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Abstract An explicit rule is given for the product of the degree two class with an ar-
bitrary Schubert class in the torus-equivariant homology of the affine Grassmannian.
In addition a Pieri rule (the Schubert expansion of the product of a special Schubert
class with an arbitrary one) is established for the equivariant homology of the affine
Grassmannians of SL, and a similar formula is conjectured for Sp;, and SO2;4.
For SL, the formula is explicit and positive. By a theorem of Peterson these compute
certain products of Schubert classes in the torus-equivariant quantum cohomology of
flag varieties. The SL, Pieri rule is used in our recent definition of k-double Schur
functions and affine double Schur functions.

Keywords Schubert calculus - Affine Grassmannian - Pieri rule - Quantum
cohomology

1 Introduction

Let G be a semisimple algebraic group over C with a Borel subgroup B and maximal
torus 7. Let Grg = G(C((¢)))/ G(C[[¢]]) be the affine Grassmannian of G. The T'-
equivariant homology H7 (Grg) and cohomology H' (Grg) are dual Hopf algebras
over § = HT (pt) with Pontryagin and cup products, respectively. Let Wgc be the
minimal length cosets in Wys/ W where Wyr and W are the affine and finite Weyl
groups. Let {&, |w € Wgc} be the Schubert basis of Hr (Grg). Define the equivariant
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Schubert homology structure constants d,; € S by

Edy= ) dhE, ey

0
weW,e

where u,v € Wff. One interest in the polynomials d,, is the fact that they are pre-
cisely the Schubert structure constants for the 7'-equivariant quantum cohomology
rings QH' (G/B) [9, 13]. Due to a result of Mihalcea [12], they have the positivity

property
dr € Zsola; |i€ll. @)

Our first main result (Theorem 6) is an “equivariant homology Chevalley formula”,
which describes d;; ,, for an arbitrary affine Grassmannian. Our second main result
(Theorem 20) is an “equivariant homology Pieri formula” for G = SL,, which is a
manifestly positive formula for d; , where the homology classes {§;,, | | <m <n—
1} are the special classes that generate Hy (Grsy,, ). In a separate work [10] we use this
Pieri formula to define new symmetric functions, called k-double Schur functions and
affine double Schur functions, which represent the equivariant Schubert homology
and cohomology classes for Grgy,, .

2 The equivariant homology of Grg

We recall Peterson’s construction [13] of the equivariant Schubert basis {j, | w €
Wff} of H7y(Grg) using the level-zero variant of the Kostant and Kumar (graded)
nilHecke ring [6]. We also describe the equivariant localizations of Schubert coho-
mology classes for the affine flag ind-scheme in terms of the nilHecke ring; these are
an important ingredient in our equivariant Chevalley and Pieri rules.

2.1 Peterson’s level-zero affine nilHecke ring

Let I and I,s = I U {0} be the finite and affine Dynkin node sets and (a;; | i, j € Iar)
the affine Cartan matrix.

Let Py =76 ® @i el Z A; be the affine weight lattice, with § the null root and
A; the affine fundamental weight. The dual lattice P;f = Homy, ( Pysf, Z) has dual basis
{d} U {otl.v | i € I} where d is the degree generator and Oliv is a simple coroot. The
simple roots {«; | i € It} C Pyr are defined by oj = 808 + Zie,fa,-in for j € In¢
where (a;j | i, j € Iyr) is the affine Cartan matrix. Then a;; = (", ;) for all i, j €
L. Let (a; | i € Iyp) (resp. (al.v | i € I4)) be the tuple of relatively prime positive
integers giving a relation among the columns (resp. rows) of the affine Cartan matrix.
Then 6§ =3, ; aia;. Letc =), aa; € P} be the canonical central element.
The level of a weight A € Py is defined by (c, A).

There is a canonical projection P,y — P where P is the finite weight lattice, with
kernel Zé @ Z Agp. There is a section P — Py of this projection whose image lies in
the sublattice of 5 Z A; consisting of level-zero weights. We regard P C Py via
this section.

i€l
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Let W and Wys denote the finite and affine Weyl groups. Denote by {r; | i € Lar}
the simple generators of Wys. Wyr actson Py by rj - A =X — (oziv , Ao fori € Iy and
A € Pyp. Wy acts on PR by ri - = — (i, oti)oziv for i € Ir and u € Pj. There is
an isomorphism Wy = W x QY where QY = @, .; Za,” C P is the finite coroot
lattice. The embedding QY — Wy is denoted u — t,. The set of real affine roots
is War - {a; | i € I4}. For a real affine root @ = w - «;, the associated coroot is well-
defined by oV = w - a;’.

Let S = Sym(P) be the symmetric algebra, and Q = Frac(S) the fraction field.
Wat = W x QY acts on P (and therefore on S and on Q) by the level-zero action:

wiy-h=w-1 forweWandpueQ". 3)
Since t_gv = rgrg we have
ro-A=rg-A forkeP. (@)

Finally, we have § = a9 + 0 where 0 € P is the highest root. So under the projection
Py — P,ag—> —0.

Let Qw, =P, Wy Qw be the skew group ring, the Q-vector space O ®q Q[ Was]
with Q-basis Wy and product (p ® v)(g ® w) = p(v - ¢) ® vw for p,q € Q and
v, w € Wyr. Qw, acts on Q: g € Q acts by left multiplication and Wy acts as above.

