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affine designs having the same parameters as PG(d, q) and AG(d, q), respectively, and having full automorphism
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1. Introduction

There are many theorems of the form every finite group is the full automorphism group
of a member of a certain class of combinatorial structures, such as graphs [4] or Steiner
triple systems [11]. Usually these structures are not overly restrictive in appearance, and
a construction can be obtained by starting with the result for graphs and applying suitable
construction techniques (see [1] for a survey of such results). The purpose of this note is
to prove such a theorem for structures that appear to be a bit more constrained: symmetric
designs. It should be noted that it is by no means a trivial matter even to construct symmetric
designs having no nontrivial automorphisms: some effort was needed in [12] in order to
accomplish this for Hadamard designs. Of course, the most desirable theorem of this sort
would concern finite projective planes, but there is as yet very little information concerning
the structure of the automorphism group of such a plane.

Theorem 1.1. Let G be a finite group. If q>3is any prime power, and if d is any integer
> 50|G|2, then there are designs D and A such that

(i) AutD e G & AutA,
(ii) D is a symmetric design having the same parameters as PG(d, q), and
(iii) A is an affine design having the same parameters as AG(d, q).

We will see that, for given G, q and d there are at least [q 0 . 8 d ] ! pairwise nonisomorphic
designs of this sort. This should be compared with the fact that there are known to be
more than (qd-1)! symmetric designs having the parameters of PG(d, q)([5;7];cf. (3.2),
(4.4)). The Theorem continues to hold when q is 2 or 3, but somewhat different methods
seem to be needed [10].

Unlike all previous proofs of this type of result we will not use any variation on the
version for graphs as a starting point: there does not appear to be any known construction
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technique that starts with a graph and produces a symmetric or affine design having the
stated parameters. (Of course, it would be quite nice to have such a construction, not least
in order to simplify the proofs in this paper.) It may be that the proof of the above theorem
is more significant than the theorem itself: as we will see, it raises a number of questions
concerning symmetric and affine designs. On the other hand, as with other proofs of this
type of result, the structure of the group does not enter at all into our arguments; for example,
the proof does not distinguish in any way between cyclic and nonsolvable groups.

This paper also describes straightforward construction techniques for symmetric and affine
designs (Section 2), together with elementary information concerning isomorphisms and
automorphisms (Sections 3,4). There are unexpected byproducts, relating double cosets to
isomorphisms (4.4). Part of this approach was very briefly sketched in [2, pp. 113-114]1 at
the same time that isomorphisms and asymptotics were being investigated in detail [7]. The
latter remained unpublished due to an inability to control isomorphisms and automorphisms
after many successive iterations (cf. (2.6)), and this still seems very difficult (as is readily
seen below in Sections 5 and 8). A number of the results in [7] appear here as portions of
Sections 2-5; some were obtained independently in [5].

Affine spaces will be visible within most of the designs constructed here. In Section 8
there is a very large chunk of a projective space available to work with: there, we start with
a projective space, remove and reglue the hyperplane at infinity in order to obtain a new
symmetric design, and then repeat this procedure an additional time by regluing a suitable
block of the new symmetric design. This must be accomplished while preserving a given
group G as an automorphism group, removing other automorphisms, and ensuring that no
unexpected automorphisms arise. Implementing this idea is, however, somewhat delicate.
This takes place in Theorems 8.9 and 8.10, which together provide slightly stronger results
than (1.1).

Section 6 proves a (corrected version of a) conjecture in [5] concerning the asymptotic
behavior of the automorphism groups of the symmetric designs studied in Sections 2-4;
this section is not needed for the proof of (1.1). Section 9 contains numerous remarks and
conjectures suggested by various results in earlier sections.

Almost all of the difficult portions of this paper reduced to (or were rescued by) results
concerning permutations of the points of projective spaces. These have been swept into an
Appendix (Section 10). The following is a typical but very special case of what is needed in
our approach to (1.1): For any q and d, each finite group of order < y^d/20 is isomorphic
to the stabilizer of some two points in the permutation representation of S (q d -1 ) / (q -1 ) in
its action on the cosets of PTL(d, q). The proofs in Section 10 involve unusual geometric
considerations.

Many arguments given in Sections 4, 5 and 8 contain hints of ideas occurring in the
proof of the Dembowski-Wagner Theorem [3] and related results. I am indebted to Peter
Dembowski for many things, in particular for introducing me to the methods in [3] and
for encouragement when the simpler aspects of this paper were being investigated in [7].

1The condition (d, g) = (3, 2) was omitted from the hypotheses of [2, 2.4.37]. However, apparently it was
the brevity of Dembowski's sketch that led to the following conclusion in [6, p. 107]: "We remark that the proof
given in {Dembowski's book} is incomplete (if correct)".
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Thanks also are due J. H. Dillon for providing the impetus for this paper, and R. A. Liebler
for suggesting the use of extension fields in (10.2).

For background concerning symmetric and affine designs see [2]. Blocks of designs will
be viewed as sets of points. If D is any design and B is a block, let DB denote the incidence
structure whose points are those not in B and whose blocks are the sets X — B n X, where
X is a block ^ B. On the other hand, let D(B) denote the incidence structure induced on
B, whose points are those of B and whose blocks are the different nonempty intersections
of B with the remaining blocks (compare [2, p. 3]).

A block B is called good if, for each block X ^ B, the blocks containing B n X cover
all the points of D.

The line xy joining 2 different points x, y of a design D is the intersection of all the blocks
containing both of these points [2, p. 65]. Distinct points are always on just one line. Since
we will be working with several designs simultaneously, it will often be convenient to use
the notation xyD in place of xy, and we occasionally refer to D-lines.

The group AutD of automorphisms of D will be viewed as a group of permutations of the
points or the blocks of D, depending upon which is most convenient. If G < AutD and 5
is a point or a set of points, then Gs denotes the set-stabilizer of S.

We will use the same notation PG(d, q) (or AG(d, q)) for a projective (or affine) space
and its design of points and hyperplanes. The projective space at infinity of an affine space
A is denoted A.

2. Gluing

Let A = (p, B, e) be an affine design with m = v/k = k/p, blocks per parallel class,
so that nonparallel blocks meet in p, points. Let B_ denote the parallel class of the block
B, and let 3 be the set of all these parallel classes. Also, let DOO= (Too, "Boo, €) denote
any symmetric design having vQQ = r and feoo = A.

Fix a bijection a: B —» BOQ. Define a new incidence structure A(a) = A(Doo, a) using
the point set P U Poo and the following subsets as blocks:

Theorem 2.1 (Shrikhande [14]). A(a) is a symmetric design with parameters v(a) =
v + Voo, k(a) = DOO and A(a) = koo.

Of course, the proof is a straightforward verification, as are the following remarks:

Lemma 2.2.

Good blocks will reoccur aJnauseam throughout this paper. We begin with a well-known
observation:

(i) poo is a good block; A(a)(poo) = Doo and A(a)poo = A.
(ii) a can be recovered from A and A(a).
(iii) If x, y e p then xyA(a) = xyA U n{Ba|x, y € B € B}. In particular, |xyA(a) | >

|xyA|.
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Lemma 2.3. (i) If E is a good block of an affine design A then A(E) is an affine design
with parameters V(E) = k, r(£;) = A, k(£) = M and m(E) = m. Each block ofA(E) is
contained in exactly m blocks ^ E of A.. If X and Y are parallel blocks of A not parallel
to E, then EnX and EnY are parallel blocks of A(E) •' conversely, if X and Y are blocks
of A. such that E n X and E n Y are parallel in A(E), then E n Y = E n X' for some
block X'parallel to X.

(ii) If Z is a good block of a symmetric design D then D ( z ) is a symmetric design with

parameters v(z) — k and k(z) = X,andDz is an affine design with parameters vz = v — k,
kz = k - A and mz = (v - k)/(k - A). If W = Z is a block of D, then the parallel class
of Dz containing W - Z n W consists of all the blocks = Z of D containing Zr\W.

Proof: (i) Each block E n X of A(E) lies in blocks of A that intersect pairwise in E n X
and cover all points; hence, .EnX lies in (v-k)/(k-^) = m blocks^ E. Thus,A(E) is a
design having V(E) = k, r(E) = (r —1)/m = X,k(E) = A* = k/m and A(E) = (A —l)/m.
Disjoint blocks X, Y of A not parallel to E produce disjoint blocks E n X , E n Y o f A ( E ) .
Then A(E) is a resolvable design for which r(E) = k(E) + A(£), and hence is an affine
design by a theorem of Bose [2, p. 72].

It follows that m(E) = V(E)/k(E) = m. We have found m blocks of A( E ) parallel to
E n X, arising from the m blocks parallel to X. This implies the final assertion.

(ii) The argument is very similar. D

There are easy converses to both parts of the lemma, essentially by reversing the argu-
ments.

Proposition 2.4. The following are equivalent for a block E of A(a):
(i) E is good; and
(ii) E is a good block of A, Ea is a good block of D^, and if EnX = E n Y^<& (for

X, Y 6 B) thenEanX_a = Ea nY_a.

Proof: Note that E_a is contained in m + 1 blocks of A(a)._Assume that (ii) holds. If
0 ^ E n X C Y then Ea n X_a C Y_a by hypothesis, so that ~E n ~X C Y. The m blocks
Y ^= E containing E n X (cf. (2.3i)) determine m different parallel classes Y_ and hence
all m blocks Ya ^ Ea of DOO containing Ea n Xa (cf. (2.3ii)). Thus, the m blocks F of
A(a) cover both P and poo, so that (i) holds. For the other direction, reverse this argument.

n

In view of (2.3) and (2.4), if E is a good block of A(a) then we obtain five additional
designs to consider: affine designs A(o!)B, A( E ) and (Doo)—", as well as symmetric designs
A(a)(E) and (Doo)^-).

Remark 2.5 ("Regluing"). Here is what amounts to a converse of (2.1). Suppose that D
and D' are two symmetric designs, having good blocks Ji^ and 7^, respectively, such
that D^00 = D' °° is the same affine design A. Each block X of A lies in a unique block
X U X_ of D and a unique block X U X' of D', where X_ and X_' are blocks of D( h O O ) and
DOO := D'^), respectively. Write X_' = X_a, so that a is a bijection from the set B of
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blocks of D(Woo) to the set 'Boo of blocks of D,*,. Then D' S A(Doo, a), essentially by
definition: we can identify ® with the set of parallel classes of A by identifying X_ with
{ Y | Y = K}.

