1−1∏

k=qj

α
qj+1
k+1

m−1∏

k=qj+1+1

αk
qj+1+1

= (−1)qj+1−qj D(qj+1,m).

We also have rβj
βi

j−1 = βi
j for 1 ≤ i ≤ j −1 and rβj

βi
j = βi

j+1 for j +1 ≤ i ≤ p−1.
Therefore

rβj
Dj =

(
j−1∏

i=1

β
j
i

)
(−βj )

(
p−1∏

i=j+1

βi
j+1

)
= −Dj+1.

�

The following result is immediate from the definitions.

Lemma 27 rβj
Yi(x,m) = Yi(x,m) for j ≥ i + 2.

6.4 Proof of Theorem 20

Note that if rβj+1Y = Y and i ≤ j then

1

βj+1
(1 − rβj+1)

Y

β
j
i

= Y

β
j
i β

j+1
i

.
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So using Lemma 27 we have

∂βp−1 · · · ∂β2∂β1Y(x,m)

= 1

βp−1
(1 − rβp−1) · · · 1

β1
(1 − rβ1)Y1(x,m)

= 1

βp−1
(1 − rβp−1) · · · 1

β2
(1 − rβ2)

(
Y1(x,m)

β1
− Y2(x,m)

β1

)

= 1

βp−1
(1 − rβp−1) · · · 1

β3
(1 − rβ3)

(
Y1(x,m)

β1β
2
1

− Y2(x,m)

β1β2
+ Y3(x,m)

β2
1β2

)

= · · ·

= Y1(x,m)

β1β
2
1 · · ·βp−1

1

− Y2(x,m)

β1β2β
3
2 · · ·βp−1

2

+ · · ·

+ (−1)j
Yj+1(x,m)

β
j

1 · · ·βj

j−1βjβj+1β
j+2
j+1 · · ·βp−1

j+1

+ · · · + (−1)p−1 Yp(x,m)

β
p−1
1 · · ·βp−1

p−2βp−1

.

Thus

M(x)∂βp−1 · · · ∂β2∂β1Y(x,m) =
p∑

j=1

(−1)j−1 M(x)Yj (x,m)

Dj

= (−1)m−p

p∑

j=1

(−1)qj
ξx(tqj

)

D(qj ,m)

= (−1)m−p
m−2∑

i=0

(−1)i
ξx(ti)

D(i,m)

= (−1)m−p+1(−1)	(x)jx
σm

by (47), as required. �

6.5 Proof of Theorem 21

We first count the gratuitous negative signs in M(x) = M(x,q1) and Y(x,m). Letting
q = q1, using the q1-factorization of x, and recalling that S̃2

′ = S2′ ∩ [m,n− 1], this
number is

ε(x, q) + |S2| + |S1′| + c(x) − 1 + |S̃2
′|

= |S2| + |S1′| + |S3| + |S3′| − 1 + |S̃2
′|
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= 	(x) − 1 − |S1| − |S2′ \ S̃2
′|

= 	(x) − 1 − q1 − |[q1 + 1,m − 1] \ {q2, q3, . . . , qp}|
= 	(x) − 1 − q1 − (m − 1 − q1 − (p − 1)

)

= 	(x) − m + p − 1.

Therefore all signs cancel and we have

jx
σm

= (αn−1
q+1

)ε(x,q)
∏

k∈S2

αn−1
k

∏

k∈S1′
αn−1

k+1 ∂βp−1 · · · ∂β1

(
αn−1

q+1

)c(x)−1 ∏

k∈S̃2
′
αk

q+1. (55)

Let xi be the standard basis of the finite weight lattice Z
n with αi = xi − xi+1. Then

rβj
acts by exchanging xqj +1 and xqj+1+1. Let us write

Z = (αn−1
q+1

)c(x)−1 ∏

k∈S̃2
′
αk

q+1 = α
k1
q+1α

k2
q+1 · · ·αkd

q+1 =
d∏

i=1

(xq1+1 − xki+1).

where n − 1 ≥ k1 ≥ k2 ≥ · · · ≥ kd ≥ m. Note that qj + 1 ≤ qp + 1 ≤ m. Since

∂i · (fg) = (∂i · f )g + (ri · f )(∂i · g),

and since ∂i1 = 0, we have

∂β1Z = (∂β1 · (xq1+1 − xk1+1)
)
(xq1+1 − xk2+1) · · · (xq1+1 − xkd+1)

+ (xq2+1 − xk1+1)
(
∂β1 · (xq1+1 − xk2+1)

)
(xq1+1 − xk3+1) · · · (xq1+1 − xkd+1)

+ · · ·
+ (xq2+1 − xk1+1) · · · (xq2+1 − xkd−1)∂β1(xq1+1 − xkd+1)

=
d∑

i=1

(xq2+1 − xk1+1) · · · (xq2+1 − xki−1+1)

× (xq1+1 − xki+1+1) · · · (xq1+1 − xkd+1).