For i € I, define the element A; € Qw,; by

Ai=a (1 =r). (5)
A; acts on S since
Ai-r=(a,2) forreP (6)
Ai - (ss") = (Ai-9)s"+ (ri - 5)(Ai - s") fors,s' €8. (7
The A; satisfy Al.2 =0and
AiAjA; - =AjAA; -
m;; times m;j times

where

rirjri---=rjrirj---.
N e’ e e’

m;j times m;j times
For w € Wyr we define A, by
Aw = Ail A,‘2 s A,"Z where (8)
w=rjti, -, isreduced. ©)
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The level-zero graded affine nilHecke ring A (Peterson’s [13] variant of the nilHecke
ring of Kostant and Kumar [6] for an affine root system) is the subring of Qw,, gen-
erated by S and {A; | i € I¢}. In A we have the commutation relation

Air=(A; - M1+ (i -2)A; forieP. (10)
In particular
A= P sAu. (11)
we Wy

2.2 Localizations of equivariant cohomology classes

Using the relation
ri = 1-— Ot,'A,' (12)

w € Wyr may be regarded as an element of A. For v, w € Wy define the elements
§"(w) € S by

w=) (=DEw)A,. (13)

veW

Using a reduced decomposition (9) for w and substituting (12) for its simple reflec-
tions, one obtains the formula [1] [2]

4
Ew= Y (]‘[a,’.’jfr,-j) 1 (14)

bel0,1]¢ \j=1

where the sum runs over b such that [ | b;=17i; = v is reduced and the product over
J is an ordered left-to-right product of operators. Each b encodes a way to obtain
a reduced word for v as an embedded subword of the given reduced word of w: if
bj =1 then the reflection r;; is included in the reduced word for v. Given a fixed
b and an index j such that b; = 1, the root associated to the reflection r;; is by
definition r;, ri, - - - 1; IRRCOr The summand for b is the product of the roots associated
to reflections in the given embedded subword.
It is immediate that

E'(w)=0 unlessv<w (15)
g9wy=1 forall w. (16)

The element £V(w) € S has the following geometric interpretation. Let Xy =
Gt/ Bar be the Kac—Moody flag ind-variety of affine type [7]. For every v € Wy
there is a T-equivariant cohomology class [X,] € H T(X,4) and for each w € Wy
there is an associated T -fixed point (denoted w) in X, and a localization map
it HT (Xar) — HT (w) = HT (pt) [7]. Then &Y (w) = i¥ ([X,]). Moreover, the map
HT (X)) = HT (Wy) = Fun(Wy, S) given by restriction of a class to the T-fixed
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subset Wyr C Xgf, is an injective S-algebra homomorphism where Fun(Wys, S) is
the S-algebra of functions Wy — S with pointwise product. The function &V €
Fun(Wys, S) is the image of [X,]. The image @ of HT (X, in Fun(Wys, S) satis-
fies the GKM condition [3] [6]: For f € @ we have!

fw) — f(rgw) € BS for all w € Wy and affine real roots B. (17

Lemma 1 Suppose u, v € Wy with £(uv) = £(u) + £(v). Then
E" (uv) = §" () (u - £¥ (v)). (18)
Lemma 2 Suppose v, w € Wys. Then
£ (w) = (=D w- (& (w™")). (19)
2.3 Peterson subalgebra and Schubert homology basis

Let K C G denote the maximal compact subgroup of G. The homotopy equiva-
lence between Grg and the based loop space §2 K endows the equivariant homology
Hy (Grg) and cohomology HT (Grg) with the structure of dual Hopf algebras. The
Pontryagin multiplication in the homology Hr (Grg) is induced by the group struc-
ture of £2 K. We let {£,,} denote the equivariant Schubert basis of Hr (Grg), dual (via
the cap product) to the basis {€¥} of H' (Grg).

The Peterson subalgebra of A is the centralizer subalgebra P = Z4 (S) of S in A.

Theorem 3 [13] There is an isomorphism Hy (Grg) — P of commutative Hopf alge-
bras over S. For w € Wff let j,, denote the image of &, in P. Then j,, is the unique
element of P with the property that j) =1 and j;, =0 for any x € W;?f\ {w} where
Jiy € S are defined by

Jw=Y_ jyAx. (20)

X Wyt

Moreover, if ji # 0 then £(x) > £(w) and j;, is a polynomial of degree £(x) — £(w).

The Schubert structure constants for Hy (Grg) are obtained as coefficients of the
elements j,,.

Proposition 4 ([13]) Let u,v, w € Wff. Then

qo = [0 e =) +ewe an
0 otherwise.

sing equivariance for the maximal torus Tyr C Gy, the condition characterizes the image o
1Using eq for th 1 torus Tyr C Gy, the GKM condition charact th ge of
localization to torus fixed points. However, after forgetting equivariance down to the smaller torus T,
elements of @ are characterized by additional conditions, which were determined in [4].

@ Springer



J Algebr Comb

Due to the fact [9, 13] that the collections of Schubert structure constants for
Hy (Grg) and QHT (G/B) are the same and Mihalcea’s positivity theorem for equiv-
ariant quantum Schubert structure constants, we have the positivity property

Proposition 5 j\ € Z=olo; | i € I for all w € WS and x € Wy.

Given u € Wa?f let t* =1, where A € QY is such thatt, W =uW.
Since the translation elements act trivially on S and Wy C A via (12), we have
tyePforall A € QY,sothatt € QBUEWOf Sjy. Forany w € W;?f’ we have

= (=DE()jy = Y (=D e w) jy
vEW‘,?[ UEW:?I

by the definitions and Lemma 1.
Define the We?f X Wg?f-matrices

Ay = (=D Wev(w) (22)
B=A"". (23)

The matrix A is lower triangular by (15) and has nonzero diagonal terms, and is hence
invertible over Q = Frac(S). We have

jo=)_ Buyt".
wvef
w<v
Taking the coefficient of Ay for x € Wy, we have
S =D 3 By, £ (). (24)

0
weWge
w<v

Note that if 2 C Wff is any order ideal (downwardly closed subset) then the restric-
tion A|p g is invertible. In the sequel we choose certain such order ideals and find
a formula for the inverse of this submatrix. Since the values of £* are given by (14)
we obtain an explicit formula for j; for v € £2 and all x € Wyy.

3 Equivariant homology Chevalley rule
Theorem 6 For every x € Wy \ {id}, £ (rg) €0S and

Jro = Z (9‘1€x_1(r9)Ax+§x_l(r9)A,0x). (25)

xeW\{id}
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Proof For x # id, the GKM condition (17) and (15) implies that £* B (rg) €6S. 2 =
{id, ro} C Wz?f is an order ideal. The matrix A|p « and its inverse are given by

() (o)

=114 and 7v = 1" (as tyv = rorgy), we have

Since id
(D' ji = =071 (d) + 07 '&V (tgv).
By the length condition in Theorem 3 we have
(D' j{ =07"8"(t5v) fory #id.

