ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Projective Planes of Order q whose Collineation Groups have Order q 2

William M. Kantor

DOI: 10.1023/A:1022464027664

Abstract

Translation planes of order q are constructed whose full collineation groups have order q 2.

Pages: 405–425

Keywords: collineation group; projective plane

Full Text: PDF

References

1. Bender, H., "Endliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben," Math. 2.104(1968)175-204.
2. Charnes, C., "A non-symmetric translation plane of order 172," J. Geometry 37 (1990), 77-83.
3. Dembowski, P., Finite Geometries. Springer, Berlin-Heidelberg-New York, 1968.
4. Goethals, J.-M., and Snover, S. L., "Nearly perfect binary codes," Discrete Math. 3 (1972), 65-68.
5. Kantor, W. M., "Line-transitive collineation groups of finite projective spaces," Israel J. Math. 14 (1973), 229-235.
6. Kantor, W. M., "Spreads, translation planes and Kerdock sets. I," SIAM J. Algebraic and Discrete Methods 3(1982), 151-165.
7. Kantor, W. M., "Spreads, translation planes and Kerdock sets. II," SIAM J. Algebraic and Discrete Methods 3(1982), 308-318.
8. Kantor, W. M., "An exponential number of generalized Kerdock codes," Inform, and Control 53 (1982), 74-80.
9. Kantor, W. M., "Expanded, sliced and spread spreads," pp. 251-261 in Finite Geometries: Proc. Conf. in Honor ofT. G. Ostrom, Dekker, New York 1983.
10. Lang, S., Algebra, Addison-Wesley, Reading 1971.
11. MacWilliams, F. J., and Sloane, N. J. A., The Theory of Error-Correcting Codes. North-Holland, Amsterdam 1977.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition