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Abstract. A graph X is called vertex-transitive, edge-transitive, or arc-transitive, if the automorphism group of
X acts transitively on the set of vertices, edges, or arcs of X, respectively. X is said to be 1/2-transitive, if it is
vertex-transitive, edge-transitive, but not arc-transitive.

In this paper we determine all 1/2-transitive graphs with 3p vertices, where p is an odd prime. (See
Theorem 3.4.)
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1. Introduction

Let-X" = (V(X),E(X)) be a graph (that is, no multiple edges or loops). We call an ordered
pair of adjacent vertices an arc of X. The set of all arcs associated with a graph X is denoted
by A(X). Thus, | A ( X ) | = 2 | E ( X ) | . If G is a subgroup of AutX and G acts transitively
on the set of vertices, edges, or arcs of X, then X is said to be G-vertex-transitive, G-edge-
transitive, or G-arc-transitive, respectively. The graph X is said to be vertex-transitive,
edge-transitive, or arc-transitive, if it is AutX-vertex-transitive, AutX-edge-transitive, or
AutX-arc-transitive, respectively. We call a graph X 1/2-transitive, if it is vertex-transitive,
edge-transitive, but not arc-transitive.

D. MaruSiC, L. Nowitz and the first author of this paper studied 1/2-transitive graphs [1]
and found several infinite families of such graphs. In [7], R.J. Wang and the second author
gave a classification of arc-transitive graphs of order 3p, where p is a prime. The purpose
of this paper is to determine all 1/2-transitive graphs of order 3p.

We use standard terminology and notation for the most part and refer the reader to [5, 6,
8] if necessary. For v e V(X), X1 (v) denotes the neighborhood of v in X, that is, the set
of vertices adjacent to v in X. If X is a graph and A and B are two vertex-disjoint subsets
of the vertex-set V(X) of X, we let (A) and (A, B) denote the subgraph induced on A and
the bipartite subgraph, with bipartition sets A and B, induced on A U B by X, respectively.
We remind the reader that two representations of a group G as transitive permutation groups
are said to be equivalent if the pointwise stabilizers of one representation are conjugate in
G to the pointwise stabilizers of the other representation.
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hospitality and financial support, where he did his pan of this work.



ALSPACH AND XU

The group G induces an action on X. Assume that the kernel of this action is K. Set
G = G/K. Then G acts on X faithfully. The proof of the following result is immediate
and is omitted.

Proposition 1.1 Let X be a 1/2-transitive graph such that AutX acts imprimitively on
X. Then

(1) X is 1/2-transitive or arc-transitive;

(2) if X is connected, then so is X; and

(3) if (Bi) has an edge, then Bi is a union of several connected components of X.

Given two graphs X and Y the wreath product X IY is defined as the graph with vertex
set V(X) x V(Y) such that ( x , y ) ( x ' , y ' ) is an edge if and only if either xx' is an edge of
X, or x = x' and yy' is an edge of Y.

Informally X I Y is obtained by taking | V(X)| copies of Y, labelling these copies with
the vertices of X, and, whenever xx' is an edge of X, joining each vertex in the copy of Y
labelled x to each vertex in the copy of Y labelled x'. The automorphism group of X IY
contains the wreath product AutY wr Aut X (but may be larger).

The next obvious proposition gives a method of constructing larger 1/2-transitive graphs
from smaller ones.

Proposition 1.2 If X is a l/2-transitive graph of order n, then the wreath product X lmK 1

of X by mK1 is a 1/2-transitive graph of order ran.

Next we quote two propositions from [1].

Proposition 1.3 Every vertex- and edge-transitive Cayley graph on an abelian group is
also arc-transitive.

Proposition 1.4 Every vertex- and edge-transitive graph with p or 2p vertices, p a prime,
is also arc-transitive.

Finally we quote a result from [7].

Proposition 1.5 Let X be an arc-transitive graph of order 3p and A = AutX. If A has
a block of imprimitivity of length p, then X is a Cayley graph on a cyclic group Z3p.