By (15) ji, = O unless y < fgv = rorg. So assume this.
Suppose roy < y. Write y = rgx. Then

(=D OEY (1) = (=)' () (ro - ¥ (rg)) = (=)' D0 (rg - E¥(rg)) =0 & (rg).

If roy > y then we write y = x <rg and

(=D OE (tg0) = (= 1) rg - 5 (rg) = (= 1) g - 5 (rg) = & (rg)

as required. O

The formula (14) shows that %‘X_I(rg) € Zsole | i € I]. The same holds for
0= (rp). Indeed,

Lemma 7 oe_lé" (ra) € Z>ola; | i € I] for any positive root a.

Proof The reflection r,, has areduced wordi =iyip - -ir—1iriy—1 ---i] whichis sym-
metric. Consider the different embeddings j of reduced words of x into i, as in (14).
If j uses the letter i,, then the corresponding term in (14) has 6 as a factor. Otherwise,
juses iy butnot iz11, ..., i, for some s. But then there is another embedding of j' of
the same reduced word of x into i, which uses the other copy of the letter i; in i. The
two terms in (14) which correspond to j and j’ contribute A(B—ry-B) = A({aV, B)a)
where A € Z>olo; | i € I], and B is an inversion of ry. It follows that (a¥, 8) > 0.
The lemma follows. O

Remark 8 The polynomials &* - (rp) appearing in (25) may be computed entirely in
the finite Weyl group and finite weight lattice.

Remark 9 In [8, Proposition 2.17], we gave an expression for the non-equivariant part
of jy,, consisting of the terms j;; Ay where £(x) = 1 = £(rg). This follows easily from
Theorem 6 and the fact [6] that £"i (w) = w; — w - w;, Where w; is the ith fundamental
weight.
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3.1 Application to quantum cohomology

The equivariant homology Chevalley rule (Theorem 6) may be used to obtain a new
formula for some Gromov—Witten invariants for Q H T(G/ P) where P C G is a
parabolic subgroup.?

For this subsection we adopt the notation of [9], some of which we recall presently.
Our goal is Proposition 10, which is the equivariant generalization of [9, Prop. 11.2].

Consider the Levi factor of P. It has Dynkin node subset Ip C I, Weyl group
Wp C W, coroot lattice QIV; C QVY, root system Rp C R and positive roots R;f. De-
note the natural projection Q. — Q by B+ B. Define

(Wp)at=Wp x Qp
(Rp)y= (e Ry 1B eRp)
(W) e ={x € War|x-B>0forall g € (R}),}-

Every element w € Wy has a unique expression w = wjwp with w; € (WID )af and
wy € (Wp)ar; denote by p : Wyr — (WP)af the map that sends w — wy.
Recall that the ring Hy (Grg) has an S-basis {§x | x € W }. It has an ideal

Ir= P S

XEWE\(WP)y

The set 7 = {&zp1,) | A € 0} is multiplicatively closed, where 0={re Q]
(A,a;) < Oforalli €I} is the set of antidominant elements of QY. Finally let
np: QY — QV/Qj} be the natural projection. Then by [9, Thm. 10.16] there is an
isomorphism

Wp 1 (Hr(Gre)/Jp) (&), | A € O] = QHT(G/P) )

where (g) denotes localization at the quantum parameters. For x € W N (WP
with x = wt; forw e W and A € QV, we have w € WF and A € Q. Then ¥p(&,) =
qn P(A)Of where ¢ ¥ is the quantum Schubert class in QH” (G/P) associated with
weW"h.

Proposition 10 Let w € WP Then

_ -1
opMap= 3 0TI ageenop”
id#u<ry
Luw)=L(w)—£(u)

—1
+ o E 00— renor
id#u<ry
L(uw)=L(w)—L(u)
(uw)~'0eRT\RE

2This notation for P will be used only in this subsection and should not cause confusion for the reader
with its previous use as the weight lattice of G.
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Proof Choose A € QY such that (A, ;) =0fori € Ip and (A, ;) K Ofori eI\ Ip.
Then (A, ) =0 for o € Rp and (A, a) < 0 foroe € RT \ R}.
We have x = wt; € W; N (WP)ar by [9, Lemmata 3.3, 10.1]. Define the set

Ay = {u € War | L(ux) =£(u) + £(x) and ux € Wa}} (26)

Using the characterization of the Schubert basis in Theorem 3, for z € W, the
coefficient of j, in jy, jx is given by the coefficient of A in j,,A. We obtain

Enbr= > (07'E" (r0)&ur + X (0 € Aur)E" (r6)Erux) 27)

1#£u<ry
ue Ay

where x (true) = 1 and x (false) = 0. We shall apply the map ¥p to the above expres-
sion. First it is desirable to factor out the dependence of the right hand side on A.

Suppose u € W (which holds for u < rg € W). We claim that u € A, if and only if
L(uw) = €(w) — £(u). Suppose u € Ay. Since ux € W we have £(ux) = L(uwt,) =
£(t;) — L(uw) and £(u) 4+ £(x) = £(u) + £(t) — £(w). Since L(ux) = £(u) + £(x) it
follows that £(uw) = £(w) — £(u). Conversely suppose £(uw) = €(w) — £(u). Since
w e WP it follows that uw € W In particular uwt, € W,;. Therefore £(ux) =
L(u) +€(x) and u € A,.

Let us fix the assumption that u € W and £(uw) = €(w) — £(u). Then u € A, and
ux € (WP)ye since uw € WP . One may show that:

(1) roux > ux if and only if (uw)™" -0 € R and (ux)~! - ag € Z-08 — (uw)~' - 6.
(2) roux ¢ (WP, if and only if (uw) ™! -6 € R}.
(3) roux ¢ W if and only if uxa; = ag for some i € I.

It follows that under the assumption on u, (uw)~'0 € R* \ R} if and only if roux >
ux, roux € W, and roux € (WP)at.

We now apply the map ¥p. By [9, Remark 10.1] ro € W N (WP)af. Since rg =
rot_gv we have Wp (&) = an(_gv)O';P(m).