There is also an affine design analogue of (2.5). The regluing process in (2.5) suggests
our approach to (1.1):

Construction Procedure 2.6. Start with an affine design A and a symmetric design D^
with VOQ = r and koo = A. Use (2.1) to glue D<jo_to A using a, which is chosen so that
~E is good. Let A' be the affine design A(Doo, oi)E, let D'oo be another design having the
same parameters as DOO, and repeat using A' and D'^ in place of A and D^.

This procedure can be repeated, varying the good block chosen—provided goodness can
be verified at each stage. As observed in Section 1, it seems very difficult to study these
iterations.

We continue with several elementary consequences of (2.3X2.5).

Lemma 2.7. (i) In the notation of (2.5), assume that E U E_ is a good block of D
and that Ea is a good block ofD^. If EnX_ = EnY_ implies that Ea n X° = Ea n Y_a,
then E = E u E a is a good block o/A(Doo, a).

(ii) Assume that A is an affine space and DQQ = A. If E is a good block of A(Doo, a),
then E n K. = E n Y_ implies that Ea n X" = Ea n Y_a. Moreover, if F is any hyperplane
of A. parallel to E, then F is good,

(iii) In the notation of (2.5), assume that EuE is a good block of D. If E" r\X_=Ea r\X_a

for all X, thenE = EUE_is a goodblock of A.(D00, a); moreover, A(Doo, a)/^ = D(E).

Proof: (i) By (2.4) it suffices to show that, if E n X = E n Y ^ 0, E, then Ea n X_a =
Ea n Y_a. By (2.3i), there are m blocks Y ^ E of A containing E n X, and m blocks
Y u Y _ ^ E u E of D containing (E U E) n (X U X_); the m blocks Y appearing in both of
these statements must be the same. Thus, if E<~\X = Er\Y ^0, then E n X_ = E n Y_,
and hence Ea n X" = Ea n Y_a by hypothesis.

(ii) Assume that E n X = E n Y_. Let e £ E. Then A has blocks X'\\X and Y'\\Y
through e. Now E n X' = E n Y' implies that E n X' = E n Y': this is all taking place
inside the projective space A(Doo, 1).

Now E n X' = E n y' implies that Ea n X? = Ea n X? = Ea n YJ? = Ea n Y_a

by (2.4).
For the final assertion, assume that F n X = F n Y ^ 0. Then F n X_ = F n Y_

since A is an affine space. Then also E_ n X_ = E_ n Y, which wasjust seen to imply that
Ea n Xa = Ea n Ya. Thus, £Q n X_a = F_a n Ya, and hence F is good by (2.4) since
F and E_a certainly are.

(iii) Setting X = Ewe find that Ea = E, so that ~E = E U E. Consider any block
X ^ E. We have EnX = (EnX)u(EanX.a) = (EnX)u(En}C) = En(XuX).
Since E is a good block of D, these intersections are the blocks of a symmetric design D(E).
It follows that ~E is also a good block of A(Doo, a). n
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Lemma 2.8. (i) If E is a good block of A (Doo, a), then a induces a bijection afrom the set
of parallel classes of blocks of the affine design A(E) to the set of blocks of the symmetric
design (Da,)^-), taking the parallel class EnX of E n X to Ea n X_a.

(ii) In the situation of(i), A(Doo, a)^ = A(E)(Doo(E°), &).
(iii) In the situation of (2.5), let EDE.be a good block of D and let E' be any good block

of DOO. Then every bijection afrom the set of parallel classes of blocks 0/A(£) to the set
of blocks of(Doo)(E') extends in exactly m!A ways to a bijection a: B —» Boo such that
Ea = E', (E n X)fl = Ea n Xa for all X; and then the block E = EuE' of A (D^. a)
is good.

Proof: Note that E is a good block of A, and E" or E' is a good block of D^ (cf. (2.4)).
(i) By (2.4), if E nX = E nY / 0 then £a n Xa = E°nY_a. If EnX || E n Y then,

by (2.3i), E n X' = E n Y for some X'\\X. Then Ea n Xa = Ea n X'a = Ea n FQ.
Thus, if we write (£ n X)- = Ea n Xa for all X, then a is well-defined. Moreover a is
onto: each block of (Doo)(E°) has the form Ea n X_a.

By (2.3), A( E ) has r(E) —=A parallel classes while (Doo)(j«) has ^oo^c.) = koo = A
blocks. Thus, a is a bijection.

(ii) The blocks of A(Doo, £*)(E) are the following sets of points:

Therefore, (ii) follows from the definitions preceding (2.1).
(iii) By (2.3ii), (Doo)(£') has ^(B0) = A blocks, and E' n X_a is contained in

m blocks ^ E' of DOO whenever XQ ^ E'.ln (2.5) we identified parallel classes of A with
blocks of DOQ. Any extension of a to a map a must send the parallel classes X_ containing
E_ n X_ to parallel classes containing E' n X_a. This proves the assertion concerning the
number of extensions of a to a map a:® —> BOO- Each such extension satisfies the condition
in (2.7i): E n X_ = E n Y implies that E°nX_a = (E n X)SL = (E n y)a = £" n YQ.

D

3. Isomorphisms and automorphisms

Let A and DOO be as in Section 2, and consider another such pair of designs A', D^. Let
y'oe be the set of points of D^. Denote by AutA the group of permutations of !B induced
by AutA.

The following simple result is the basis for the rest of this paper.

Theorem 3.1. (i) There is an isomorphism A(Doo, ct) —> A ' ( D ' , /?) sending the block
^oo to the block 7'^ if and only if there are isomorphisms tjj-.A —> A' and y?:Doo —»• D'
such that a(f> = TJ>j3, where ijn'S -> 2/ denotes the map induced on parallel classes by tf>
and both sides of this equation are viewed as acting on ®.

(ii) The group of permutations of B induced by (AutA(Doo, a))yx is AutDoo n (AutA)a

(where the superscript a refers to conjugation).
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Figure 1.

Proof: Let (p and i/> behave as stated in (i). They define a map 9 from the sets of points
and blocks of A(Doo, a) to those of A^Dj^, 0): when restricted to TOO and p, g is tp and
V>, respectively, while g sends POO to poo and B to B^. This map is an isomorphism: if
B ^ TOO is a block of A(Doo,La) then g certainly preserves incidence with B of points of
A;and if u € ^belongs to B then u € Ba, so that ug = uv € £QV> = B^" = (B±)P c
B$ = B9. (See Figure 1, the left side of which also provides the basic picture used in the
study of the designs A(Doo, a).)

Conversely, suppose that there is an isomorphism g: A(D<x» &) —» A'(D'oo,/3) sending
Poo to 7'^. Then restricting g induces isomorphisms tp:A. —> A' and <^:Doo —> D^,
(cf. (2.2i)). Consider any block B of A(Doo, a) other than f^, and let Bff = C. Then
(B U Ba)g = CuC 0 , so that B^ = C and (Bay = C0 = (£*)* = (Bt)'3. Thus,
aip = V1/?, as required in (i).

In (ii) we have A = A'.Do,, = D^anda = /3. Then we just saw that (AutA(Doo, a))?^
can be viewed as the set of all ordered pairs (tp, tp) € AutAx AutDoo such that atp = t^a.—
i.e., such that <p = a~lipa. D

Let F[A] be the group of automorphisms of the affine design A inducing the identity on
®.

Corollary 3.2. (i) At least v(»!/{(v + Uoo)|r[A]||AutA ||AutDoo\} pairwise nonisomor-
phic designs A(Doo, a) are obtained for a fixed choice of A and D^.

(ii) [5; 7] There are at least
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pairwise nonisomorphic designs having the same parameters as PG(d, q).

Proof: Fix A(Doo, a), and consider how many /3 there might be such that there is an
isomorphism g: A(Doo, a) —> A(D00, 0). First choose a block of A(Doo, a) that might
be sent to J^; there are v(a) = v + DQO choices. Once this block is chosen, the number
of designs A(Doo, /3) that can arise is the number that can arise from one of them by an
isomorphism fixing 7^, and this is at most |AutA| |AutDoo| by (3.1). Thus, a given design
A(Doo, a) is isomorphic to at most v(a) | AutA|| AutDre [ others. Since there are VQO\ choices
for a, the total number of isomorphism classes is at least Voo!/ {(v+Voo) |AutA[ | AutDoo |}.
This proves (i).

For (ii), choose A = AG(d, q) and Doo = PG(d-1, q), and note that |PTL(d+1, q)| =
|r[A]||AutA|. D

The bound in (ii) is the same as the one in [5]. For a marginal improvement when q > 2,
see (4.4iii).

Corollary 3.3. Assume that A is an affine space and DOO = A. Let 0 be a point of p, and
let G < (AutA)0- If the restriction of G to the set B of parallel classes of A commutes with
a, then G is naturally isomorphic to a group of automorphisms of A(a).

Proof: If^ € Gthen^; € AutDoo. By(3.1),theorderedpair(^>, ;0) "is" an automorphism
of A (a). The set of such automorphisms clearly is isomorphic to G. D

Corollary 3.4. If A(D00, a) ^ PG(d, q) then A * AG(d, q) and a is induced by an
isomorphism A. —> D^. Conversely, if A = AG(d, q) and a is induced by an isomorphism
A -» Doo, then A(D00) a) S PG(d, q).

Proof: If A(a) ^ PG(d, q) then A ^ AG(d, q) by (2.2i). Thus, throughout this proof
we may assume that A = AG(d, q). Since PG(d, q) = A(A, 1), the condition for isomor-
phism in (3.1i) is atp = ^/3 = V>. Thus, if there is an isomorphism A(Doo, a) —> A(A, 1)
then a is induced by the isomorphism fap-1; while if a is induced by an isomorphism t p - 1 ,
say, then ^ = 1 satisfies the required condition. D

Corollary 3.5. Letd > 3 and A = AG(d, q).
(i) The number of isomorphism classes of designs A(a) = A(A, a), each having exactly

one good block, is at least

(ii) The proportion of isomorphism classes in (i), among all of the isomorphism classes
of designs A(a), approaches 1 as dq —v oo.

Proof: By (2.8), it suffices to avoid bijections a such that, for some E, E' and some
bijection a from the set of parallel classes of blocks of the affine space A( E ) to the set of
blocks of the projective space (Doo)(£«), we have E" = Ef and (EnX]a = Ea n X_a
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for all X. There are v^ choices of a pair of blocks E_, E_' of DOO, then /too! = A! bijections
a, and finally q\k°° = g!A extensions of each such a to a bijection a by (2.8iii). Thus, there
are at most v^Xlq]^ "bad" bijections a.

