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Abstract The concept of spin model is due to V. F. R. Jones. The concept of nonsymmetric spin model, which
generalizes that of the original (symmetric) spin model, is defined naturally. In this paper, we first determine the
diagonal matrices T satisfying the modular invariance or the quasi modular invariance property, i.e., (PT)3 =

s/rnP2 or (PT)3 = m%I (respectively), for the character table P of the group association scheme of a cyclic
group G of order m. Then we show that a (symmetric or nonsymmetric) spin model on G is constructed from
each of the matrices T satisfying the modular or quasi modular invariance property.
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0. Introduction

0.1. Spin models

The definition of spin model is due to V. F. R. Jones [9]. In his definition symmetric
conditions are required. Kawagoe, Munemasa, and Watatani [13] generalized it by dropping
the symmetric conditions.

Definition 1 (Generalized spin model). (X, w+, W-, D) is called a (generalized) spin
model if X is a finite set, w+ and w- are complex valued functions on X x X satisfying
the following axioms (1), (2) and (3) (for all a, 0, 7 € X):

(3) (star-triangle relation)

where D2 = \X\.
(X, w+, w-, D) is called symmetric if the following condition is satisfied:

(0) w+(a, (3) = w+(/3, a), w_(a, /?) =w-(/3, a) for any a and (3 in X.
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Remark 1. According to Watatani, Jones suggested that he consider spin models without
the symmetric conditions. It is proved in [2] that the concepts of symmetric spin models
and of generalized spin models (in Definition 1) can be further generalized by using four
functions Wi(i = 1, 2, 3, 4) on X x X.

Remark 2. It is easy to check that a (generalized) spin model (in the sense of Definition
1) gives an invariant of oriented links in a similar way as a symmetric one (see [13], [2]).
This confirms that Definition 1 given above is a right definition of spin models.

Let W+ and W_ be the matrices defined by W+ = (w+(a, /9))aEx,BEx and W_ =

(w- (a, @)) a E X , B E X . Let / be the identity matrix and J be the matrix whose entries are

all 1. Let ya7 be the column vector defined by Ya^ = (w+(a, x)w-(x, j ) } x € X . Let o
denote the Hadamard product (i.e., the entry-wise product) of two square matrices of the
same size. Then the conditions (1), (2) and (3) in Definition 1 are expressed in the following
forms.

In what follows we will denote a spin model simply by (X, w+, w-) or (X, W+, W_)
without mentioning D when there is no confusion.

0.2. Cyclic group association scheme and the modular and quasi modular invariance
properties

Let G = Gm be a cyclic group of order m generated by g. Then the group associa-
tion scheme X(G) is a pair consisting of the finite set X = G and the set of relations
{Ri}0<i<m-1 on X defined for x, y € G by

Note that the adjacency matrix Ai with respect to the relation Ri is given by

Let 21 = <A0, A1, . . . , Am-1> = <A1> be the Bose-Mesner algebra of the group associ-
ation scheme X(G). Then the primitive idempotents E0, E1, . . . , Em_1 of 21 are given
by
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where C is a primitive m-th root of unity. The matrix P = (Cij) o<i<m-1 is the character
°<j<m-l

table of the group association scheme X(G) (and also the character table of the group G) and
the (i, j)-entry of P2 is m for i+j = 0 (mod m) and 0 otherwise. The second eigenmatrix
Q = (C i j ) o<i<m-1 of X(G) corresponds to the linear transformation mEi = ^iHn1 C"-^J

0<j<m — 1

and satisfies PQ = mI, Q = P, so that X(G) is self dual.

Definition 2 (Modular invariance property). Let P be the matrix defined above. A
diagonal matrix T is said to satisfy the modular invariance property if the relation

holds.

Definition 3 (Quasi modular invariance property). Let P be the matrix defined above.
A diagonal matrix T is said to satisfy the quasi modular invariance property if the relation

holds.