By [9, Prop. 10.5, 10.8] wp(w) = w, wp(ty) = t, and wp(x) = x. Therefore
YpE) =qnp0)0p -

Let 1 #u <rg and u € A,. It follows that uw € W¥ and ux = uwt; € (WF)4.
Then ¥p (§ux) = qnpoyop”

Finally let 1 # u < rg be such that u € Ay, ro € A,x, and roux € (W¥),r. We have
roUX = rgl_gvUWl = TQUWI, _ () -1gv- Therefore Up(roux) =

G p O (u)-16V)O B (rouw) *Applying Wp to (27) yields the required equation. O

4 Alternating equivariant Pieri rule in classical types

We first establish some notation for G = SL,,, Spa,, and SO2;41. Our root system
conventions follow [5].
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4.1 Special classes
We give explicit generating classes for Hr (Grg).
4.1.1 HT(GrSLn)

Define the elements

5p=}”p_1--~r1 (28)

Op =TFp_1---T170 = Gp10. (29)
So £(6,) = p — 1 and £(0,) = p. These elements have associated translations
ty =17t = tryryr0v forO<p<n-—2. (30)
4.1.2 Hr(Grsp,,)
For 1 < p <2n — 1 we define the elements 6, € W by

Gp=rp_1---mry forl<p<n

Gp=rym—p—1- tp—ofp—1---12r1 forn+1<p<2n-—1
For 1< p <2n—1define o), € W:?f and t,_1 € Wy by

op=06pro 3D

ty1 =17 = 15,67 (32)
4.1.3 Hr(Grso,,,,)

For 1 < p <2n — 1 we define the elements 6, € Wz?f by

id if p=1

6_ _ rprp,l...rgrz lfzfpfn

p Pon—plon—p+1- - Tu—1bntp—1---13r2 ifn+1<p<2n-2
FOrar3 - Fu—1¥nfp—1-" 1312 if p=2n—1.

Forl<p<2n-1 deﬁneapvefby
op = 0ph. (33)
For1 < p <2n — 2 define t,_1 € Wyt by
tp—1 =17 =15 gv. (34)
Forl<p<2n—1let 01/9 be o, but with every rq replaced by ;. Then define
In—2 =1,y = Om—107,_1-
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Then we conjecture that

1
Boweron = i orogy e (35)

where B is defined in (23). The sign is — for g <2n —2 and 4 for g =2n — 1.
4.1.4 Special classes generate

Let X" =n — 1 for G = SL, and k" =2n — 1 for G = Spa, or G = SO241. Let
P:= S[[Jjs, | 1 <m <k']] be the completion of P = Hr(Grg) generated over S by
series in the special classes. It inherits the Hopf structure from P. The Hopf structure
on PP is determined by the coproduct on the special classes.

Proposition 11 For G = SL,, Span, SOom+1, Q®z P C Q @7 P.

Proof It is known that the special classes generate the homology H,(Grg) non-
equivariantly for G = SL,, Span, SO2,41 see [11, 14]. Furthermore, the equivari-
ant homology Schubert structure constant d,); is a polynomial in the simple roots of
degree £(w) — £(u) — £(v), and when £(w) = £(u) + £(v), it is equal to the non-
equivariant homology Schubert structure constant. It follows easily from this that
each equivariant Schubert class can be expressed as a formal power series in the
equivariant special classes. O

Remark 12 For G = SL, and G = Spj, the special classes generate H,(Grg)
over Z.

4.2 The alternating equivariant affine Pieri rule

Letk=n—1for G=SL,, k=2n—1 for G = Spy,, and k =2n — 2 for G =
SO2p+1. Our goal is to compute j7 for 1 <m < k; note that for G = §O2p+1, the
element 07,1 has been treated in (35). For this purpose consider the Bruhat order
ideal £2 = {id = 09, 01, ..., 0} in Wff. Since jo = id, to compute jf;p for p>1 we
may assume x # id by length considerations. It suffices to invert the matrix A given
in (22) over £2 \ {id} x £ \ {id}.

Define the matrices M, = (—=1)"&% (o)) for 1 < p,m <k, Ny = 5&"”9 (G470)
for 1 <m, q <k, and the diagonal matrix D p; = 8 ,q Elp-1 (tp—1) for1 < p,q <k.

Conjecture 13

MN = D. (36)

Conjecture 14 For 1 <m <k and x # id we have

m—(NmZ sg?mmw. (37)
g=0

In particular j(’,‘m =O0unless £(x) >m and x <1, forsome 0 <g <m — 1.
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Conjecture 14 follows immediately from Conjecture 13: we have M~! = ND~1,
and (37) follows from (24).

Theorem 15 Conjecture 14 holds for G = SL,,.

The proof appears in Appendix A. Examples of (36) appear in Appendix B.

5 Effective Pieri rule for Hr (Grsy,)

The goal of this section is to prove a formula for j; = that is manifestly positive. In

this section we work with G = SL,,, W = S,,, and W, = S,,. We first establish some
notation. For a < b write

MZ:rara—H"'rb (38)
df =rprp—1---Tq 39
o =g+ et +- -+ (40)

for upward and downward sequences of reflections and for sums of consecutive roots.

In particular we have 0 =« +ap + -+ - + a1 =aq’_l.

5.1 V’sand A’s

The support Supp(b) of a word b is the set of letters appearing in the word. For a
permutation w, Supp(w) is the support of any reduced word of w. A V is a reduced
word (for some permutation) that decreases to a minimum and increases thereafter.
Special cases of V’s include the empty word, any increasing word and any decreasing
word. A A is a reduced word that increases to a maximum and decreases thereafter.
A (reverse) N is a reduced word consisting of a V followed by a A, such that the
support of the V is contained in the support of the A. For example, the words 32012,
23521, and 32012453 area V, A, and N, respectively.

By abuse of language, we say a permutation is a V' if it admits a reduced word that
is a V. We use similar terminology for A’s and N’s.

A permutation is connected if its support is connected (that is, is a subinterval of
the integers). The following basic facts are left as an exercise.

Lemma 16 A permutation that is a V, admits a unique reduced word that is a V.
Similarly for a connected A or a connected N .