Assume that G acts on X imprimitively and that B0 is a nontrivial block of G. Let
X = {B 0 , B1, . . . , Bn-1} be the complete block system of G containing B0. We define
the factor graph of X corresponding to X, which is still denoted by X, by
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2. Reductions

In this section we eliminate some possible types of 1/2-transitive graphs of order 3p. There
is no 1/2-transitive graph of order less than 27 as observed in [1]. All suborbits of a
primitive group of degree 3p are self-paired [7], which implies there are no vertex-primitive
1/2-transitive graphs of order 3p. So we may assume that p > 11 in what follows, and we
only need consider those 1/2-transitive graphs with an imprimitive automorphism group.

Let X be a 1/2-transitive graph and A = AutX. We have two cases: (1) A has a block
of length p, and (2) A has a block of length 3, but no blocks of length p. We shall show in
the next section that the latter case cannot occur.

Assume that X = {Bi | i c Z3} is a complete block system of A, and that K is the
kernel of the action of A on X. Set A = A/K. We also use X to denote the corresponding
factor graph. Then X = K3. Since X is 1/2-transitive, X is not isomorphic to Kp,p,p.

Lemma 2.1 The kernel K acts faithfully on each block Bi.

Proof: We use KBi to denote the pointwise-stabilizer of Bi in K. If K acts unfaithfully
on Bi, we have KBi is nontrivial for some block Bj adjacent to Bi. Since KBi < K,

KBi < KBj. Since |Bj| = p, KBj is primitive which implies KBi is transitive. It
follows that the induced subgraph (Bi, Bj) = Kp,p. The edge-transitivity of X implies
that X = Kp,p,p . The latter is impossible since KP,P,P is arc-transitive. D

Using the same method as above we can prove the following more general result, which
will be used in the next section.

Lemma 2.2 Suppose that X is a connected 1/2-transitive graph and X = {B1, B2,
. . . , Bn} is a complete block system of A = AutX. If K, the kernel of the action of A
on X, acts on Bi unfaithfully and KBi is primitive, then X is isomorphic to the wreath
product X I mK1 of X with mK1, where m = |Bi|.

By virtue of Lemma 2.1, we may assume that K acts on each Bi faithfully in what follows.
Since \Bi\ = p, we have two cases: (1) K acts on Bi doubly-transitively, and (2) K acts
on Bi simply primitively. We shall treat these two subcases next.

Lemma 2.3 Let X be a connected vertex- and edge-transitive graph of order 3p, and
X = {B0, B1, B2} be a complete block system of A = AutX. If K, the kernel of the
action of A on X, acts doubly transitively on a block, then X is arc-transitive. That is,
there are no 1/2-transitive graphs of order 3p for which K acts doubly transitively on
a block.

Proof: By the classification of 2-transitive groups (see [4], for example), it is easy to check
that every 2-transitive group has at most two non-equivalent 2-transitive representations.
So, without loss of generality, we may assume that KB0 and KB1 are equivalent. Since
X is edge-transitive, all three groups KB0, KB1 and KB2 are equivalent to each other.
Hence, for any vertex V0 € B0, the stabilizer KV0 must fix a vertex v1 in B1, and a vertex
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V2 in B2. By the transitivity of KV1 on B1 — {v1}, either V0 is adjacent to every vertex
in B1, every vertex in B1 – {v1}, or only v1. Thus, the induced bipartite graph (B0, B1)
is either Kp,p, Kp,p minus a 1-factor, or a 1-factor. By the edge-transitivity of X, X is
either Kp,p ,p, Kp,p ,p minus pK3, or of degree 2. In all these cases, X is arc-transitive.

D

We now consider the case that K acts on Bi simply primitively. Then KBi < AGL(1,p)
is solvable. So K has only one transitive representation of degree p, and for any v € Bi,

Kv < Zp-1 is semiregular on Bi - {v}. Furthermore, the Sylow p-subgroup of KBi is
normal in KBi. Since K acts on Bi faithfully, the Sylow p-subgroup P of K is normal,
and then is characteristic, in K, implying P < A. Since |P| = p, P is cyclic. We will use
this information later.