Remark 3. Note that for a finite cyclic (or abelian) group G, the matrix S of the corre-
sponding fusion algebra at algebraic level (cf. [1]) satisfies

and the modular and quasi modular invariance properties become

and

respectively. The matrix S is symmetric and unitary. For further explanations on why we
are led to notice the modular invariance properties for association schemes in connection
with spin models, the reader is referred to the following survey article by the first author:
Eiichi Bannai, Algebraic Combinatorics—Recent topics on association schemes—, Sugaku
(Mathematics) (Math. Soc. of Japan) 45 (1993), 55-75 (in Japanese). An English trans-
lation of this article will be published in Sugaku Exposition (Amer. Math. Soc.). Further
relations between modular invariance properties and spin models will be treated in a joint
paper by Eiichi Bannai, Etsuko Bannai and Francois Jaeger, which is in preparation.

The first purpose of this paper is to give the complete list of the diagonal matrices T
satisfying the modular or quasi modular invariance property for the character table P of
X(Gm). The results are given by the following two theorems.
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Theorem 1. X(Gm) has the modular invariance property with a diagonal matrix

if and only if the following holds:

where n = C,m-1 if m is odd and n2 = ( , - 1 i f m is even.

Theorem 2. 1) Let m be odd. Then X(Gm) has the quasi modular invariance property
with a diagonal matrix

if and only if the following holds:

and

with s € {0, . . . , m - 1}.
2) Let m be even. Then X(Gm) has the quasi modular invariance property with a diagonal

matrix

if and only if the following holds:

with n2 = C and s E {0, ..., m - 1}.

Remark 4. For any positive integer n, it is known (cf. [15,14,7]) that
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where £ is any primitive n-th root of unity. In Theorem 1 or Theorem 2, if m is odd then
tm-1 and Cm+1 are primitive m-th roots of unity. Therefore |ao| = 1 in Theorem 1 or
Theorem 2 if m is odd. In Theorem 1 or Theorem 2, if m is even then 77 is a primitive 2m-th
root of unity. Since 2m = 0(4), by (iii) we have

On the other hand

Therefore | Y^iLo* rf' I = V™ an(* hence we also have |c*o| = 1 for those cases. Moreover
we can show that «o in Theorem 1 or Theorem 2 is a root of unity using results in Schur
[15] or Nagell [14, Section 53].

0.3. Spin models on Gm

Let Ai(i = 0, 1, . . . , m - 1) be the adjacency matrices of the group association scheme
X.(Gm), namely, the Ai as given in Section 0.2. We want to construct a generalized spin
model (X, W+, W-) on the cyclic group X = Gm with

By the relation (1) in Definition 1 we have

where tAi = Ai (that is , i' = —i(m)).
The second purpose of this paper is to construct a spin model from each matrix T satisfying

the modular or quasi modular invariance property, which was completely characterized in
Theorem 1 or Theorem 2 respectively. Our result is summarized in the following two
theorems.

Theorem 3. Let W+ and W- be defined by ti = ait0/a0, i = 0, 1, . . . , m - 1, and
t2

 = a
3 where ai are given in Theorem 1. Then (G.m, W+, W-) is a symmetric spin

model with D = \Jrn.
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Theorem 4. Let W+ and W- be defined by ti = aito/ao, i = 0, . . . , m-l1 and t2 = a3,
where ai are given in Theorem 2. Then (Gm, W+, W-) is a spin model with D = ^/m.
Moreover, (Gm, W+, W_) is a symmetric spin model if and only if 2s - 1 = 0(m) for m
odd or 2s = 0 (m) fo r m even.

Remark 5. It seems that symmetric spin models constructed in the above two theorems
are known in some forms (cf. [9], or cf. [6]. See also [5], [12]). However, nonsymmetric
spin models on Gm have not been studied, except for the following result due to Kawagoe,
Munemasa and Watatani [13]. They found an example for each of G3, G4, and G5, through
a systematic search by computer, namely

and

where (,m = exp(2:r\/--T/m). However, it has not been clear where they came from. Our
theorems include as special cases the examples by Kawagoe, Munemasa and Watatani [13],
and show how these spin models are constructed in a general context.