Lemma 17 A connected permutation is a V if and only if it is a A, if and only if it is
an N.
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5.2 t,-factorizations

For0<g <n—2, wecall
9@ —=1+-101--(n = D =2)-- (g + 1) (41)

the standard reduced word for #,. Since this word is an N it follows that any x <1, is
an N. We call the subwords g(g — 1)---1,12---(n—2)and (n —2)--- (g + 1) the
left, middle, and right branches.

Lemma 18 If x € S, admits a reduced word in which i + 1 precedes i for some
i €Z/nZ then x £t;.

Proof Suppose x < t;. Since the standard reduced word of #; has all occurrences of
i preceding all occurrences of i + 1, it follows that x has a reduced word with that
property. But this property is invariant under the braid relation and the commuting
relation, which connect all reduced words of x. Il

Let c(x) denote the number of connected components of Supp(x). If J and J’ are
subsets of integers then we write J < J' — 1 if max(J) < min(J’) — 1. The following
result follows easily from the definitions.

Lemma 19 Suppose x < t,. Then x has a unique factorization x = vy ---v,y| X
Y2 -+ Ys, called the q-factorization, where each v, y; has connected support such
that

(1) Supp(vi) < Supp(vi4+1) — 1 and Supp(y;) < Supp(yi+1) — 1
(2) Supp(vi---vr) C[0,4q]

(3) Supp(yi---ys) Clg+1,n—1]

4) Eachv;iisaV

(5) Eachyjisa A.

We say that v, and y; touch if g € Supp(v,) and ¢ + 1 € Supp(y;1). We denote

1 if v, and y; touch

0 otherwise. (42)

€(x,q) = {
Note that €(x, g) depends only on Supp(x) and g.

Each £ in the g-factorization of x < tg, is (S1) in the left branch of some v;, or
(S2) in the right branch of some v;, or (S3) at the bottom of a v;, or (S1”) in the left
branch of some y;, or (S2') in the right branch of some y;, or (S3) at the top of a y;.
We call these sets S1, S2, §3, S1/, §2/, and S3'. Note that k can belong to both S1

and S2, or both S1’ and S2'.
For each x and each g such that x < t,, we define the polynomials

M(x,q) = (otg)e(x’q) 1_[ ag_l l_[ (xg

keS2 keS1
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Lex.q)=[]of
keS1
Rec,q)= [T (—egy)-
keS2'

We also define R(x, q,m) = nkesz’mlm,n—ll(_a§+1)'
5.3 The equivariant Pieri rule
Let
fgelom-—1x<tg}={g1 <@ < <qp) (43)
and
B =ait, (44)

be the root associated with the reflection rg, that exchanges the numbers 1+ g; and
1 +gi+1. Foraroot § and f € S define

opf =B~ (f —rpf).
Theorem 20 We have
Ja = (=DM (x 1Yo, -+ 0p,0p, Y (x, m)
where Y (x, m) = (ag )™~ R(x, g1, m).
The proof of Theorem 20 is given in Sect. 6.
5.4 Positive formula

Define §2' = 2’ N[m,n—1],andlet K =2 Ufn—1,....n — 1} = {ky > ko >
-+ > kg} be the multiset where the element (n — 1) is added to §2' (c(x) — 1) times.

Theorem 21

X n—1 \€(x,q) n—1 n—1 ki
Jon = (g 1) [T [T 2 I1 i)+ (45)
kesS2 keSSl RC[1,|K|lie[1,|K|\R
[R|=p—1

where s(i, R)y=#{re R|i <r}+ 1.
The proof of Theorem 21 is given in Sect. 6.

Example 22 Let n =8, m =4, and x = rorarsryrarary. The components of Supp(x)
are [0, 2], [4, 5], and [7] so that c(x) = 3. We have p = 3 with (¢1, ¢2, g3) = (0, 2, 3),
VI =710, Y1 =Tory, Y2 =r4rsry, y3=1r7,€(x,q1)=1,851=82=0, S3={0}, S1' =
{4}, S2' ={1,4}, S3' ={2,5,7}, S2’N[m,n — 1] = {4}. Thus K = {7,7,4}. Then
writing afj = X4 — Xp+1, and noting that a(’)'fl =0, Theorem 20 yields
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Jt)fcm = (a17)1“g808 0oty +az (0‘17)20/11

= (x1 — x8) (x5 — x8) By —x, By, —x; (X1 — x8)” (x1 — x5)

= (1 — x8) (X5 — X8) 0y —x, (X1 — X8) (X1 — X5) + (x3 — x8) (x] — X5)
+ (x3 — x3)?)

= (x1 — x8) (x5 — x8) ((x1 — x5) + (x3 — x8) + (x4 — x3))

= (o) (&) (ol + 05 + 1)

agreeing with Theorem 21.

6 Proof of Theorems 20 and 21
6.1 Simplifying (37)
Let0<g <m — 1. By (14) and Lemma 2 we have
£ (Gqq1rg) =l - E (Gurg)
= (= 1)U Grg - £ (ro6,,")
= (—1"6y417q - 700 (ro6,,").
We also have
£'(1y) = 774 (0441) (0 +1 g0 (ro6, ")) (0g+1766,," 'éd‘%l (dm]l))
=§£%H! (Uq+1)(6q+1r9 £700m (r05r;l))( ZI+11 5 = (d2,”+11))
= ()" (o) (B - O (ro )T ().
Define
D(q, m) = £°0+ (04 E"T (7)),
so that by Theorem 15,

1)4+!
]Gm _( 1)@(){) Z ( ) E (q)

Explicitly we have

q q_.,4
E(Tq+1(0-q+l) :aqaq71 .. .a] ao

il 1
T (m—1y _ q+2  m—1
S ? (uq-H ) =010 Y-

(46)

(47)

(48)

(49)
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6.2 Evaluation at
Proposition 23 If x <t,, then

E (1)) = () M(x,q) L(x,q) R(x,q). (50)

Proof We compute §*(t,) using (14) by computing all embeddings of reduced words
of x into the standard reduced word (41) of #,. We refer to the g-factorization of x.