In view of (3.2ii) this proves (i), and (ii) follows from the fact that v^,A!g!A/ {voJ/
\PTL(d+l,q)\\PTL(d,q)\}->Qa*qd^oo.                                                    D

We include yet another elementary observation for future reference:

Proposition 3.6. (i) If Z is a good block of a symmetric design D such that A = Dz is an
affine space, then D = A(D(z), a) for some a, and there is an automorphism group T(Z)
ofD that acts trivially on Z and induces the group of all perspectivities of A with axis at
infinity.

(ii) If there are blocks Z behaving as in (i), then AutD is transitive on the set of such
blocks. More precisely, any two such blocks can be interchanged by an element of AutD.
Moreover, if Z1 and Z2 are two such blocks then so is every block Z3 D Z1 n Z2, and if
Z 3 =£ Z1, Z2 then T(Z3) has an element moving Z1 to Z2.

Proof: (i) The first assertion is (2.5). If D = A(D(z), a) then, for each perspectivity •$>
of A with axis at infinity, al = la = tjjq. Thus (i/>, 1) € AutA(D(z), a) by (3.1); T(Z)
is the set of all such automorphisms (ijj, 1).

(ii) Since DZi is an affine space, T(Zi) is transitive on the blocks ^ Zj containing Z1 n Z2

for i = 1, 2. Then <r(Z1), P(Z2)) acts 2-transitively on the blocks containing Z1 n Z2,
and this implies the desired transitivity. D

4. Gluing and lines

We now use lines in order to get information that is more precise than in the preceding
section. Let A = AG(d, q), d > 3, and let DOO = A = (Too, ®oo, e) be its hyperplane
at infinity, so that Soo = £• Let a: 3^ -> ®oo be any bijection. Each of the symmetric
designs A(a) has the same parameters as PG(d, q).

By (2.2iii), each A(a)-line containing 2 points not in poo contains exactly q such points.
The following lemma is concerned with lines meeting poo- This type of geometric lemma
will be used in the study of A(a) and of other designs considered later.

Lemma 4.1. (i) Let u € y^,. Then some A.(a)-line meeting TOO at u has size > 2 if and
only if the blocks in {X_ e Boo | u € X_a} have a nonempty intersection (which is then a
point of Poo).

(ii) Let u € POO- I f | x u | > 2 for some x E p then the same is true for all x € p, and
when all of these A(a)-lines are intersected with 7 the result is a parallel class of A-lines.

Proof: (i) Let x e p. Clearly |xu| > 2 if and only if xu = xy for some y E p; and this
occurs if and only if xy n POO = u-

Therefore, consider distinct points x, y e p, and let xy denote the parallel class of
A-lines containing xyA; view xyA as a point of Poo. Note that xy n Poo = n{X_a \ x, y €
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X} = n{Xa | xy\ C X} = n{X_a | xyA e 2} since any hyperplane X of A is on
a unique hyperplane of A through x. Thus, xy n P^ = u if and only if a maps the
hyperplanes of A containing xy to those containing u.

(ii) Let x' € ?. There is a unique A-line x'y'^ through x' parallel to xyA, where y is as in
(i). As above we see that x'y' n Poo = C\{X_a \ x'y'^ e X} = n{X_a | xyA € X} = u,
as required. Q

Proposition 4.2. Assume that q>3 and A(a) is not a projective space,
(i) Poo is the only block of A(a) whose complement meets no A(a)-line in exactly 2

points. In particular, AutA.(a) fixes Poo.
(ii) For each block .E ^ (Poo there is a point u 6 (Poo — E_a such that each line xu, x €

9 - (E U {u}), has size 2.

Proof: By a remark prior to (4.1), the complement of 7^ meets each A(a)-line in 0, 1
or exactly q > 2 points. If E is any other block of A(a) satisfying this condition, and if
u_€ 7<x> - E.a, then for each x € P - (E U {u}) the line m contains a third point not in
~E. Thus, (i) will follow from (ii). _

Assume that (ii) fails for some block E. Then for each u e 7^ - E_a, there is some point
x e y - (E U {u}) such that xu has at least 3 points, and hence at least 2 points not in
P oo (since xu n Poo = u). For each u e Poo - Ea, (4. Ii) produces a point of y^, which
will be called u@, such that u13 = n{X | w € 2Ca}- This defines a map 0 from the points
of ^oo - E_a into !Poo such that u13 € X if u E xCa. There are fcoo blocks on u, and fcoo on
?/. Since u i Ea, it follows that u0 i E_a. That is, (poo - £a)/3 = ?<x> - £•

Thus, if we let /3 also act on the blocks in ®oo — {Ea} by having it coincide with a-1

on them, then /3 becomes an incidence-preserving map A— —» A— of affine spaces. It
follows that /3 arises from an isomorphism A —» A of projective spaces. Consequently, a
is induced by an isomorphism A —> A. This contradicts (3.4). D

The hypothesis that A = DQQ is a projective space was used in order to extend the
isomorphism A— —> A— to an isomorphism A —> A. This assumption is essential for the
validity of (4.2) (cf. Section 9, Remark 1). The result is false when q = 2, but there is a
substitute:

Proposition 4.3. If q = 2 then the following are equivalent for a hyperplane E of A :
(i) AutA(a) has an element moving 7^ to E;

(ii) A(oi)E is an affine space;
(iii) There is an automorphism a of A such that (E n X)"7 = Ea n X_a for all X e *S>;

and
(iv) A(a) = A(/3) by an isomorphism sending Poo to Poo and E U E to E U Ej3, where

13 fixes E and has the following property: Ej3 n X& = E_ n X_for every hyperplane X of
A.

Proof: Throughout this proof let F denote the hyperplane of A disjoint from E, so that
F = E.

(i)<=Kii): This is an immediate consequence of (3.6).
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(i)=(iii): By (3.6ii) there is an element of T(E) sending POO to F. Then each line of
the projective space DOO is mapped to a line of A (a)/™ such that the two lines have the

same intersection with TOO n F = F_a = E_a. It follows that each A(a)-line ux with
u e Ea, x € F, has q + 1 = 3 points. By (4.1i), r\{X_ € $ \ u e X_a} is a point we will
call u13; here u0 € E_ (use X_ = E). Thus, /3 sends points of E_a to points of E, and the map
u »-> u'3, y. i-» ya preserves incidence. Then the map u^u^ , E" n F i-> E n y"
(for u e J£a, H ^ E_a) also does, and hence is an isomorphism of projective spaces
(Doo )(£<*) —» (Doo)(B)- Any such isomorphism is induced by some automorphism r of
DOO = A sending Ea to E. Then (Ea n Xa)T = E n X for all X, so that a = r-1

behaves as required.
(iii)=(iv): Let 0 = aa~l. Then E*3 n X? = E n X _ f o r every X. Since acr - l = 10,

(3.1i) produces an isomorphism g: A(a) -+ A(/3) such that (X U X")9 = Jf U A^-
(iv)=(i): After replacing a by /3, we may assume that Ea = E and Ea n X" = E n X

for every block X. Equivalently, X_a = X_ or X_ + Q for each X e 3, where + denotes
symmetric difference and Q:= Poo — E_.

The group F(TOO) in (3.6) has an element interchanging E and F, so it suffices to produce
an element of AutA(a) interchanging ?<„ and F. There is an automorphism h of the
projective space A(l) that fixes E U E_ pointwise while interchanging 3>oo and F U F_ = F.
We will show that h 6 AutA(a). First of all, if X € % then, since X" = X_ or X + Q,

Also, (XuX)h + XUX = 0or F + Q: this takes place inside the projective space A(l),
where EUE, XuX_ and XuX_+F+Q are the three blocks containing ( E u E ) n ( X \ J X _ ) .
Thus,

However, E is good by (2.7iii), so that E n X is contained in three blocks of A(a). Two of
these are E and X; the third one must be the complement X + F + Q of E+X. It follows
thatX is a block XorX + F + Q of A(a). Thus, h is indeed an automorphism of A (a).

D

Theorem 4.4. (i) A(a) = A(/3) if and only if there are automorphisms p and (p of A such
that a(f> = p/3.

(ii) The group [AutA(o:)]3>oo/r[A] induced by [AutA(a)]y00 on 23 = BOO w isomorphic
to AutA n (AutA)a (the group T[A] was defined just before (3.2)).

(iii) If q>2 then there is a natural bijection A(a) i-> PrL(d, g)aPrL(d, q) between
tfze isomorphism classes of designs A(a) = A(A, a) and the PTL(d, q), PTL(d, q)
double cosets in the symmetric group on %. In particular, the number of isomorphism
classes is greater than {(qd - 1 ) / ( q -1l)}!/|PrL(d, q) | 2 .
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Proof: (i) By (3.6), any isomorphism A(a) -» A(/3) can be followed by an automorphism
of A(/3) so as to guarantee that CPoo is sent to 3>oo- By (3.1i), there is such an isomorphism
if and only if atp — tyft for some isomorphisms ij>: A —v A and ip: A —» A. Now (i) follows
from the fact that AutA S AutA.

(ii) This is immediate by (3.1) since F[A] is just the kernel of the homomorphism sending
7/1 to V>.

(iii) If a e AutA then a is induced by an automorphism of A and hence A(a) is a
projective space by (3.4). Now consider any double coset AutA a AutA ^ AutA 1 AutA.
By (4.2i), AutA(a) fixes 3>oo. As in (i) we see that A(a) = A(/3) if and only if there are
elements p, a € AutA = PTL(d, q) such that /? = p~lc*(p e AutA a AutA. Finally,
|AutA a AutAI < \PTL(d, q)\2. D

There are two iterative ways to improve the bound in (4.4iii). One assumes that d > 4,
in which case DOO could have been chosen to be any design having the parameters of
PG(d - 1, q), including one of those obtained previously (see Section 9, Remark 1 for an
example of this); note that, if d = 3, then DQQ can also be a nondesarguesian projective
plane. The other iterative procedure uses (2.6) repeatedly.

5. The geometry of A' = A(a)B: almost an affine space

In this section we will study the geometry of a more restricted class of affine designs,
obtained as in (2.6) and needed in Section 8. Let A = AG(d, q) with d> 3, and let
DQO = A and A(a) be as in Section 4. Assume that E01 = E and that E = E U E_
is a good block of A(a), and consider the affine design A' := A(a)B (cf. (2.3ii)). Let
y& •= ?oo -K denote the block of A' determined by 7^. _Every_other block of A' has
the form X - E n X for some_hyperplane X of A. Note that X - E n ~X and Y - ~E n Y
are parallel if and only if E n X = E n Y, and hence if and only if E n X = E n Y.