In the next proposition, we determine the factor group A = A/K.

Proposition 2.4 If X is a 1/2-transitive graph of order 3p with three blocks of length p,
then A = Z3.

Proof: By Proposition 1.4, there is no 1/2-transitive graph of prime order, which implies
that X is connected. By Proposition 1.1, X = K3 so that A = S3 or Z3. Assume that
A = B3. Let P be the Sylow p-subgroup of K. Then P is normal in A and is cyclic of
order p by the information above. Put C = CA(P). We have A/C is isomorphic to a
subgroup of AutP = Zp-1, so that A' < C. Since A/K = S3, A'K/K = Z3. Hence 3
divides |A'|, and then 3 divides |C|. Assume that P = (g). Take h 6 C with o(h) = 3.
Set H = (g, h). Since h £ C = CA(P), h and g commute. Then H = Z3 x Zp = Z3p

is a regular subgroup of A. By [3, Lemma 16.3], X is a Cayley graph of Z3p. Finally, by
Proposition 1.3, X is arc-transitive, a contradiction. D

Now we give an example via the next theorem. We need the concept of metacirculant
defined in [2].

Let n > 2. A permutation on a finite set is said to be (m, n)-semiregular if it has m cycles
of length n in its disjoint cycle decomposition. We shall be sloppy and refer to the orbits of
the group (a) generated by a as the orbits of a. A graph X is an (m, n)-metacirculantifit has
an (m, n)-semiregular automorphism a together with another automorphism p normalizing
a and cyclically permuting the orbits of a. Therefore, we may partition the vertex-set of
an (m, n)-metacirculant into the orbits B0,B1, . . . , Bm-1 of a, where Bi = Bi+1 for all
i € Zm. We shall refer to the orbits of a. as the blocks of the metacirculant graph. It should
be pointed out that the blocks of a metacirculant graph need not be blocks of imprimitivity
of the automorphism group of the graph.

Recall that a circulant graph is a Cayley graph on a cyclic group. Using additive notation
for the underlying cyclic group, the symbol S of a circulant is defined by 5 = {j: u0 uj is an
edge of the circulant graph}. If So C Zn\{0}is the symbol of the subcirculant(B0) and. for
all i c Zm\{0}, Ti C Zn is the symbol of the bipartite subgraph (B 0 , Bi), then there exists
an r € Z*, where Z* denotes the multiplicative group of units in Zn, such that for all j c
Zm, the symbol of (Bj) is rjS0 and the symbol of the bipartite graph (Bj, Bj+i), i € Zm,
is rjTi. Moreover, for all i e Zm, we have Tm-i = rm-i(-Ti). Thus, the metacirculant
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graph X is completely determined by the [(m + 4)/2]-tuple (r;S0,T1,r2, . . . ,T[m/2])
which is called a symbol of X. (For a more detailed discussion of metacirculants, the reader
is referred to [2].)

Now let p be a prime and p = l(mod 3). Assume that u is an element of order 3 in Z*.
We use H3P to denote the unique non-abelian group of order 3p, that is,

Theorem 2.5 lf (d,p) = (2,7) or (3,19), then the graph M ( d ; 3,p) is a 1/2-transitive
graph of order 3p and of degree 2d. This graph is independent of the choice of r. The
automorphism group A = AutM(d; 3,p) is isomorphic to a semidirect product of Zp and
Z3d, and A acts regularly on the edge set of M(d; 3, p).

Proof: Checking the vertex-primitive graphs of order 3p listed in [7], we know that
M(2; 3,7) and M(3; 3,19) are the only vertex-primitive (3,p)-metacirculants and both of
them are arc-transitive. Suppose now that p > 11 and d = 3 if p = 19.