Each k € S1 must embed into the left branch of the N, and has associated root aZ.

Each k € §2 embeds into the middle branch of the N and has associated root 0/6_1.

Each k € S1’ embeds into the middle branch of the N and has associated root oz’g.

Each k € S2' embeds into the right branch of the N and has associated root —oc](; i1

Each k € S3 is either 0 and has associated root ozg, or can be embedded into the
left or middle branch of the N, and the sum of the two associated roots for these
positions is o + ozg_l = o. Bach k € 3’ is either n — 1, which has associated
n—1 __
g+1 =
and the sum of associated roots is 0/5 -«

ag, or can be embedded into the middle or right branch of the N,
for embeddings of elements of $3 and $3’ can be varied independently, the value of
&% (t4) is the product of the above contributions. Each minimum of a v; and maximum
of a y; contributes ag . If there is a component of x which contains both g and g + 1
(that is, if v, and y; touch) then it is unique and contributes two copies of ag. All this
yields (50). O

root —o

| = ozg. Since all the various choices

6.3 Rotations

We now relate £ (z,) with £*(z,/). Let rp, , denote the transposition that exchanges
the integers p and g.

Proposition 24 Let x < t, and consider the q-factorization of x. Let a be such that
this reduced word of x contains the decreasing subword (q +a)(g+a—1)---(g+1)
butnot (q+a+1)(g+a)---(g+1).Ifg+1¢Supp(x), then set a=1. Then

§(tg41) =8" (tg42) = - =" (lga—1) =0 (D

and
E(tg1a) = M(x, @) Fiig11qra(d)™ Lix,q) R(x,q) (52)

Let y! denote y with every r; changed to r;;1. The following lemma follows
easily by induction.

Lemma 25 Let y be increasing with support in [b,a — 1]. Then

ydy =djy!
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Proof of Proposition 24 We assume that g + 1 € Supp(x), for otherwise the claim is
easy.

By Lemma 18 we have x £ t;,1; for 1 <i <a — 1. Equation (51) follows from
(15). We now prove (52). The first goal is to compute the g + a-factorization of x.
Since x <t, we may consider the g-factorization of x. The decreasing word (g +
a—1)---(g +2)(g + 1) must embed into the right hand branch, that is, [¢g + 1,¢q +
a — 11 C §2'. The hypotheses imply that g + a ¢ S2'. There are two cases: either
g+aeSlorg+aecS3 (sothatg+a+1 ¢ Supp(x)). We treat the former case, as
the latter is similar: the two cases correspond to the touching and nontouching cases
for the g + a-factorization of x, whose existence we now demonstrate.

Suppose g +a € S1'. Then there is a y| with Supp(y]) C [g +a +1,n — 1] and
a y with an increasing reduced word such that Supp(y) C [¢ + 1,9 +a — 1] and
1= yrqﬂlyid;’ji:ik1 = yd;’_ti’yi. Suppose v, and y; touch. Then v, := vryd;{j:f is
an N and therefore a V. Moreover x < ;4 since x has a g + a-factorization given
by the g-factorization of x but with v, and y; replaced by v, and yj, respectively.
To verify that v is a V, by the touching assumption, g € Supp(v,) and we have
vl =0, yd? T = 0,d"Tyt = a9 v,r 41 yT which expresses v ina V.

r r7%q+1 r%g+1 q+2 rlq+ r

Suppose v, and y; do not touch, that is, g ¢ Supp(v,). We have the V given by
v, = ydgif = dgif yt. Then x < fg+a» as x has the g + a factorization given by
the g-factorization of x except that there is a new V, namely, v/ 41 and the first y is
y} instead of y;.

In every case we calculate that

M(x,qg+a)=M(x,q)

q+a
L(x,q+a)= ( l_[ aZJra)ngfL(x,q)
k=q+2

q+a—1
R(x,q+a)= d;’:[f( H (—a§+1)_l)R(x, q)

k=q+1

g+a—1 .
:< I Al )dgjfk(x,q).

k=g+1

The calculation for L and R follows from the fact that [¢ 4+ 2,9 + a] C S1,44, but
[¢g+1,g+a—-1]C SZ;. The calculation for M follows from the fact that Supp(y) C

82, and Supp( yhc 82444, together with the following boundary cases:

Ifg+a+1¢€Supp(x)theng +aeSl;4qN Sl;]. Thus g + a contributes a factor

of ag+a to M (x, g). This factor appears in M (x, g + a) as the factor (ag"'“)f(x’qﬂ),

since €(x,q +a) =1.
If g € Supp(x) one has €(x,g) =1 and g + 1 € §2,4, contributes a factor of ozg
to M (x, q + a). This factor appears in M (x, g) as the factor (ag)g(x"f) = ag.
. + + + + +
Using that dg+fozg = ocg “a d3+f(—ozg+f) = 0y+q, and r1+q,1+q+aa2+f =
—a;’i‘f, the above relations between M (x,q), L(x,q), R(x,q) and their counter-
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parts for g + a, together with Proposition 23, yield

Egra) = (g 1) M ) df T (=g 1) (@) Lix.q) RGx. ).

d q+a q+u

4+1Ug42- it suffices to show that

To obtain (52), since 7144, 14g+a =

q+a

(—otq+a) (ag)c(x)L(x, q)R(x, g) is invariant under Ug i

q+1
However, it is clear that ag and L(x, q) are invariant, and the only part of R(x, q)
that must be checked is the product [ [;csonig+1,g+41 (—%g+1,k). However, we have
S2Nlg+1,qg+ a] [¢g +1,q +a — 1], and indeed the product l_[k g1 (

is invariant under M

ok
—y11)

+2, as required. g

Recall the definition of g; from (43). In light of the proof of Proposition 24, we
write

M(x)=M(x,q;) foranyl=<j<p. (53)
Recall the definition of 8; from (44). For i < j we also define
ﬂ,‘f =Bi+Biv1+--+ B =aZ;.’il]-
Let
Yitr.m) = (of )" R(x.qi.m) for1<i<p (54)

sothat Y;(x,m) =rg,_, Y;_1(x, m).
Recall the definitions of D(g,m) and Y; (x, m) from (46).

Lemma 26

Ey) M@)Y;(x,m)
D(gjom) (g~ gyt pITBIBI BT

(=" 1=ai—pti

R

)

Proof The proof proceeds by induction on j. Let D; be the denominator of the right
hand side. Suppose first that j = 1. Consider the embedding of x into f,,. By the
definition of ¢, it follows that L (x, ql)Olg1 = &%+ (04, 41). By the definition of the
gj, we also have S2'N[q1 + 1,m —11=[q1 + 1,m — 11\ {g2,93,...,¢p}. These
considerations and Proposition 23 imply that

E (1) = (¢ ) M) L(x, g)R(x, q1)
= (=D)" 1 (o) M) Dgr, mR(x, ql,m)]"[ ol )
j=2

= (=)= D (g, m)M (x) Y1 (x, m)Dy .
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This proves the result for j = 1. Suppose the result holds for 1 < j < p — 1. We show
it holds for j 4 1. By induction we have
D(gj,m)Y;(x, m)

D; ’

(@) L(x,g)R(x, qj) =
Proposition 24 yields

E () M@rg (g ) ™WL(x, q))R(x, q))
D(qj+1,m) D(qj+1,m)
__ M rﬂ.D(q]vm)Yj(x,m)
D(gjy1,m) ™’ D;
:M(X)Yj+1(x»m)rﬂlD(CIj,m)'
D(qj+1,m) ' Dj

It remains to show

Cryamg1 D@rm) _ Dagm)
Djii ' Dj
We have D(q;,m) = [[{_,a} ! —git1 aq +1 For k € [0, ¢;] we have I’/g,()tk =
gj+1 gj+1 gj+1 gj+1
a7 .Forke[g;+1,qj+1 — 1] we have rg;a qu =—a’, rﬂ]aq1+1 = _O‘q;+1’
ko _k
and for k € [gj+1 + 1, m — 1] we have TBi%g 1 = % 41 Therefore
qj qj+1—1 m—1
rlng(qj,m) = (=1)4+1749j l_[aZ”l 1_[ O‘Zﬁll 1_[ a(];j+l+1
k=0 k=q; k=qj1+1

= (=Y UD(gj11,m).

We also have rg; B
Therefore

,Bfor1<z<]—1andr,g]ﬂ’ forj+1<i<p-—1.

j— 1= ]+1

j—1
rg;Dj = (H'Bi])(_ﬁJ ( 1_[ ﬂj+1> Dji1.
i=1 i=j+1

The following result is immediate from the definitions.
Lemma 27 rﬁjY,-(x,m) =Yi(x,m) for j >i+2.
6.4 Proof of Theorem 20

Note that if r,ngY =Y andi < j then

1 (1— ) Y Y
TBjv) 5 = 5 4
i B Bl
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So using Lemma 27 we have

g, -~ 0p, 08, Y (x, m)

1
A=rg, ) (A =rg)Y1(x,m)
B1

1 Yix,m) Ya(x,m)
1 — (] — _
(4 =rsp) ,32( rﬂz)( B1 B1 )

. )(Yl(x,m) B Yo (x, m) Y3(x,m))

- IBp—l

- IBp—l

1 1
=5 (=g, ) gl —r

Bp-1 B3 BB} B1B2 BiB>
_ heem) Ya(x,m)
BiBY- BT BiBaB3 By
+ (=1 —— Yj+1(x’m].)+
ﬂl "':Bj_lﬂjﬁj+lﬁj+1 ﬂﬁ_]
4o (=Pt Yp(x,m)
,Bf) IBII; 2,317 1
Thus
LM@Y m)
M(x)dg, -+ p,0p, ¥ (x, m) = Z}H)J 1%
=
§%(1q;)
= (=1)"P 14—~
=(-1) ,Zl( " B
£ (1)
_ m—p i
=(-1) Z( D' i
= ()" D
by (47), as required. g

6.5 Proof of Theorem 21

We first count the gratuitous negative signs in M (x) = M (x, q1) and Y (x, m). Letting
q = q1, using the g1 -factorization of x, and recalling that 52/ =S82'N[m,n — 1], this
number is

€(x,q) + 52|+ [S1] +c(x) — 1+ 82|

= [S2] 4+ |S1| +S3] + 83| — 1 + 52|
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—0(x)—1—|S1|— |52/ \ 82|
=Lx)—1—q1—llg1+1.m—=11\{g2.93, ..., qp}l
=lx)—l—qg—(m—1-q—(p—1)
=L4(x)—m+p—1.

Therefore all signs cancel and we have

G(X q) n—1 n—1 —1 c(x)—1
/am = q+1 H 1_[ ey 9B, "'aﬂl( q—H n "‘q+1 (55)
keS2 keS1 kes?

Let x; be the standard basis of the finite weight lattice Z" with o; = x; — x;41. Then
rp; acts by exchanging x4, 41 and x4, ,+1. Let us write

_ { n— 1 c(x)—1 _ k2
Z=(2g11) [Teg= O‘q7+1°‘q+1 q+1 _H(qu—H Xki+1)-

kes?’ i=1

wheren — 1>k >ky>--->ky zm.Notethatqj+l§q,,+1§m.Since

% - (fe) =3 - g+ (ri- /)9 - &),

and since 9;1 = 0, we have

0 Z = (aﬁl ~(Xg 41 — xk|+l))(qu+l = Xip 1) - (Xg 41 — Xkg+1)
+ (Xgo1 — X+ (98; - (g1 — Xk 1)) (g1 — Xkat1) -+ (g1 — Xkg1)

+ (Xgpt1 = Xk 1) -+ - (Xgpa1 — Xky_y )98, (Xgy 41 — Xkyt1)

= Z(xqz—i-l - xkl—i—l) ce (xq2+1 - xkifl—H)
i=1

X (Xg4+1 = Xk +1) - (g1 — Xkg+1)-

So dg, can act on any factor (giving the answer 1 and thus effectively removing the
factor), and to the left each variable x,, 11 is reflected to x4, 1. Next we apply dg, .
It kills any factor x4, +1 — Xk, +1. Therefore we may assume it acts on a factor of the
form x4, 41 — xx;+1 which is to the left of the factor removed by dg, . Continuing in
this manner we see that dg,_, - - - g, Z is the sum of products of positive roots, where
a given summand corresponds to the selection of p — 1 of the factors, which are
removed, and between the rth and r + 1th removed factor from the right, an original
factor x4, +1 — xg;+1 is changed to x4, 41 — Xk;+1.