Let S be the set of points of A' not in Poo, so that S is just p — E. If x and y are distinct
points of 5 then the "5-line" xys is defined to be xys — xyA< n S. By (2.2iii), we also
have xys — x y A ( a ) n S, and this is part of the line xyA of the affine space A; in particular,
|xys| > q - 1-

Proposition 5.1. Suppose that a is not induced by a collineation (so that A(a) is not a
projective space by (3.4)), and either

(i) q > 3, and there is a point u e 3^ such that n{X_ e B | u 6 X_a} = 0; or
(ii) q > 4, and, for any hyperplane B ^ E of A, there is a point v £ poo - {Ea U Ba}

such that n{X_ e B | v e X_a} = 0.
Then AutA' fixes ?^.

Proof: (i) By (4.1ii), all A(a)-lines through u but not contained in Poo, have size q + 1.
Since A'/y-^ = (Doo)E is an affine space, it follows that all A'-lines through u have size

q. Suppose that some point x e S has this same property. Then, for any v € Poo, |xvA'| >
q>3, and hence n{X_ € B | v & X_a} ^ 0 by (4.1i). This contradicts (4.2ii).
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Thus, each point of A' lying only on q-point lines is contained in p-
oo. One such point is

u. Hence, it suffices to show that AutA' fixes the parallel class of p-
oo.

Any two points of A' contained in a block parallel to 3*̂ , belong to a q-point A'-line (this
is clear for points of the affine space (Doo)—, as well as for the points lying in what is left
of the affine space A after E was removed; cf. (2.2i)). We will show that no other parallel
class of blocks of A? has this property. By (4.2ii), there is a point v of (P-

oo, lying on no
q-point line of A'. Consider any block B - E n B of A' not parallel to CP^ and containing
v. Since B -E n B g P^,_there_is a point x € B - ~E n B with x £ 3>^. Then vx^> is a
line of A' contained in B — E n B, but it cannot have q points in view of our choice of v.

Thus AutA' fixes the parallel class of 3^ and hence also fixes T^.
(ii) We noted above that each S-line has size > q - 1 > 3. Thus, P-

oo is a block having
the property that every line with at least 2 points not in this block has at least 3 points not
in it (compare (4.2i)). We will show that P-

oo is the only block having this property.
Let B — E n B be any other block of A', and assume that it also has the above property.

Let v be the point whose existence is hypothesized in ̂ ii). Let x 6 5 with x g B. By
hypothesis, xvA' has at least 3 points not in B - E n B, and hence has at least 2 points
not in (P-

oo. Then {X_ € B | v € 2La} 1= 0 by (4.1i), and this contradicts the choice of v.
D

Lemma 5.2. f^ is a good block of A.'.

Proof: Consider a block X - E nX of A'_If Y\\X in A, then (Y - E n y)_n p-
oo =

Y_a-Er(Y_c' = X_a-EnX_a = (X-EnX)ny^. As Y varies, the blocks Y-EnY
clearly cover all of the points of A' not in 3>^, while the sets (Y - E n Y} n T^, form
a parallel class of A'/y- ^ = (Doo)— if E and X are not parallel in A. (N.B.—This also
follows from (2.7i), whose proof is essentially the same as the above one. However, it
is faster to prove this lemma directly than it is to match up the notation with (2.7i)!)

D

Proposition 5.3. Assume that either of the conditions in (5.1) holds. Then AutA' is (isomor-
phic to the restriction to the points and blocks of A' of the group)
[AutA(a)]^.

Proof: The nonempty intersections of blocks of A' with 5 will be called "5-blocks". The
S-line xys is just the intersection of the 5-blocks containing the distinct points x, y e S.
The incidence structure whose points are those of 5 and whose blocks are the 5-blocks is
canonically associated with A' by (5.1). So is the set CJ consisting of the following sets of
points of A':

(recall that q - 1 > 2). Define a "parallelism" \\E among the members of £', as follows
(compare [2, p. 74]):
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xys\\Ex'y's **• every block of A' containing x and y is parallel in A'

to some block containing x' and y'; and

uv\i \\Eu'v'At 4=J> every block of A' containing u and v is parallel in A'

to some block containing u' and v'.

This defines an equivalence relation: xys\\Ex'y's & xy\nE = x'y 'AnE, while the relation
uv\> \\EU'V'A, is nothing other than parallelism in the affine space AL- > = (Doo)£. Call
the corresponding equivalence classes xyS and uvA', respectively. We will view xys or

J ** 'O

UVA' as incident with an S-block S n (X — E n X) if and only if some member of xys or

uvA' is contained in X - ~E n X.
Define an incidence structure D' as follows: its points are the points x of S, the points u

of 9^,, the parallel classes xyS and the parallel classes uvA'; its blocks are the S-blocks

SnX = Sn(X — E n X") as well as two further ones: p and £/_. Those incidences not
defined in the preceding paragraph are the obvious ones.

Now define a map p.: D' -^ A(a) as follows (for x, y € S, u, v e 3* ,̂, and X ^ E a
hyperplaneof A):

(Here U^DO, n JJ can be thought of as the point at infinity produced by the line uvA' of the
affine space A'<p- . ) Then fj, preserves incidence.

Thus, by (5.1) we have canonically recovered A (a) from A'. This implies the Proposition.
n

See the proof of (8.10) for a related reconstruction. This type of result is a very special
case of the Embedding Lemma in [8].

Theorem 5.4. If d>£ and q>3 then there are at least ( q d - 3 ) \ pairwise nonisomorphic
affine designs, not AG(d, q) but having the same parameters as AG(d, q), and having a
parallel class of good blocks on each of which AG(d - 1,q) is induced.

Proof: By (5.2), p-
oo is good. By (2.8ii), F is a good block of A(a) for each hyperplane

F ^ E parallel to E in A, and hence F is a good block of A' by (2.4ii). Moreover, affine
spaces are induced on both T^ and F (e.g., using (2.2)).

It remains to estimate the number of nonisomorphic designs A(a) satisfying the conditions
needed in this section: E must be good, and we want to have a point u behaving as in (5. li).
There are v^ choices for the pair E_, .Ea, and then fc<x>! bijections a from the set of
hyperplanes of the projective space (Doo)cs) to the set of hyperplanes of (Do, )(£"»)• Now
pick points u e poo - E. and u' e 3>oo - E_a , and extend a first by requiring that, for
each block J of (Doo)^), a sends the hyperplane of DOQ containing J and u to the one
containing J&- and u'. Finally, complete the extension of Q. to all blocks of DQO in any of
(q - l)!k°° ways (cf. the proof of (3.5)). The total number of permutations a obtained in
this manner is t&fcooK(voo - koo)2(q - l)!k°° • As in (4.4iii), it follows that the number of
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isomorphism classes of these particular designs A(a) is at least v 2 ooKoo(voo - koo)2 (q —
1)\k°°/\PTL(d + 1 ,q)||PTL(d,q)|, and this is > (qd-3)! if d > 4. D

Next we turn to the case q — 2, where a more concrete description of the blocks of A'
will be helpful. This time 5 = 7 - E is another block of A', so that A'(S) is an affine space
by (2.2i); so is A'(poo) = (Doo) (E). Each block = S, P-oo of A' is the union of a hyperplane
of A'(S) and a hyperplane of A'/y- *. Each hyperplane of A'/j,- -. lies in two such blocks,

and hence the same is true for each hyperplane of A(S).

If 9 € AutA(1) fixes E pointwise and interchanges 5 and P-oo, and if J is any hyperplane
of A'(s) = A(s), then J6 is contained in a unique hyperplane J6' of D^. Then Ja' :=

je'a n rp-^ js a hyperplane of A'/j,- j, and we have seen that

Note that a' is a parallelism-preserving bijection from the blocks of A ( s ) t o those of A'(p-oo) .
This gluing process, which apparently first appeared in [15], is studied more generally in
[13, 10]. Note that (5.5) implies that (5.3) is always false when q = 2: the pointwise
stabilizer in AutA' of either P-oo or 5 is transitive on S or P-oo, respectively (inducing the
full translation group of the respective affine spaces A(S) or A'(p-oo); compare (3.6)). In

particular, this property of AutA' is shared by all of the designs in the next theorem.

Theorem 5.6. If d > 5 then there at least (2d-4)! pairwise nonisomorphic affine designs,
not AG(d, 2) but having the same parameters as AG(d, 2), with a parallel pair of good
blocks on each of which AG(d -1,2) is induced.

Proof: Fix a hyperplane E of A, and consider only maps a such that a fixes £ and induces
a permutation a of the set of hyperplanes of the projective_space (Doo)(E), but a is not
induced by a collineation of (Doo)^. By (4.3ii, iii), A(a)E is not an affine space. There
are more than {fcoJ - \PGL(d - 1,2)|}2!fc°° choices for a.

Consider two such choices a and f3, and assume that there is an isomorphism A(a)E —>
A(/3)E sending 7^ to itself. Define bijections a' and 0' from the blocks of A(S) to those of
(Doo)— = A'(j- \ as above. As in the proof of (3.1), we find that there are automorphisms
tf> and <p of the affine spaces A(S) and A'(p-oo), respectively, such that a'(p = tyft1 for the

maps Q/ and ̂ _ induced by a and (3 on the parallel classes of A'(s) (cf. [12]).

Since a' determines a, it follows as in the proof of (3.2) that any one of these affine
designs A(a)E is isomorphic to at most |PGL(d+1,2)||PGL(d,2)| others. Consequently,
there are at least {fcoo! - \PGL(d - 1,2)|}2!fc°°/|PGL(d + 1,2)||PGL(d,2)| pairwise
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nonisomorphic designs of the type being considered, and this is > (2d-4)! for d > 5.
D

6. AutA(a): asymptotics

In [5, p. 177] "it is conjectured that most of the examples constructed here are indeed
automorphism-free". Those examples include (among others) the designs A(Doo, a), where
the initial affine design A is an affine space and the design DQO is allowed to vary.

The conjecture is false for every such symmetric design A(Doo, a)—and it is also false
for all of the other examples considered in [5] (except in the case q = 2 of what are called
there "biaffine divisible designs")—since there are always nontrivial perspectivities of the
underlying affine space that automatically act on the new design, just as F[A] did in (3.6).
Nevertheless, there is a version of the conjecture that is correct. We will only consider the
case of symmetric designs, but analogues of the following result are easily proved for the
other situations examined in [5].

Proposition 6.1. The proportion of those isomorphism classes of designs A(a) = A(A, a),
for which A is an affine space of dimension at least 3 and AutA(a) = F[A], approaches 1
as the number of points -> oo.