Remark 6. The question of what kinds of invariants of links are obtained from nonsymmet-
ric spin models constructed in Theorem 3 and Theorem 4 has not yet been studied. It would
be interesting to know whether new invariants of links are obtained from these spin models.
(For general informations on link invariants, see [9], [10], [8], [4].) (For the symmetric
case these have been studied, say in [6], [11],)

1. Proofs of the theorems

1.1. Proofs of Theorem 1 and Theorem 2

First we give the following proposition which will be used several times in the proofs of
the theorems.

Proposition 1. Let n = (m-1 if m is odd and n2 = £-1 if m is even, and l1 = 12 (m).
Then we have
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Proof: (i) is obvious. If m is odd, then n = (m-1 and (ii) is obvious. If m is even, then
by the assumption, l2 - l2 is a multiple of 2m. Since n2m = 1, we have (ii). D

Let T = diag(a0, c1, . . . , am_1) be a diagonal matrix satisfying

Note that T is invertible.Then for any i, j E {0, 1, . . . , m — 1} with i + ej ^ 0 (m) we
have

where e = 1 if (PT)3 = JmP2 and e = -1 if (PT)3 = m$I.
To prove the theorems we need the following propositions.

Proposition 2. For any u, s E {0, 1, . . . , m — 1} we have

Proof: Since aj ^ 0, j = 0, .. . , m - 1, by (1) we have

for any s E {0, 1, . . . , m - 1}. Since

and

we have

for any i E {0, 1, . . . , m - 1}. Then we have
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m-1
Since ^ £" = 0 if t ^ 0(m), we have Proposition 2.

i=0

Proposition 3. For any u, s, j € {0, 1, . . . , m — 1} with u — es = j (m), we have

Proof: Let s = 0 and u = j in Proposition 2. Then we have

On the other hand, let u - es = j (m) in Proposition 2. Then we have

for any u, s 6 {0, 1, ..., m - 1} with u - es = j (m). Therefore £usauas = aja0 for
any u and s with u — es = j (m). D

Proposition 4. (i) if E = 1, then

where n = Cm-1 if m is odd and n2 = (-l if m is even.
(ii) If E = -1, then

where nm = 1 if m is odd and nm = -1 if m is even.

Proof: Let s = 1 in Proposition 3. Then u = j + e(m) and

where indices are to be read modulo m. Let a1 = na0. Then we have
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(i) If e = 1, then aj = njCJ+1aj+1 and

Put j = 1 in (3), then

Therefore we get n2 = £-1 and

Hence we have

Moreover by Proposition 3 with e = 1 we obtain

Therefore by (4)

The equation (4) also gives

Hence we have nm2 = 1. Since n2 = £ - 1 , if m is odd then n = Cm-1 • This completes
the proof for (i).

(ii) If e = -1 then by (2) we get

Then we obtain

Let s = 1 and u = m - 1 in Proposition 3. Then

Therefore we have
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On the other hand by (5) we have

Hence we have £ (m-3)m = 1. If m is odd, then £ *^ = 1 and we have nm = 1.
If m is even, then ̂ ^T^ = (^)m~3 = (-1)m-3 = -1. Therefore nm = -1. This
completes the proof. D

Proposition 5. For a diagonal matrix T = diag(a0, ..., am - 1 ) , satisfying, on = aj for
i, j E {0, . . . , m - 1} with i + j = 0 (m), the modular invariance property (PT)3 =
y/mP2 is equivalent to the quasi modular invariance property (QT)3 = m* / with respect
to the second eigenmatrix Q of the group association scheme X(G).