Assume that Bi = {xj | j = 0,1, . . . ,p - 1}, i = 0, 1, 2, are the three blocks of
X = M(d; 3,p) as a metacirculant. It is easy to see that the following mappings a, p and
7 are automorphisms of X:

Definition Let p be a prime with p = l(mod 3). Let d > 1 be a divisor of (p - l)/3. Let
T = (t) be the subgroup of Z* of order d. Let r € Z*\T be a 3-element with r3 € T. We
use M(d; 3,p) to denote the (3,p)-metacirculant graph with symbol (r; 0, T).

Assume that 3e||d. Then o(a) = p, 0(7) = d and o(p) = 3e+1. Set P = (a), L = (a, r),
M = (p, r) and G = (a, r, p). We can see that P < G, G is a semidirect product of P and
M, and the centralizer of P in G is P itself. Thus, M = G/P is isomorphic to a subgroup
of AutP = Zp-1 , so that in particular, M = ( p y ) is cyclic. Also it is easy to see that X is
G-vertex-transitive and G-edge-transitive.

To prove that X is not arc-transitive, first we claim that A has a block of length p. If
not, A is either primitive, or imprimitive but only has blocks of length 3 on the vertex set
of X. By the reason mentioned at the beginning of the proof, assuming that p > 11 and
d = 3 for p = 19, we have that X is vertex-imprimitive and A has only blocks of length
3. By a result in the next section, there are no 1/2-transitive graphs having this property, so
that X must be arc-transitive. By a result in [7] the only arc-transitive graphs, which are
not vertex-primitive and whose automorphism groups do not have a block of length p, have
automorphism groups A, with P S L ( 2 , 2 s ) < A < PrL(2,22s), and p = 22s + 1 being
a Fermat prime. In this case 3 does not divide p – 1 = 22s, so this case cannot occur.

We have proved that A has a block of length p. Since the only blocks of length p of G,
which is a subgroup of A, are Bi, i = 0, 1, 2, they must be blocks of A too. Let K be
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the kernel of A acting on X = {B0, B1, B2}- By the same argument as in the proof of
Lemma 2.3, we know that K is not doubly-transitive on Bi. This implies that the Sylow
p-subgroup of K, which is P defined above and generated by a, is normal in A. Assume
that X is arc-transitive. Noting that X is not isomorphic to the multipartite complete
graph Kp,p,p, by Theorem 3 in [7], X = G(3p, d) defined in [7]. By Example 3.4 in [7],
A = AutG(3p, d) = (Zp .Zd ) . S 3 , where G.H denotes an extension of G by H, and A
contains a cyclic subgroup of order 3p. It follows that the order of a Sylow 3-subgroup
of A is 3e+1, where 3e+1, and that the centralizer of the Sylow p-subgroup P contains an
element of order 3. Since o(p) = 3e+1, (p) is the Sylow 3-subgroup of A. It follows that
p3e and a commute. However, it is not the case, a contradiction. This shows that X is
1/2-transitive as required.

It is not difficult to show that different choices of r correspond to isomorphic graphs. We
leave this as an exercise for the reader.

Now we determine the automorphism group A = AutM(d; 3, p). Since A is an extension
of the kernel K by Z3, and K is an extension of P by the stabilizer Kv of v = X0 in K, it
is easy to see that Kv = T. This shows that K = L defined before. Note that p is not in
K and is a 3-element, implying that A = (K, P) = (L, 0) = G, as desired. It follows that
A = G = Zp.Z3d acts regularly on the edge set of X.

(Note that if 3 / d, then M(d; 3, p) is a Cayley graph on H3p with respect to S =
{Pai | i € T} U {p2a-u2i | i € T}, while if 3 | d, M(d; 3, p) is not a Cayley graph.)

Theorem 2.6 Let X be a 1/2-transitive graph of order 3p. If AutX acts imprimitively
on V(X) and has a block of length p, then X is isomorphic to M(d; 3, p) for some divisor
d of p-1, where (d, p) = (2, 7) or (3, 19).

Proof: Assume that X = {B 0 , B1, B2} is a complete block system of A =AutX and
that K is the kernel of A acting on X.

(1) We claim that X is connected. If not, every connected component has either p or 3
vertices, and is also 1/2-transitive. But by Proposition 1.4, there are no 1/2-transitive graphs
with a prime number of vertices.

(2) It follows from Proposition 1.1 and Proposition 2.4 that there are no edges in any
induced subgraph (Bi), the factor graph X is a triangle, and the factor group A = A/K is
isomorphic to Z3.

(3) By the information preceding Proposition 2.4 we have that the Sylow p-subgroup P
of K is cyclic and normal in A.

(4) We claim that X is a (3, p)-metacirculant. Let P = ( a ) . Then a is a (3,p)-
semiregular automorphism of X. Since A/K = Z3, any element (p e A\K permutes
X = {B0 , B1, B2} cyclically. Replacing it by its suitable power, we may assume that p
is a 3-element. Hence, by definition, X is a (3, p)-metacirculant. Assume that ap = ar.
Then r is a 3-element in Z* = ZP-1.

Now we may label the vertices of X as follows: for i = 0, 1, 2, let Bi = {x0, x1, . . . ,

Xp-1}, and we may assume that xia = xj+1 and xip = xi+1 for all i and j.
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(5) Finally, we claim that X = M(d; 3, p) for a divisor d > 1 of p-1. Since there are no
edges in (Bi) for any i, X has a symbol of the form (r; 0, S). Since X has an odd number
of vertices, the degree of X is even, say 2d. Fix a vertex v = X0. The neighborhood of v
in X is X1(v) = X B 1 ( v ) U XB2(v), where XBi(v) = X 1 ( v ) n Bi.

Consider the stabilizer Av of v in A. Since A/K = Z3, Av fixes Bi setwise for each i.
So Av = Kv. Since K is solvable, K has only one permutation representation of degree
p, and K is a Frobenius group or K = P. So Kv must fix one vertex in B1 and one
vertex in B2. Without loss of generality, we may assume that Kv fixes v1 = x1 in B1 and
v2 = x2 in B2. By the edge-transitivity of X, Av has two orbits in X1 (v), which must be
X B 1 ( v )= {xj | j c S} and X B 2 ( v ) = {xj | j e -r2S}. Since Av = Kv, the action
of Av on B1 is equivalent to the action of Kv on B1 , and then to the action of Kv1 on B1 .
Since KB1 is a Frobenius group, the subscripts of the vertices in XB1 (v), which is an orbit
of Kv1, is a coset of a subgroup of Zp-1 of order d, say aT, where T < Zp-1, |T| = d
and a = 0. So we have proved d is a divisor of p – 1. If d = 1, then X has degree 2,
contradicting the fact that X is not arc-transitive. So d > 1. If d does not divide p-1, then
r € T. Set v: xj -> xr-1j for all i and j. Then v e A, and pv maps xj to xi+1. Thus pv
is an automorphism of X of order 3 which commutes with a. This implies that (apv) is a
regular subgroup of A which is isomorphic to Z3P. By Proposition 1.5, X is arc-transitive
which is a contradiction. So we have d| p-1. Finally, noticing that two metacirculants with
symbols (r; 0, T) and (r; 0, aT) are isomorphic, we have the desired result. D

3. A has a block of length 3

The results of the previous section leave us with the case where A has a block of length 3
and no blocks of length p. We assume that X = {Bi | i e Zp} is a complete block system
of A, and that K is the kernel of the action of A on X. Set A = A/K. We also use X to
denote the corresponding block graph.

By Lemma 2.2, if K acts on Bi unfaithfully, then X = X I 3K1, where X is an arc-
transitive graph of order p. Thus, X is also arc-transitive, so that we may assume that K
acts on each Bi faithfully. Thus, we have K = S3, or K = Z3, or K = 1. We also know
that there are no edges inside any Bi.

Lemma 3.1 The group A is insolvable, and the graph X is isomorphic to Kp.