Proof: By (3.5ii), we may restrict to designs having just one good block. By (4.4ii),
AutA(a) = T[A] if and only if (AutDo,)" n AutDoo = 1. We will show that there
are relatively few triples (a,r,a) with CT, r 6 PTL(d,q) of prime order p, a 6 SVoo,
and era = ar. There are |PTL(d,q)| 2 choices of two elements o,r of PTL(d,q). If
some a conjugates CT to r then there are exactly C(CT) := |Cg (00)| such elements a.
Therefore, we will need an upper bound for c(a) = f p ( v ° ° - f ) / p [ ( v o o - f ) / p ] \ , where / is
the number of fixed points of a. The following possibilities for / will be treated somewhat
differently: (i) koo + 1 > 1 > f>AO = (koo — 1 ) /q , in which event it is easy to check that
H = P < q; (ii)(koo - 1)/q > f > 0 and p < &<koo; and (iii) f = 0. In (i) and (ii), the
number of nontrivial cycles of a is (voo — f ) / p > 2.

Write Q := v/{/![Ko - /)/p]!p(u~~/)/p}. We claim that Q > (1.3)qd-2-1. In all
cases, sincep~ l /p > 2.1-1/2 we have

In (i) or (ii) we now see that Q > (1.3)^-*"-1)/2 = (l.3)(qd-1 -1)/2 > (1.3)q d-2-1. In
(iii), Q is at least (voo -1)! or ((1 + 2)/2.1)voo/2 according to whether p = V oorp < Voo.
This proves the claim in all cases.

Consequently, c(a] = f!p(voo-f)/p[(voo - f)/p]l < v00I/(1.3)qd-2-1 for each a. Then
the number of elements of SVxconjugating some nontrivial element of PTL(d, q) to an-
other one is at most |PrL(d,q)|2 v00!/(1.3)qd-2-1. By (3.5ii), the proportion of those
isomorphism classes of designs A(A, a) for which A(A, a) ^ F[A] is at most
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7. Some representations

Throughout the proof of (1.1) in the next section we will always use a simple type of
representation of a finite group G:

Notation 7.1. Assume that d and t are positive integers such that d > l|G| + 2>2.
Let V be a d + 1-dimensional vector space over GF(q) on which G acts as a group of
linear transformations, and assume that there is a basis (the "standard basis") v 1 , . . . , Vd+1

such that G permutes v 1 , . . . , v^|c| via t copies of its right regular representation while
fixing all remaining basis vectors. Then G also acts on the corresponding projective space
P := PG(d, q). It is easy to see that the subgroup of PGL(d + 1, q) induced by G is
isomorphic to G; we will identify these two groups.

Lemma 7.2. (i) The representation of G on the dual space of V is equivalent to that on V.
(ii) Let j be 0 or 1, and write Uj := (vi \ 1 < i < d + 1, i ^ d + 1 - j). Then G acts on

Uj, permuting the basis {vi \ 1 < i < d +1, i ^ d +1 - j} via t copies of its right regular
representation while fixing all remaining basis vectors. Moreover, V = (vd+1) © U0.

(iii) No nontrivial element of G fixes U0 n U1 pointwise.
(iv) If G fixes a hyperplane of AG(d + 1, q) then it fixes every parallel hyperplane.
(v) G commutes with the involutory linear transformation a of V defined by

Vi *-> Vi for i < d, and vd <-»• Vd+1.

Proof: (i) G preserves the usual dot-product with respect to the standard basis.
(ii) G fixes vd+1 and vd, and hence acts on Uj. The representation is clear, as is the

assertion (iii).
(iv) If G = 1 this is clear. If G = 1 then every fixed hyperplane W of V contains

v1, • • •, ve\G\; and every hyperplane of AG(d + 1, q) fixed by G is parallel to one through
0 fixed by G. Choose i > t\G\ such that vi £ W. Then G fixes each translate W + cvi,
c € GF(q).

Finally, (v) is clear. D

8. Proof of (1.1)

We are given a group G, a prime power q > 3, and an integer d > 50|G|2. The design D
in (1.1) is defined below in (8.1). First we need some notation.

Start with P = PG(d, q) and the representation of G appearing in (7.1), using
^:=max{4, |G|}. Let JQO denote the hyperplane of P corresponding to the subspace

D
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U0 in (7.2ii), and write A = Pu0 and D^, = A = (?«„ £00, e). Then P = A(l) in
the notation of Section 2: its hyperplanes are TOO and X U 2C_where X ranges over the
hyperplanes of A. Let E denote the hyperplane of A such that E = E U E_ corresponds to
the subspace U1 in (7.2ii). The hyperplanes of DOO have the form X = T^ n (X U 20,
while those of P/^% have the form

for a hyperplane X of A not parallel to E. Note that E_ n X_ = E_ n X_.
By (7.2i), G acts on the dual of the projective space DOO as it does on DOQ. Apply (10.4)

to the points of this dual space, choosing notation so that E is the dual of the point (w)
appearing in (10.4ii). This produces a permutation a of the hyperplanes of DOQ. Write
C = a-1. Let a denote the involutory collineation of P defined in (7.2v). Then a fixes E
pointwise, interchanges ?oo and E, and commutes with G. Moreover,

a is a permutation of the hyperplanes 0/Doo, and
/3 := a - 1 £a is a permutation of the hyperplanes o/P/^v.

(N.B.—Many choices for permutations C behaving as in (10.4), other than a-1, could have
been used here in order to define /3. The present choice simplifies the proof, while producing
a pleasant additional property (8.9iii) of the designs in (1.1ii). However, it also leads to an
unreasonably poor bound on the number of nonisomorphic designs we construct.)

By (10.4ii), a induces a permutation a of the hyperplanes of (Doojyy (the projective
space at infinity of A(£)). Namely, if .E, X_ and Y_ are distinct hyperplanes of DOO such that
E H X_ = E n y, then E n X_a = E n ya by (10.4ii) (dualized and recalling that (w) in
(10.4) "is" our E), so we define

(EnX)* = Enxa.

In other words, (E_ n 2Q- can be viewed as the image under a of the parallel class of
hyperplanes of A(E) determined by E n X, as in (2.8i) (at this point we have not yet left
ordinary projective geometry). There are similar definitions for £ and /?, where in fact
/? = £ = a-1 since a = 1 on E_.

The incidence structure D is defined as follows. Its points are those of P. Its blocks are
the following sets of points:

where X runs through the hyperplanes of A other than E. Since a = 1 on E,



SYMMETRIC DESIGNS 325

Since £a = 1 and E_ n X_ = E_ n X, we have

If we write 7^ = TOO — £ as in Section 5, then we also have

This definition of D is certainly opaque. In order to see that D is, indeed, a symmetric
design, and in order to study its structure, we will need to unravel the definition using
Section 2. For now we note that each hyperplane X ^ E of A determines a set E - E n X
that uniquely determines the block X.

Let A(a) = A(Doo, a) be the symmetric design obtained in (2.1). One of its blocks is
EL)Ea = E\JE = E. Note that this is a good block of A(a). For, since E U E is a
good block of the projective space P, by (2.7i) it suffices to check that E_ n X_ = E n Y_
implies that Ea n X_a = Ea n Y_a (for all hyperplanes X, Y of A); and this is precisely
the condition in (10.4ii) used above. _

Let A' denote the affine design A(a)E (cf. (2.3i)).
Also, let D00:=A(a)^. By (2.8ii), this symmetric design is obtained by gluing:

using the permutation a described above. That is, the blocks of D^ have the form

where X runs through the hyperplanes of A not parallel to E. (Thus, in (2.1), E_ is playing
the role of TOO, while E_ n 2[ is playing the role of X-)

Define a permutation 7 of the blocks of D^ as follows:

This is well-defined: ifE<~\X = Er\Y then Er\X = EnY (asis seen by considering
the set of points not in 7^), so that (E U E) n (X U X_) = (E U E) n (Y U Y_) (this takes
place inside P), which states that Xf = YJ. By (8.1),

We can now show that D is a symmetric design, and at the same time identify it in two
ways:
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Lemma 8.4. (i) D = A'(D^, 7) = A(a)E (A(a)(E), 7).

(ii) D S A(a-1) E (A(a -1) (E ) , 7*) by an isomorphism interchanging 3>oo and E,

where 7* is defined as in (8.2) with a and 0 replaced by a~l and /3~1, respectively.

Proof: (i)Since?«, = {0>
00-(SnO)

00)}U(£na)
00)'

1',(8.3)and the definition preceding
(2.1) imply (i).

(ii) We will show that a produces an isomorphism. Write (X U X)a = Y U Y_ (where
X U X and Y U Y are hyperplanes of P other than 7^ and E). Since a interchanges E
and POO,

By two applications of (8.1"), it follows first that

and then that D" is obtained from a -1 and /3 -1 in the same manner that D was obtained
from a and /3. Now (i) completes the proof. D

Part (i) says that D is obtained by "regluing" D'̂ , to A' "at infinity" (i.e., within ~E) using
the map 7 appearing in (8.2), as in (2.5). Note, however, that this has led us to a notational
irritation: we have had to change notation slightly from Section 2, using X to denote blocks
of A ' (D ' , 7) since Jf is already defined in terms of A(a). Part (ii) implicitly suggests
additional confusing notation.

Write Aoo:=A(E) ^ AG(d - 1, q); its projective space at infinity is (Doo)(E), which
arises here reglued to AOO in three different ways:

Lemma 8.6. (i) The good blocks o/D are precisely the blocks containing E_.

Proof: (i) By (8.4i) and (2.2i), E is good. The same is true of ?«, by (8.4ii); alternatively,
this will follow once we prove (ii). Similarly, we will show in (iv) that F is good.
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Any good block of D, other than E, must meet E in a good block of D', by (2.4ii).
Therefore, it suffices to show that E is the only good block oF D'.

We know that D' = Aoo(a) = A(E) ((Do,)(E), a) (cf. (2.8ii)). By (2.2i), E is a good
block of D^. Suppose that there is another good block of A(E)(a), and hence one arising
from some hyperplane K of A(E). Let K_ denote the hyperplane at infinity of K. By (2.7ii),
if I and J are any hyperplanes of A(E) such that I_<~\K_ = Jn/£, then I_-nK_- = J-ntf-.
Here, I, J and K_ are the hyperplanes at infinity of I, J and K, respectively, and hence
are just hyperplanes of (Doo)(E). Consequently, we are now dealing with a property of a
taking place entirely within (Doo)(E): the hyperplane K_ is such that, if I n K_ = J n K_
then I&nK?- = Jan/ifa. By (the dual of) (10.4vii), there is no hyperplane K of (D<x>)(E)
behaving in this manner. This contradiction shows that D^, has exactly one good block,
and hence proves (i).

(ii) If X is a hyperplane of A not parallel to E, and if (X U X}" = Y U Y, then (8.5)
implies that £nX* = (tfnr^1) U (£n Y^'V1 = (En%?~1) U (En Y^'pr1

since E n Y_ - E n Y_. By (2.1), this proves (ii), as well as the fact that 7^ is good (cf.
(2.3ii)).

(iii) This was noted earlier.
( i v ) B y ( 8 . 1 " ) , F = FUE = F , a n d F n X = ( F n X ) U ( E n X _ ) = ( F n X ) U ( F n X _ )

is a hyperplane of P^ whenever X is not parallel to F. Thus, D(F) = P(F) = Aoo(l)
and F is good.

(v) By (the dual of) (10.4x), or1, a and 1 lie in different PYL(d -1 ,q ) , PTL(d - 1, q)
double cosets. Thus, (4.4iii) together with the preceding parts (ii-iv) imply (v). D

Lemma 8.7. (i) AutD fixes poo and ~E.
(ii) G < AutD.
(iii) AutD is isomorphic to a subgroup o/AutA' = (AutA(a))g = r(3)00)g x G, where

r(3>t5o)g is the group of perspectivities of P with axis TOO and center in E.
(iv) No nontrivial element o/AutD induces the identity on 7^.

Proof: (i) This is immediate by (8.6v), since AutD must permute the blocks containing
E.

(ii) By (the dual of) (10.4iii), G commutes with a. Since G commutes with a it also
commutes with a - 1a - 1a = (3. If g € G and X is a hyperplane of A, then Xg = Xg and
Xg = Xg. By (8.1"),Xg = (Xg -EnXg)Li(V^nXj"*)U(EnXg13)U(EnXg),so
that G < AutD. (N.B.—While (3.1i) could have been used here, it was easier to proceed
directly since G is given as a group of permutations of the points of P and hence of D.)

(iii) By (i) and (8.4i), AutD is isomorphic to a subgroup of AutA'. By (5.3), AutA' =
[AutA(a)]g. By (4.4ii), together with (the dual of) (10.4vi), AutA(a)/r(0>00) S! G. As
in (ii), G < AutA(a); and r(?oo)¥ n G = 1 by (7.2iii). Thus, AutA(a) = TCP^^G =
r(?oo)fiXiG.

(iv) By (7.2iii), no nontrivial element of G fixes E, pointwise. Then F (^oo) is the pointwise
stabilizer of E_ in r(3)00)G. Since AutD < r(T00)gG by (iii), no nontrivial element of
AutD induces the identity on E.
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In view of (8.4ii), we can interchange the roles of f^ and E, and hence (iv) holds.
D

In (iii) we saw that AutA(a) = r(0'00)gXi G, so that A(a) "almost" behaves as in (1.1).
We obtained D by modifying A(a) in order to kill the group r(7oo)-^ appearing in (8.7iii).

Lemma 8.8. G = AutD.

Proof: By (8.7ii, iii), G < AutD < r(?oo)^xi G, and T(?00)^ n AutD = 1 by (8.7iv),
so that G = AutD. n

Theorem 8.9. Given a finite group G, a prime power q > 3, and an integer d > 50|G|2,
there are at least [q0 .8d]\ pairwise nonisomorphic symmetric designs D having the param-
eters ofPG(d, q) such that

(i) AutD S G;
(ii) The incidence structure induced by the removal of a suitable pair of good blocks is

isomorphic to an incidence structure obtained in the same manner from PG(d, q); and
(iii) The intersection of the two blocks in (ii) is contained in q - 1 other good blocks "F,

and on each of these D induces a projective space D/^.

Proof: Part (ii) is clear from the construction (cf. (8.1)), while (iii) is just (8.6iv).
It remains to obtain a lower bound on the number of designs D just obtained. By (8.6),

the pair {Aoo(a), A00(a-1)}, of designs is canonically associated with D.
By (the dual of) (10.5), we can choose among at least [g0.8d]! permutations a such that

the corresponding permutations a and a-1 all lie in at least 2[g0.8d]! different PTL(d —
1, q), PTL(d -1, q) double cosets. By (4.4iii), the associated symmetric designs Aoo(a)
and A(a-1) are all nonisomorphic. Hence, the same is true for at least [g0.8d]! symmetric
designs D arising from these choices of a. D

Theorem 8.10. Given a finite group G, a prime power q > 3, and an integer d > 50|G|2,
there are at least [g0.8d]! pairwise nonisomorphic affine designs A" having the parameters
ofAG(d, q) such that AutA" = G and such that the incidence structure induced by the
removal of a suitable pair of parallel good blocks is isomorphic to an incidence structure
obtained in the same manner from AG(d, q).

Proof: _By (8.6), F is a good block of D. This leads us to consider the affine design
A":=DF. Since G fixes F by (7.2iv), it acts on A". We will show that AutA" S G by
recovering D from the geometry of A". Our approach parallels that of (5.3).

If X ^ E, F is a hyperplane of A^ let X" denote the corresponding block X — F n X
of A"; there are two further blocks £, 7^ of A". By (8.1"),

ThenO^nX" = P^nX" is a hyperplane of (D^)^OX" = Dr\Xf is a hyperplane
of A ( E ) , and F1 n X" = F1 n X for any hyperplane F1 ^ E, F of A parallel to E. It



SYMMETRIC DESIGNS 329

follows from (2.3i) that each member of the parallel class of 7^ is a good block, with an
affine space induced on it. In particular, each A."-line contained in such a block has size q.

Consider the set T of points of A not in E U F; this is just the set of points of A" not in
E(J 7^. The nonempty intersections of the blocks of A" with T will be called "T-blocks";
together with T they produce an incidence structure T which could also have been obtained
from A by the removal of E, F and all of their points.

Lemma 8.11. T is determined by the geometry of A".

Proof: There are two special points u and e of A". Namely, by (the dual of) (10.4viii)
there is a unique point u of 7^ such that a sends the hyperplanes of DQO on u to the
hyperplanes on some point of 7^ (namely, to hyperplanes containing u). By symmetry
(cf. (8.4ii)), there is a unique point e e E such that 0 sends the hyperplanes of P/^ on e to
the hyperplanes on some point of E (namely, to hyperplanes containing e). By (4.1), each
A(a)-line through u but not contained in TOO has size q + 1. We already noted that each
A"-line lying in a block parallel to 7^ has size q. Then each A."-line through u (or e) has
s ize>q-1> 3, by (2.2iii).

On the other hand, by (2.2iii) and (4.1), any A"-line containing a point of 7^ as well as
two points of T must contain u.

Now we can show that the parallel class of 7^ is determined by the geometry of\". For,
consider any (/-point A"-line L not lying in any block parallel to 7^. Then L meets each
block parallel to E, and hence in particular meets both 7^, and E, and \LnT\ > q — 2 > 2.
As noted above, this implies that L contains u and, by symmetry, also e. Thus, all but one
g-point A"-line lies in a block parallel to 7^. This shows that the parallel class of 7^, is
uniquely determined.

Next, we claim that {7^, E} is also determined by the geometry of A". Namely, we will
show that any point of A" lying only on A"-lines of size > q - 1 must be inside 7^ U E;
recall that both u and e behave in this manner. Suppose that x is such a point not in 7^ U E,
and hence lying in T. Then choose a point y e T as follows: y does not lie in the block
through x parallel to 7^, and y & ux\» U ex\». Then xyA" cannot meet 7^ U E (as noted
above), and hence has size < q - 2. This proves our claim.

In particular, we have now shown that the geometry of A" determines T and hence also T.
D

We now return to the proof of (8.10). The set of all intersections of T-blocks is a lattice
(under set inclusion) that is "locally a projective space". It is straightforward to reconstruct
a projective space P' isomorphic to P from T (as in Section 5, this is again a very special
case of the Embedding Lemma of [8]). More precisely, each point u; of P determines the
set [W]T of T-blocks each of which is in a hyperplane of P containing w, the_points of
P' are defined to be the sets we:=[w\T. Similarly, each hyperplane H = 7^, E, F of P
determines a T-block He; the hyperplanes of P' are defined to be these T-blocks H8 as
well as the sets 7°^ = {we \ w e TOO}, £* = {we \ w e £} and J9 = {we \ w e T}.
In this way we obtain an isomorphism d: P —> P'. (Note that all of this used P and T but
not A".)
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Now consider any block X" ^ T^, E of A". This determines a T-block X" r\T, hence
a hyperplane H' of P', and then also a hyperplane H'e-1 of P. This produces a subset
(F n H'e - 1)e of P'. If P' is now identified with P, in which case 0 becomes the identity,
we see that we have just determined X = X" U (F n H'). In other words, we have indeed
recovered D from A", as claimed in the first paragraph of the proof of the Theorem.

Finally, if two designs A" constructed in this manner from different maps a are iso-
morphic, then the same must hold for the corresponding symmetric designs D. Con-
sequently, by (8.9) there are at least [g0.8d]! pairwise nonisomorphic affine designs A".

D

Theorem 1.1 follows from Theorems 8.9 and 8.10.

9. Concluding remarks

Remark 1. Let 2 denote a proper, nonempty set of points of a symmetric design D having
the following property: (*) Each block ofD either contains 2 or meets 7 in exactly k
points for some constant k, where 1 < k < k - A. Let 7 consist of the remaining points
of D, let IKoo and £ be the sets of intersections with 7 of blocks of D containing or not
containing 2> respectively. If X € B let X U X_ be the unique block of D containing it,
where X_ C 7 (uniqueness follows from the hypothesis K < k - A). We now have an
analogue E:=(3>, "B, e) of the affine design A. There is also an analogue of (2, B, e): let
23 be the set of intersections with 2 of the blocks of D not containing 2- We will assume
that this incidence structure E is a symmetric design.

Let DOQ = (CPoo,Boo, 6) be any symmetric design having the same parameters as E.
Fix a bijection a: S —> BQQ. Define a new incidence structure E(Doo,Q!) using the point
set 2 U 2oo and the following subsets as blocks:

It is straightforward to check that E(Doo, a) is a symmetric design having the same param-
eters as D.

The case of special interest is that of a subspace 2 of D = PG(d, q). If 2 is a hyper-
plane we are back in our old situation. In the general case "K^ produces good blocks

Z of E(Doo,a), and E(Doo,a)z is just an affine space (it has nothing to do with 2 or
a!). It follows from (2.5) that each example here is isomorphic to one in (2.1). More pre-
cisely, if 2 is not a hyperplane then the design E(Doo, a),~. is obtained by exactly the same

process as £(0,30,0;) was; and this is exactly the design being glued to E(D00,a)z in
(2.1). Thus, these designs E(Doo,a:) arise in a recursive manner. The advantage of the
present construction is that it makes a large group of automorphisms evident: the pointwise
stabilizer of 7 in PTL(d + 1 , q ) acts on E(Doo,a). In particular, AutE(Doo,a) is 2-
transitive on the above set Woo of blocks: the analogue of (4.2) is false here. On the other
hand, it is not hard to push the methods of Section 4 further in order to characterize the
designs E(Doo, a).
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Remark 2. All of the designs studied in this paper have very large chunks of affine spaces
nicely embedded inside them (the same is also true of those examined in [6,2]). It may be
worthwhile pursuing a better understanding of this situation.