Proof: Assume that T satisfies the statement of Proposition 5. Then T commutes with
the matrix P2. Since PQ — mI, P4 = m2I, we have Proposition 5. n

Now we are ready to prove Theorem 1 and Theorem 2. Let T — diag(a0, • • •, am-1)
satisfy the modular invariance property. Then by Proposition 1 and Proposition 4(i) on = cj

for any i, j € {0, . . . - , m - 1} with i + j = 0(m). Since Q = P, Proposition 5 says that if
T satisfies the modular invariance property, then T satisfies a special case of quasi-modular
invariance property for the inverse value of (J. Actually in Proposition 4 (i) we can express
the solution by

for both cases m even and odd and this is indeed a special case of Proposition 4(ii) with £
replaced by C - 1 . Therefore by Proposition 5 it is enough for us to prove Theorem 2.

We have seen that if T satisfies the quasi modular invariance property, then a1, l =
0, 1, . . . , m - 1, must satisfy the conditions given in Proposition 4(ii). Conversely for
such ai we have
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If m is odd, then, by Proposition 4,n = £s with some s E {0, 1, . . . , m - 1}. Therefore
in this case

Therefore we have (PT)3 = m^fml if and only if

This completes the proof for m odd. (To obtain Theorem 1 with m odd for Q instead of P
take s = m+1.)

If m is even, then, by Proposition 4,n = n0
1+2s with some s E {0, 1, . . . , m - 1} and

n0 satisfying no2 = C. Then by Proposition 4,

By Proposition 1,



254 BANNAI AND BANNAI

Therefore we have (PT)3 = m^/mI if and only if

This completes the proof for m even, and Theorem 2 has been completely
proved. (To obtain Theorem 1 with m even for Q instead of P take s — m
or s = 0.)

D

1.2. Proofs of Theorem 3 and Theorem 4

Let ai, i = 0, 1, . . . , m - 1 be the complex numbers defined either in Theorem 1 or
Theorem 2. Let to be a complex number satisfying t2 = ao and ti = ait0a0

-1, i =
0, 1,..., m - 1. Let W+ = JT™^1 Mi and W_ = ^T^1 ^Ai where Av = *Ai- In

this section we will show that (Gm, W+, W-) is a spin model.
Let T and T_ be m-dimensional column vectors whose i-th entries are ti and t-l (i =

0, 1, . . . , m — 1) respectively.

Proposition 6.

Proof: Since PP = mI, (ii) is obtained from (i) immediately. In order to prove (i), first
let T and T_ be defined using ai (i = 0, 1, . . . , m - 1) given in Theorem 1. In this case
we have

Since

for any i, j € {0, 1, . . . , m — 1} we have

Since a.j ^ 0, we get
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and then we have

Therefore by (6) we have

and then

by the definition of t1 (l = 0, 1, . . . , m - 1). The left hand side of the last equation is the
i-th entry of the vector PT.

Now let T and T_ be defined using ai (i = 0, 1, . . . , m - 1) given in Theorem 2. Since
(PT)3 = m%I in this case, we have

for any i, j € {0, 1, . . . , m - 1}. By a similar argument as above we obtain
PT = ^/mT-. D

Proposition 7. W+ and W- satisfy the conditions (1) and (2) of Definition 1 for spin
models.

Proof: By the definition of W+ and W-, (1) of Definition 1 is clear. For (2)

implies

Hence by Proposition 6 we have

To show that (Gm, W+, W-) is a spin model we only need to show the star-triangle
relation.
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Proposition 8. The star-triangle relation ((3) of Definition 1) is equivalent to the following
equations.

for any i € {0, 1, ..., m — 1} and a, 7 € Gm with (a, 7) 6 Ra.

Proof: In Section 0.1 we mentioned that the star-triangle relation (with D = ^/m) is
equivalent to

for any a, 7 e Gm. (Note that w_(a, 7) = ta
-1 1 for (a, 7) € Ra.) By the definition of

W+ and (i) of Proposition 6 (multiplied on the left by m-1P2)

Therefore (7) is equivalent to

Since EiEi = 6i,lEi for any i E {0, 1, . . . , m - 1} and Em-1 E
1 = I, (8)is equivalent

to

This proves Proposition 8. D

Proposition 9. Let W+ be as in Theorem 3 or Theorem 4. Then EiYay = 0 if and only if
a ^ i, where (a, 7) € Ra.