So ∂β1 can act on any factor (giving the answer 1 and thus effectively removing the
factor), and to the left each variable xq1+1 is reflected to xq2+1. Next we apply ∂β2 .
It kills any factor xq1+1 − xki+1. Therefore we may assume it acts on a factor of the
form xq2+1 − xki+1 which is to the left of the factor removed by ∂β1 . Continuing in
this manner we see that ∂βp−1 · · · ∂β1Z is the sum of products of positive roots, where
a given summand corresponds to the selection of p − 1 of the factors, which are
removed, and between the r th and r + 1th removed factor from the right, an original
factor xq1+1 − xki+1 is changed to xqr+1+1 − xki+1.

It follows that Theorem 20 yields Theorem 21. �
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Appendix A: Proof of Theorem 15

In this section we assume that G = SLn and prove (36).
The matrices M and N are easily seen to be lower triangular. We first check the

diagonal:

MppNpp = (−1)pξσp (σp)ξ σ̂prθ (σ̂prθ )

= ξσp (σp)
(
σ̂prθ · ξ rθ σ̂−1

p
(
rθ σ̂

−1
p

))

= ξσp (σp)
(
σp · ξ rθ σ̂−1

p
(
rθ σ̂

−1
p

))

= ξ tp−1(tp−1),

by (2), (4), and Lemma 1.
It remains to check below the diagonal. Let p > q and p ≥ k ≥ q . We have

Mpk = (−1)kξσk (σp)

= (−1)kd
p−1
k · ξσk (σk)

= (−1)kd
p−1
k · (ξdk−1

q
(
dk−1
q

)
dk−1
q · ξσq (σq)

)

= (−1)k
(
d

p−1
k · ξdk−1

q
(
dk−1
q

))(
d

p−1
q · ξσq (σq)

)
.

Note that the second factor is independent of k. We also have

Nkq = ξ σ̂krθ (σ̂qrθ )

= uk−1
q · (ξ σ̂krθ (σ̂krθ )

)

= uk−1
q · (ξu

p−1
k
(
u

p−1
k

)(
u

p−1
k · ξ σ̂prθ (σ̂prθ )

))

= (uk−1
q · ξu

p−1
k
(
u

p−1
k

))(
u

p−1
q · ξ σ̂prθ (σ̂prθ )

)

with the second factor independent of k. Therefore, to prove that

∑

q≤k≤p

MpkNkq = 0

it is equivalent to show that

0 =
∑

q≤k≤p

(−1)k
(
d

p−1
k · ξdk−1

q
(
dk−1
q

))(
uk−1

q · ξu
p−1
k
(
u

p−1
k

))
. (56)

The above identity can be rewritten as

0 =
∑

q≤k≤p

(−1)k
k−1∏

i=q

α
p−1
i

p−1∏

m=k

αm
q . (57)
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To prove this last identity, let q ′ be such that q < q ′ ≤ p. It is easy to show by
descending induction on q ′ that

∑

q ′≤k≤p

(−1)k
k−1∏

i=q

α
p−1
i

p−1∏

m=k

αm
q = (−1)q

′
q ′−1∏

i=q+1

α
p−1
i

p−1∏

m=q ′−1

αm
q . (58)

Then for q ′ = q + 1 the sum is the negative of the k = q summand of (57) as re-
quired. �

Appendix B: Examples of (36)

Example 28 G = SL3 has affine Cartan matrix

⎛

⎝
2 −1 −1

−1 2 −1
−1 −1 2

⎞

⎠ .

The column dependencies give the coefficients of the null root δ = α0 + θ = α0 +
α1 + α2 which is set to zero due to the finite torus equivariance.

p σ̂p σp tp−1 σ̂prθ

1 id r0 r0r1r2r1 r1r2r1
2 r1 r1r0 r1r0r1r2 r2r1

We compute the matrices

M =
(

α1 + α2 0
α2 −α1α2

)
N =

(
α1α2(α1 + α2) 0
α2(α1 + α2) α2(α1 + α2)

)

D =
(

α1α2(α1 + α2)
2 0

0 −α1α
2
2(α1 + α2)

)

ND−1 =
(

(α1 + α2)
−1 0

(α1(α1 + α2))
−1 −(α1α2)

−1

)
.

For x = r1r2 we compute the column vector with values (−1)	(x)ξx(tj ) for j = 1,2.
Acting on this column vector by ND−1, we obtain the coefficients of Ax in j1 and
j2.