Proof: If A is solvable, then A has a normal subgroup H = H/K of order p since A is
of degree p. Let P € Sylp(H). Then it is easy to check that P < H, and hence P < A. So
A has a block of length p, contradicting our assumption.

Since A is insolvable and transitive of degree p, the well known theorem of Burnside
implies that it is doubly transitive. Since there is no 1/2-transitive graphs of order 3, X is
connected. Hence, X must be isomorphic to Kp. D

Lemma 3.2 The group K = 1.
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Proof: If K = 1, either K = S3 or K = Z3. Hence, K has a characteristic subgroup N
of order 3 which is normal in A. Put C = CA(N). Then A/C is isomorphic to a subgroup
of AutK = Z2. This implies that every element of order p in A is contained in C. It follows
that A has a subgroup isomorphic to Z3p, and this subgroup must be regular. Thererefore,
X is a Cayley graph on an abelian group. By Proposition 1.3, X is arc-transitive, which is
a contradiction. D

We may now assume that K = 1. In this case, A = A as abstract groups. But as
permutation groups, A is a group of degree p and A is of degree 3p. Since A is insolvable,
it is doubly-transitive as observed above. Then A is known by the finite simple group
classification.

If G is a doubly-transitive group of degree p, one necessary condition for G to be the
automorphism group of a 1/2-transitive graph of order 3p (as abstract groups) is that the
point stabilizer Ga has a subgroup of index 3. A table of 2-transitive groups of degree p
with simple socle is given in [7], and after checking all (insolvable) doubly-transitive groups
of degree p listed there, the only possible groups have socle either P5X(3, 2), p = 7, or
PSL(3, 22s), where s > 0 and p = 22s + 1 is a Fermat prime.

There are no 1/2-transitive graphs with fewer than 27 vertices [1], so we only need to
consider the latter case, where the socle is PSL(2, 22s) and p = 22s + 1 is a Fermat prime.
In this case, noting that |PrL(2, 22s) : PSL(2, 22s)| = 2s, the stabilizer of A having a
subgroup of index 3 implies that the stabilizer of PSL(2, 22s) also has such a subgroup.
This is true since 22s - 1 is divisible by 3. Hence PSL(2, 22s) is vertex-transitive on X.

Lemma 3.3 If PSL(2, 22s) < A < PTL(2, 22s), A is not the automorphism group of
any 1/2-transitive graph.

Proof: As noted above PSL(2, 22s) is vertex-transitive. Then since all orbitals are
self-paired (see [7]) it follows that any edge-transitive graph X admitting the group is
arc-transitive. D

Summarizing the result of Section 2 and Section 3, we get the main theorem of this paper.

Theorem 3.4 A graph of order 3p is 1/2-transitive if and only if it is a (3, p)-metacirculant
graph of the form M(d; 3, p), where (d, p) = (2, 7) or (3, 19).

References

1. Alspach, B., MaruSic, D., and Nowitz, L., "Constructing graphs which are 1/2-transitive graphs," J. Austral.
Math. Soc. Ser. A, to appear.

2. Alspach, B. and Parsons, T.D., "A construction for vertex-transitive graphs," Canad. J. Math. 34 (1982),
307-318.

3. Biggs, N., Algebraic Graph Theory, Cambridge University Press, 1974.

4. Cameron, P.J., "Finite permutation groups and finite simple groups," Bull. London Math. Soc. 13 (1981),
1-22.

354



1/2-TRANSITIVE GRAPHS OF ORDER 3p

5. Chartrand, G. and Lesniak, L., Graphs & Digraphs, Wadsworth and Brooks/Cole, Monterey, 1979.

6. Huppert, B., Endliche Gruppen 1, Springer-Verlag, 1967.

7. Wang, R.J. and Xu, M.Y., "A classification of symmetric graphs of order 3p," J. Combin. Theory Ser. B, 58
(1993), 197-216.

8. Wielandt, H., Finite Permutation Groups, Academic Press, New York, 1964.

355