It follows that Theorem 20 yields Theorem 21. U
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Appendix A: Proof of Theorem 15

In this section we assume that G = SL,, and prove (36).

The matrices M and N are easily seen to be lower triangular. We first check the
diagonal:

MppNpp = (=D)PE (0, €77 (G 1)
— £70(0,)(6pr0 - 877 (r06, "))
=% (0,)(0p - E7% (06, ))
=E1 (1,0,

by (2), (4), and Lemma 1.
It remains to check below the diagonal. Let p > g and p > k > g. We have

Mp = (—DFE% (o)

= (=Dfa) ™" &% (op)

= (DR (4 (6% (o)

= (DM@l g4 () (@ € o).
Note that the second factor is independent of k. We also have

Nig = %% (6479)

L. (%47 (Gxr)
ol ) W 8 Gr)
= (e ) - Gpr)

with the second factor independent of k. Therefore, to prove that

> MpyNeg =0
q<k=<p

— k=
_ul]
— k=
_uq

it is equivalent to show that
0= Z (_l)k(dlffl .%.d(’;—l (dt];_l))(ul;—l '%.,,,]1(’—] (ullsil)) (56)

q<k=p

The above identity can be rewritten as

k—1 p—1
0= > DF[Ted T]em (57)
i=q m=k

q=<k=<p
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To prove this last identity, let ¢’ be such that ¢ < ¢’ < p. It is easy to show by
descending induction on ¢’ that

q'—1 p—1
3 - 1)’<]_[a1’ ‘]_[a = (=17 ]’[ af T e (58)
q'<k<p i=q+1 m=q'—1

Then for ¢’ = g + 1 the sum is the negative of the k = ¢ summand of (57) as re-
quired. |

Appendix B: Examples of (36)

Example 28 G = S L3 has affine Cartan matrix

2 -1 -1
-1 2 -1
-1 -1 2

The column dependencies give the coefficients of the null root § = g + 6 = op +
a1 + ap which is set to zero due to the finite torus equivariance.

p 617 Op Ip—1 (3’1,}’9
1 id ro rorirari rirari
ri riro rirorirz rri

We compute the matrices

M (051 +a 0 ) N = <a1a2(a1 +a2) 0 )

o) —oon ar(ap +az)  az(a) +az)
D= araa(a +aa)? 0
0 —aj03 (o) + a2)
_ (a1 +0[2)_1 0 )
ND ! = )
((011(011 +a)™ —(an)!

For x = r1r, we compute the column vector with values (— l)l(")é" (tj) for j=1,2.
Acting on this column vector by N D~!, we obtain the coefficients of A in j; and

2
NS é’“(n)) _ (052(0!1 +052)) (jé‘l) _ (042>
=D (éjx(l‘z) - o o) \OJ

Doing the same thing for x = rjror> we have
(— i@ <$x(t1) _ ( 0 <j§1 _ <0
£ (1) —aja3 Joy )’
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Example 29 Spo, for n =2 has affine Cartan matrix

2 -1 0
-2 2 =2
o -1 2

We have § = a9 + 60 = g + 201 + 2.

A

p o) op tp—1 Gpro
1 id ro rorirari rirari
2 r riro rirorir rar|
3 rari rirg rarirori r
We have
201 + o 0 0
M= o -0 0
—ay g an) —e3 (o + o)
aj(a +a2)2ay +az) 0 0
N=| (a1 +a)Qa;+a2) az(e;+az) O
2001 4 op o] + o o]
a1 (o + a2) Qe + az)? 0 0
D= 0 —ozla%(al + o)) 0
0 0 —aa3 (a1 + o)
Qaty +ap)”! 0 0
ND™'= (a1 ay +a)) 7! —(ay0y) ! 0
(a1(ar +02) Qo +a2)™' —(ad)™ —(e3(a) + )

Now let x = rorira. We have

(1) (a1 4+ a2) Qay 4 a2)?
(D &5 1n) | = @3 () + a2)
£%(13) 0

The matrix N D! acting on the above column vector, gives the vector

Ja, (a1 4+ a2)Qay + a2)
Jo | = 2y +a2)
Jos 1

Now let x = ryror1. We have

o £%(t) ap(ay +a2) oy +az)
D" & 1) | = 0
&%(13) 0
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o o (a1 + o)
Jn | = (@1 +a)
Jos 1

Example 30 S Oy,41 for n = 3 has affine Cartan matrix

2 o -1 0
0 2 -1 0
-1 -1 2 -1
0 o -2 2
We have § =g + 60 = g + a1 + 200 + 23.
p 5’,, Op Ip—1 8,,1’9
1 id ro rorar3rarirarir rar3rpr1rarir)
2 mn raro rorar3rrirrs r3rrirarir
3 r3rp r3rarg r3rprorrirrir rprirariry
4 mrir rariraro rirrorarirarg rirarirp
5 rorarirp rorarirro rorar3rror1rrirmry rrir

To save space let us write o :=ia) + jop + kaz. We have

®122
M= o112 —O010¢112
o110 —O1100012  @110¢012¢001
@100 —200000011 1002011012
A1100111%112¢1220010%¢011¢012
N = A11001110112¢122¢011X012
2001100111001 12061222011

o1100111¢112¢122

d100¢110¢111¢122¢010

@100¢110¥¢111¢122 H100¢110¢111¢112

D has diagonal entries

2
Q110011101120790X010%011€012
2
—010001 110712 1220010¢012¢X001
2
Q10007 10%111¢122¢010%012¢001

2
—Upp¥110¢111%112Q¢010X011 X012

One may verify that MN = D.

—¢100%010¢011¢%012

A1000111¢112¢122¢012¢001
A10001110112¢122K012
d100011101120122
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