A variation on this can be used to handle the missing cases q < 3 of (1.1) [ 10]. This makes
fuller use of the notion, visible in Section 8, that the good blocks determine a well-behaved
partition of the set of all points, and can be reglued using permutations behaving like a and
/3—but one can arrange to use more than just two permutations.

Remark 3. The bounds used throughout this paper were cruder than needed. Theorem
1.1 is still true for d > 100|<7|log2log2(4|G|), using essentially the proof given earlier
but being more careful with estimates. In the opposite direction, the estimates producing
the number [g0.8d]! would have produced a somewhat larger constant than 0.8 if we had
allowed d to be larger relative to |G|.

Remark 4. In the proof of (1.1), the representation on 7^, used for G within PTL (d+1, q)
was very special. It seems to be difficult to find a symmetric design D having all of the
following properties: the parameters are the same as PG(d, q); AutD fixes a block B;
D(B) = PG(d -1, q); and the action of AutD on B is that of an arbitrarily given subgroup
of PTL(d, q) isomorphic to G—assuming that d is sufficiently large relative to G.

Remark 5. What is really going on in the Appendix? Why did the construction (2.1) lead
so "naturally" to the type of question appearing in the Appendix? Other arguments lead to
the same general type of question concerning projective spaces [10]. Are there different
proofs of (1.1) avoiding such seemingly foreign considerations? On the other hand, is there
a wider framework in which technical lemmas such as (10.3) appear?

Remark 6. There should be further variations on (1.1), for example constructing symmetric
designs admitting a null polarity preserved by G.

Little seems to be known about infinite families 3" of symmetric designs such that each
finite group is isomorphic to a subgroup of the automorphism group of one of the designs.
One family consists of those designs with v a power of 2 arising from the tensor powers
of the Hadamard matrix of order 2 [9]. One can tensor these with arbitrary Hadamard
matrices to get further families; and there is no doubt that one can obtain an analogue of
(1.1) using such designs. The only known families 7 arise from Hadamard matrices or have
the parameters of projective spaces. Many more such families undoubtedly exist.

Remark 7. We conclude by outlining a modification of our proof of (1.1ii) that applies
when q = 3. For this we define the following strange notion: if x and y are distinct points of
a design, then apseudoline through them is an intersection of A -1 of the blocks containing
x and y. Each line is contained in as many as A different pseudolines, but in any event the
set of all pseudolines is canonically associated with the design.

Now suppose that we have chosen the bijection a used in Section 8 so that conditions
(10.4i-vii,ix,x) appearing later all hold, and so that (10.4viii) is replaced by the following
condition: there are unique hyperplanes H, H' not containing (w) such that 8 maps all
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points of H to points of H' (moreover, H = H'). This allows the removal of the obstacle
noted in the proof of (10.4vi). (In order to make 6 behave in this manner, change the
construction in (10.4) in just one place: have 6 induce a 3-cycle on the points ^ (w)
of (w,w{), interchange (w'1 + w'2) and (w'1- w'2), and induce a suitable 4-cycle on the
remaining points of (w, w'1, w'2) not in (w, w'2). Now the modified version of (10.4viii) is
proved as in the original proof; and (10.4vi) also holds since the homology obtained in the
course of that proof must commute with the 3-cycle on (w, w'1) and hence must be 1.)

Proceeding as in Sections 4 and 5, we obtain a uniquely determined point u e CP^,. Here,
u is the intersection of all but one of those hyperplanes X* of DOO such that u € X_. The
arguments in (4.1), (4.2), (5.1) and (5.3) go through using pseudolines. (For example, u
is the only point of O3 ,̂ such that any point of ? is on some q + 1-point pseudoline of
A(a) containing u.) At that stage, the remainder of the proof of (8.9) goes through with no
changes whatsoever.

10. Appendix: Permutations of a projective space

The proof of (1.1) ultimately depends upon permutations of the hyperplanes of a projective
space. In this Appendix we will consider the dual situation, which is easier to visualize.
We begin with an example.

Example 10.1. Leti>4. Write N = (qe - 1 ) / ( q - 1). Basic ingredients in this section
are permutations n of the points of PG(l -1, q) such that CprL(l,q) M = 1 and TT has a
cycle of length N - q. Large numbers of these can be constructed as follows.

Let y and L be an incident point and line of PG(l — 1, q). Define a permutation TT of the
points of PG(l — 1, q) as follows:

TT induces an arbitrary permutation on the points of L — {y}, and
TT induces a cycle TT' of length N - q on the complement of L - {y}.

(i) Claim: CprL( l ,q ) (^ ) = 1• For, suppose that <p is a collineation commuting with TT.
Then ip commutes with the unique longest cycle TT' of TT and fixes the subspace L spanned
by all of the remaining cycles, and hence also fixes the intersection y of that subspace with
the support of TT'. Thus, <p fixes every point of that support, and hence fixes every point of
the projective space, as claimed.

I 2

(ii) Now restrict TT slightly further: require that L, y, y*, y" and y* all lie in some
plane E, while y"~ does not belong to E.

Claim: No element of PTL(l ,q) can conjugate TT to T T - 1 . For, suppose that tp €
PVL((, q) and if>-1it<p = Tr-1. As above, <p fixes L and y. Also, y" and (y*)v = y** =
y*"1 lie in E, so that ip fixes E. However, this contradicts the fact that (y** )f = y^~2 =

— 2 3
yT does not lie in E while y* does.

(iii) Let P be the number of permutations TT obtained in this manner from a given incident
point x, line L and plane E and a given permutation of L - {y}. Then we obtain 2P
permutations TT and TT~I (note that we cannot interchange vr and TT~I in the first sentence
of (ii), so we obtain 2P permutations). This produces at least 2P/1 PTL(t, q) | permutations,
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no two of which are conjugate under PTL(l, q), and hence a set of at least P/\PTL(l, q)\
permutations TT as in (i) and (ii) such that none is conjugate under PTL(£, q) to any other
nor to the inverse of any other. HereP/|Pn,(^g)| > (N -q2)\/ \PTL(l,q)\ > 2 ( q l - 1 ) \
ifg*-1 >8.

(iv) Note that there is no hyperplane H such that TT sends all points of H back into H,
since the cycles of TT have length N - q or at most q.

Of course, there are many other permutations exhibiting behaviors similar to that seen in
(i) and (ii).

We are now ready for the main technical lemmas of this paper. We start with a result that
is much less precise than what is actually needed, but which gives the flavor of the question
considered in this Appendix:

Proposition 10.2. Any finite group of order <^/d/20 is isomorphic to the stabilizer of
some two points in the permutation representation o/5(qd-1)/(q-1) in its action on the
cosets of PTL(d,q).

This should be compared with what was proved in Section 6: the stabilizer of "almost
every" pair of points is trivial. We will need more precise versions of (10.2), including
the fact that there are more than [ q 0 . 8 d ] ! orbits of ordered pairs of points behaving as in
the Proposition (which follows from (10.5)). The next result is a first approximation, and
certainly implies (10.2).

Lemma 10.3. Let G be a finite group and let d - 1 > 20|G|2. Let l = max{4, |G|}, and
let q be any prime power. Then there is a permutation a of the points of a d—1 -dimensional
vector space W over GF(q) such that the following all hold:

(i) G is (isomorphic to) a subgroup of PGL(d - 1, q), acting on W as in (7.1) (with i
as just defined and d + 1 replaced by d — 1);

(ii) a commutes with G;
(iii) a moves fewer than qd - 4 points;
(iv) PTL(d -1 ,q ) a nPTL(d - 1,q) = G; and
(v) For each point z there are points x and y such that z,x,y are collinear but za,xa, ya

are not.

Proof: Write d - 1 = l(|G| + 1) + f. Since l < \G\ + 3, we have f > 20|G|2 - (|G| +
3)(|G| + 1) > 15|G| - 3 > £ + 2. Let F = GF(qi). Let {/< | 1 < i < t} be a basis of
F over GF(q), where we assume that no /»is 1, and let {io£ | 1 < i < £'} be a basis of an
l'-dimensional GF(q)-spasx W.

Write W = (®9Fug) ®Fu® W, where (®gFug) 0Fu can be viewed as an (|G| +1)-
dimensional F-space with basis {ug, u \ g e G}. Let each h e G act on this F-space by
sending ug to ugh while fixing u; also let h fix every vector in W. Note that this yields the
representation of G indicated in (i), and we will identify G both with this group of linear
transformations and the corresponding subgroup of PGL(d -1,9).

We will use permutations TTI, 7T2, TTS, ̂ 4,7rflij (where g e G and 1 < i < l) of the points
of subspaces of W specified below (of dimensions l + 1,l',l,l,l, respectively). These
permutations are chosen so that each behaves as in (10.1) while no two are conjugate under
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the action of PTL(d — 1, q). By (10.1iii), since l > 4 there are large numbers of permu-
tations satisfying these conditions (in particular, there are at least 2 + t\G\ permutations
of PG(l -1, q) constructed in (10.1, iii)). Recall that each of these permutations has the
property that it is centralized by no nontrivial collineation of the subspace spanned by its
support.

Define a as follows:

a induces vri on (w'1, Fu}, fixing (w'1);

a induces -KI on the points of W', fixing (w'1), inducing a q — 1-cycle on the points
^ (w'1), (w'2) of (w'1, w'2), and moving {w'2) to a point of W not in (w'1,w'2);

a induces h-1Kzh on the points of (Fu1)h whenever h € G;

a induces h-1it±h on the points of (F(u1 + u))h whenever h E G;

a induces h-1Kg,ih on the points of (F(u1 + fiUg + u))h whenever g, h e G, g = 1,
and 1 < i < l;

a fixes every other point of W.

(Expressions such as h-1-n$h should be interpreted to mean that h-1 is being restricted
to the subspace (Fu1)h. If G = 1 then no permutations 7rgii are needed.)

This is well-defined. For, the definitions on (w'1, Fu) and W do not conflict. The only
other conceivable overlap in parts of the definition might occur if {F(u1 + fiUg + u)}h =
{F(u1 + fyUgi + u)}h' for some g,h,g',h',i,i'. Then Uh + fiUgh + u = c(uh> +
fi'Ug'h1 + u) for some c 6 F. Linear independence over F implies that c = 1, then (since
ft ^ l, fit ^ 1) that h = /i', g = g', and finally that i = i'.