Proof: By Proposition 5 it is enough to prove the case of Theorem 4. Since Ei =
£ Em-1 t - i j A j , EiY^ = 0 if and only if Y^=o C-ijAjYa^ = 0. Let (Aj)x,y and
(v)y be the (x, y)-entry of .Aj and y-entry of v respectively, where v is a column vector of
dimension m and x, y 6 Gm. Then
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Since w+(a, y) = tk with (a, y) 6 Rk and w_(y, 7) = t i
- 1 with (y, 7) E .R1 we have

where p j k l (x , a, 7) = |{y | (x, y) € Rj, (a, y) £ Rk, (y, 7) 6 R1}• Let (x, a) E Rb.
Then by the definition of the relations {Ri}o<i<m-1 we have

Hence

Therefore

where k = j — b(m) and l = a + b — j(m).
Now we are ready to show Proposition 9.

(i) If W+ is as in Theorem 4 and m is odd, then ti = (,~^^ t0, 0 < / < m - 1 with
some s € {0, 1, . . . , m - 1}. Therefore by (9) we have

for any x E Gm, where (x, a) € Rb. The right hand side equals 0 if and only if (a - i) ^
0(m).

(ii) If W+ is as in Theorem 4 and m is even, then t1 = nl(l+2s)to with n2 = £ and
s € {0, 1, . . . , m - 1}. Therefore by (9) we have

for any x € Gm,where(x, a) € Rb. The right hand side of this equation equals 0 if and only
if a — i ^ 0 (m). Since a, i e {0, ..., m - 1}, o = i(m) is equivalent to a = i. Hence in
any of the cases, Eiyay = 0 if and only if a / i. This completes the proof of Proposition 9.

a

Proof of Theorem 3 and Theorem 4. By Proposition 9, clearly we obtain (t,< -
ta>)EiYa^ = 0 for any i e {0, 1, ..., m - 1} and a, 7 e Gm with (a, 7) € Ra.
Therefore, by Proposition 8, (Gm, W+, W-) satisfies the star-triangle equation. Together
with Proposition 7 we can complete the proof of Theorem 3 and Theorem 4.
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2. Concluding remarks

Remark 7. Constructions of spin models for finite cyclic groups given in Theorem 3 and
Theorem 4 have obvious generalizations for constructions of spin models for finite abelian
groups. Generally, let (Xi, (Wi)+, (W i)_), for i = 1,2, be (generalized) spin models.
Then it is easy to see that the triple (X1 x X2, (W1)+ ® (W2)+, (W1)- <8> (W2)-) is also
a spin model which is called the tensor product of the two previous models. (This is well
known, see e.g., Kawagoe, Munemasa and Watatani [13] or de la Harpe [4].) Since any
finite abelian group is a direct product of cyclic groups, we shall obtain a spin model by
assigning one of the spin models constructed in Theorem 3 and Theorem 4 to each cyclic
factor of the abelian group. It seems to be an interesting question to know how far, in
general, the spin models for an abelian group are different from the ones obtained this way,
i.e., as the tensor product of spin models constructed in Theorem 3 and Theorem 4 for each
of the cyclic factors.

Remark 8. Although Theorem 1 and Theorem 2 give the complete characterization of
the matrices T satisfying the modular invariance property or quasi modular invariance
property, the complete characterization of spin models on the cyclic groups G = Gm with
W+ = ^Ho1 ti Ai is not yet determined, even for odd primes m. It would be interesting
to know the answer to this question. Also, it would be interesting to study constructions
(or determinations) of more general types of spin models (cf. [2]) on finite cyclic groups.

Remark 9. The idea of using association schemes to construct spin models is due to Jaeger
[8]. We remark that we owe Jaeger [8] for some ideas of the proofs in the present paper.
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