(−1)	(x)

(
ξx(t1)

ξx(t2)

)
=
(

α2(α1 + α2)

α2
2

) (
jx
σ1

jx
σ2

)
=
(

α2
0

)
.

Doing the same thing for x = r1r0r2 we have

(−1)	(x)

(
ξx(t1)

ξx(t2)

)
=
(

0
−α1α

2
2

) (
jx
σ1

jx
σ2

)
=
(

0
α2

)
.
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Example 29 Sp2n for n = 2 has affine Cartan matrix

⎛

⎝
2 −1 0

−2 2 −2
0 −1 2

⎞

⎠ .

We have δ = α0 + θ = α0 + 2α1 + α2.

p σ̂p σp tp−1 σ̂prθ

1 id r0 r0r1r2r1 r1r2r1
2 r1 r1r0 r1r0r1r2 r2r1
3 r2r1 r2r1r0 r2r1r0r1 r1

We have

M =
⎛

⎝
2α1 + α2 0 0

α2 −α1α2 0
−α2 α2(α1 + α2) −α2

2(α1 + α2)

⎞

⎠

N =
⎛

⎝
α1(α1 + α2)(2α1 + α2) 0 0
(α1 + α2)(2α1 + α2) α2(α1 + α2) 0

2α1 + α2 α1 + α2 α1

⎞

⎠

D =
⎛

⎝
α1(α1 + α2)(2α1 + α2)

2 0 0
0 −α1α

2
2(α1 + α2) 0

0 0 −α1α
2
2(α1 + α2)

⎞

⎠

ND−1 =
⎛

⎝
(2α1 + α2)

−1 0 0
(α1(2α1 + α2))

−1 −(α1α2)
−1 0

(α1(α1 + α2)(2α1 + α2))
−1 −(α1α

2
2)−1 −(α2

2(α1 + α2))
−1

⎞

⎠ .

Now let x = r0r1r2. We have

(−1)	(x)

⎛

⎝
ξx(t1)

ξx(t2)

ξx(t3)

⎞

⎠=
⎛

⎝
(α1 + α2)(2α1 + α2)

2

α2
2(α1 + α2)

0

⎞

⎠ .

The matrix ND−1 acting on the above column vector, gives the vector

⎛

⎝
jx
σ1

jx
σ2

jx
σ3

⎞

⎠=
⎛

⎝
(α1 + α2)(2α1 + α2)

2(α1 + α2)

1

⎞

⎠ .

Now let x = r1r2r1. We have

(−1)	(x)

⎛

⎝
ξx(t1)

ξx(t2)

ξx(t3)

⎞

⎠ =
⎛

⎝
α1(α1 + α2)(2α1 + α2)

0
0

⎞

⎠
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⎛

⎝
jx
σ1

jx
σ2

jx
σ3

⎞

⎠ =
⎛

⎝
α1(α1 + α2)

(α1 + α2)

1

⎞

⎠ .

Example 30 SO2n+1 for n = 3 has affine Cartan matrix

⎛

⎜⎜⎝

2 0 −1 0
0 2 −1 0

−1 −1 2 −1
0 0 −2 2

⎞

⎟⎟⎠ .

We have δ = α0 + θ = α0 + α1 + 2α2 + 2α3.

p σ̂p σp tp−1 σ̂prθ

1 id r0 r0r2r3r2r1r2r3r2 r2r3r2r1r2r3r2
2 r2 r2r0 r2r0r2r3r2r1r2r3 r3r2r1r2r3r2
3 r3r2 r3r2r0 r3r2r0r2r3r2r1r2 r2r1r2r3r2
4 r2r3r2 r2r3r2r0 r2r3r2r0r2r3r2r1 r1r2r3r2
5 r0r2r3r2 r0r2r3r2r0 r0r2r3r2r0r1r2r3r2r1 r2r3r2

To save space let us write αijk := iα1 + jα2 + kα3. We have

M =

⎛

⎜⎜⎝

α122
α112 −α010α112
α110 −α110α012 α110α012α001
α100 −2α100α011 α100α011α012 −α100α010α011α012

⎞

⎟⎟⎠

N =

⎛

⎜⎜⎝

α110α111α112α122α010α011α012
α110α111α112α122α011α012 α100α111α112α122α012α001

2α110α111α112α122α011 α100α111α112α122α012
α110α111α112α122 α100α111α112α122

α100α110α111α122α010
α100α110α111α122 α100α110α111α112

⎞

⎟⎟⎠

D has diagonal entries

α110α111α112α
2
122α010α011α012

−α100α111α
2
112α122α010α012α001

α100α
2
110α111α122α010α012α001

−α2
100α110α111α112α010α011α012

One may verify that MN = D.
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