It remains to verify properties (i-v).
(i, ii) These are clear.
(iii) The number of points moved by a is less than

(iv) Since G centralizes a it lies in PTL(d -1,q)ar\ PTL(d -1,q).
Let T = or Vex € PTL(d - 1,q)a n PTL(d - 1, q); we must show that r = a € G.

We have xar = xaa for each point x. If x is chosen so that a fixes both x and x", then
xr = x". Hence, if x is chosen so that it is fixed by both a and cracr-1, then xra = x. By
(iii), ro-1 is an element of PTL(d - 1 ,q ) fixing more than (qd-1 - 1 ) / ( q -1) - 2gd-4 >
( q d - 2 - l)/(q — 1) points, so that r = a.

Thus, a commutes with a, so that a permutes the subspaces spanned by the nontrivial
cycles of a. In particular, in view of our assumption that no two of the permutations
TTi, 7T2, Tra, 7:4,7rS)i are conjugate under the action of PTL(d — 1, q), it follows that a fixes
each of (w{, Fu),W, (Fu1)G, (F(u1 + u))G and (F(u1 + fiUg + u))G for all i and all
<7 ^ 1. Since a and a commute and act on (w(, Fu) and W, (10.li) implies that a fixes
these subspaces pointwise. Let if) € TL(W) induce a. After following ^ by a scalar
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transformation we may assume that ip fixes every vector in (w{, Fu)\ in particular, V is
linear. Then ifr also fixes every vector in (Fu, W).

By replacing V> by \l>g for some g e G, we may assume that ij> also fixes Fu\. As above,
it follows that ijj fixes every point in this subspace. If / e F then (fui)^ = cfu\ for
some c € GF(q), so that c fu 1 + fu = ( f ( u 1 + u))^ € F(uh + u) for some h. By linear
independence, cf = f, and hence i/> fixes every vector in Fu1.

Similarly, if g e G and g ^ I, then V sends Fug to some subspace of the form Fug>
with g' £ G. Let 1 < i < l. Then (fiUg)^ = f'ug> for some /' € F. Also, since V acts
on (F(ui + fiUg + u))G we have (F(u 1 + fiUg + u))^ = (F(ui + fiUg + u))h for some
h € G, and hence

for some c 6 F. Then 1 = c and ui + f'ugi = uh + fiUgh. Recall that /i ^ 1.
Consequently, 1 = h,g' = gh = g, and /' = /i, so that (fiUg)^ = fiUg for all i and all
g ^ 1. Thus, ^ = 1, as required in (iv).

(v) By (iii), there is a line L on z such that L-{z} consists of fixed points of a; if ZQ ^ z,
let x and y be any distinct points of L-{z}. Suppose that za = z. If z $ W, let x = (w'2);
then a fixes every point y ^ z, x of (z, x), and x° € W' — {a;}, so that xa & (z, x). If
z = za £ W, let x be any point of F(u1 + u) moved by a and let y be any point ^ z, x
of (2, x) (so that y is fixed by a). D

The g - 1-cycle in the definition of a was not needed in (10.3) but will arise in the proof
of the next result.

Lemma 10.4. Let G be a finite group and let d > 20|G|2. Let ( = mox{4, \G\}andq > 3.
Then there is a permutation 8 of the points of a d-dimensional vector space V over GF(q)
such that the following all hold:

(i) G is (isomorphic to] a subgroup of PGL(d, q), acting on V as in (7.1) (with t as just
defined and d + 1 replaced by d);

(ii) There is a vector w in the standard basis (cf. (7.1)) such that G and 8 fix the point
(w), no nontrivial element of G fixes all points of V/(w), and 8 maps points collinear with
(w)to points collinear with (w}, inducing a permutation 6 of the points of V/(w);

(iii) 6 commutes with G;
(iv) 6 moves fewer than gd - 4 points ofV/(w), while 8 moves fewer than qd - 3 points of

V;

(vii) For each point z of V/(w) there are points x and y of V/(w) such that z, x, y are
collinear but z-, x-, y- are not;

(viii) There are unique hyperplanes H, H' not containing (w) such that 8 maps all points
ofH to points ofH' (moreover, H = H');

(ix) 6~l satisfies (i-viii) with the same (w); and
(x) 1, 6_ andS-1 are in different PTL(d -1 ,q) , PTL(d -1 ,q ) double cosets.
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Proof: We will repeat parts of the proof of (10.3), taking (w) into account. As in that
proof, let d - 1 = /(|G| +1) + K. As before, g > t + 2. Write V = (w} ® W, and let
ug, u, {fi}, W and {iuj} be as in the proof of (10.3); all of these are inside W. We may
assume that W = Uo and w = Vd in the notation of (7.2ii) (with d in place of d + 1). Also
let TTi, 7T2,7T3,7T4,7rS), be permutations behaving as in the proof of (10.3).

Let 6 induce on W the permutation a appearing in the proof of (10.3). We need to define
6 on the remaining points of V.

Let S fix (w). For each k > 1, every fc-cycle of 8 on W determines a fc-cycle on the lines
through (w): just join the points of the cycle to (w). This produces a set of k (q — 1) points
not in Wu{(w)} partitioned by the k lines. Let 6 induce on these points a k(q—1 )-cycle that
induces the fc-cycle we already have on the k lines, except for one instance: the q — 1-cycle
on (w'1, w'2) in the construction given in (10.3). In the latter case we assume that 6 fixes
all points of (w, w'1), induces a q - 1-cycle on the points ^(w'1),(w'2) °f (w'1,w'2} and a
q -1-cycle on the points^ (w'1), (w+w'2) of {iyi,u;+iy2>,aswellasa(q1l)(q-2)-cycle
on the remaining points of (w, w'1, w'2), so as to permute the lines ^ (w, w'2) of (w, w'1, w'2)
through (w) in the same manner as the points ^ (w'2) of (w'1,w'2) are permuted. (Recall
that in (10.1) one of the points of the distinguished line L is part of the long cycle. In the
present situation, (w'1, w'2) is the distinguished line of W, and (w'2) is moved outside that
line.)

Finally, let 6 fix every point of V not already known to be moved. It remains to verify
properties (i-ix).

(i), (ii), (iii) These are clear.
(iv) The first assertion is (10.3iii). The second follows from the fact that each moved

point lies on a line through (w) containing a moved point of W.
(v) This follows from (10.3iv).
(vi) We will repeat part of the argument in (10.3iv). Let T = 6-1a6 € PTL(d, q)6 n

PTL(d, q). Counting fixed points shows that ra-1 = 1, as in (10.3iv).
Next, as before a fixes each of (w'1,Fu), W, (Fu1)G, (F(u1 + u))G, (F(u1 + fiUg +

u))G, (w, w'1, Fu) and (w, W'). Replace a by ag for some g € G so that CT fixes Fu1.
By repeating the proof of (10.3) we find that a fixes every point of W. Also, a fixes
(w, W') n (w,Fu 1 ) = (w). By (v), a induces the identity on V/(w). Thus, a is a
homology with center (w) and axis W.

There is only one plane of V containing a q(q — 2)-cycle of 6, namely {w, w'1, w'2). Then
a must fix this plane, as well as its unique line (w^w + w'2) on (w'1), not lying in W, that
contains a q - 1-cycle of 6. Since a is a homology, we finally have a = 1. (N.B.—The
uniqueness of the aforementioned line required our assumption that q > 3.)

(vii) This is immediate by (10.3v).
(viii) Certainly a sends W to itself. Consider a pair H, H' as in (viii). Since 6 moves at

most qd - 3 points of H (by (iv)), the points of H it fixes must span H, so that H' = H.
Then 6 permutes the points in the intersections of H with (w'1, Fu), W and (Fu1)h for all
ft, i. By (10.1iv), it follows that H contains (@gFug) ® Fu ® W '= W.

(ix) This is clear.
(x) Certainly £ and 6_-1 are not in PTL(d - 1 ,q) . Suppose that they are in the same

PTL(d-1,q),PTL(d-1,q)doublscoset,sothatr = Sa6forsomeT,a e PrL(d-1,q).
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If x is any point of V/(w) fixed by both 6 and a6a -1, then xr = x-a- = x"^- = x". By
(iv) there are more than (gd-1 - 1 ) / ( q - 1) - 2qd-4 such points x, so that T<T-1 = 1.
Thentfandtf"1 are conjugate in PFL(d - 1 ,q). We chose the permutation^ as in (10.1).
Since l' > l +1, the construction in (10.3) shows that 7T2 contains the unique longest cycle
of 6, and its inverse contains the unique longest cycle of (T -1. Each of these longest cycles
spans W. Thus, a must fix W', and hence it induces an element of rL(W') conjugating
7T2 to TrJ1. This contradicts (10.1ii). D

Lemma 10.5. Assume that d > 50|G|2 in (10.4). Then there is a set 8 of permutations 6
of the points of V that behave as in (10.4) such that |S| > [q 0 . 8 d ] ! and such that {PTL(d -
l,q)6PrL(d - 1,q), PTL(d - 1,q)£- lPTL(d - 1 ,q) 6 e 8} consists <?/2|S| different
PTL(d -1,q), PFL(d - 1,q) double cosets.

Proof: Let l and l' be as before. Note that (l' - 1 - 8d/10 = 2d/10 - 2 - *(|G| + 1)
>10|Gf-2-|(|G|+3)(|G| + l )>0.

In (10.1) use t! in place of l. Start with any of at least (q l '-1)\ permutations TT in (10.liii).
Construct a set 8 of permutations 6 in (10.4) by letting ir^ vary over these permutations TT,
while using the same vectors w, u, w(, ug, the same decomposition W = (@gFug) 0
Fu ® W, and the same permutations ?TI , TTS, 114,7rff)i.

Suppose that 6 and e are two permutations of the points of V arising in this manner, and
suppose that £ and e*1 lie in the same PTL(d — 1,9), PTL(d — 1, q) double coset. Then
6r = ae^1 for some a,r € PTL(d — 1,q). As in (10.4x), by counting the number of
points fixed by both £ and ae^1tT-1 we find that ra-1 = 1. Thus, £ and e*1 are conjugate
under PTL(d- 1,q).

Since i' > i + 1, the construction in (10.3) shows that 7r2 is the unique longest cycle of
£, and this cycle spans W. Thus, a must fix W. But then a must conjugate the choice of
7T2 yielding 6 to that yielding £±1. This contradicts (10.1iii), and shows that 8 behaves as
required. O
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