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Abstract. Certain ZSn -modules related to the kernels of incidence maps between types in the poset defined by
the natural product order on the set of n-tuples with entries from {1,. . . , m} are studied as linear codes (when
coefficients are extended to an arbitrary field K). Their dimensions and minimal weights are computed. The
Specht modules are extremal among these submodules. The minimum weight codewords of the Specht module
are shown to be scalar multiples of poly tabloids. A generalization of t-design arising from the natural permutation
Sn-modules labelled by partitions with m parts is introduced. A connection with Reed-Muller codes is noted and
a characteristic free formulation is presented.

This paper has two purposes, the second of which grew naturally out of the first. Our
first purpose is to fill a number of gaps in [11] (cf. Remarks 2.7, 2.13). The second
purpose is to point out and extend certain connections between combinatorial t-designs,
representations of the symmetric group Sn labelled by 2-part partitions, and the classical
Reed-Muller codes.

We consider the natural permutation representations of the symmetric group to be afforded
by Z-free modules over ZSn and we work with Z-pure submodules over this ring whenever
possible. This approach differs from that of many authors who take the coefficient ring
to be an arbitrary field K. Our approach has many technical advantages and results about
KSn-modules can be obtained from ours by "extending coefficients" (tensoring with K
over Z).

The basis of this work is the poset of flags introduced in [11]. Some of its elementary
properties as well as a number of alternative formulations are presented in Section 2.1.
The incidence maps of this poset are used to introduce Z-forms on certain classical QSn-
modules in Section 2.2, and our principal object of study ZBkL is described in Theorem 2.4
and Corollary 2.5. The poset is used to construct large collections of parity checks defined
over Z in Section 2.3. Section 3 presents the most important special cases of the results of
Section 4 and may serve as an introduction to this section. The final section presents the
combinatorial and coding theoretic connections mentioned above.

This research was partially supported by NSA grant 904-91-H-0048.
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Let m, n be positive integers. A partition A of n having (at most) m parts is a sequence
(L 1 , . . . , Am) of non-negative integers such that Sm

=1 Ls = n. The conjugate partition A'
to A is defined by A's = \{t \ s < Xt}\. The partition A is proper if As > As+1 for all s. It
turns out that A = A" if and only if A is proper. The partition A dominates partition v of n
(A > v) if 5t

=1 As > 5t
s=1 vs for all t. The domination relation > defines a partially

ordered set (poset) on the partitions of n. We say A covers v in case the interval [v, A] in
this poset contains only its endpoints. This means that the diagram of A is obtained from
the diagram of v by raising one node to the t-th from the (t + 1)-th row (see [8]).

There are three equivalent ways we think about the basis underlying a natural permutation
Sn-module. The most combinatorial mode is flags or tabloids. A flag F with (at most)
m parts is a totally ordered collection ( F 1 , . . . , Fm) of m subsets of {1 , . . . , n} such that
{1,. . . , n} = F1 > • • • > Fm. The type of F is the partition typ(F) of n with t-th term
|AFt| where AFt = Ft\Ft+1 for 1 < t < m and AFm = Fm. There is a natural (partial)

ordering of flags given by F < G whenever Ft C Gt for each t. It is easy to see that this
partially ordered set is a lattice and

The more algebraic mode is to use monomials. A monomial of degree at most m in each
variable is an element of Z[x 1 , . . . , xn] of the form Pxis-1 where 1 < is < m. Each such
monomial is associated with the unique flag F where Ft = {s \ is > t -1}. Define the
type of a monomial by means of this correspondence and observe the relation "is a multiple
of" corresponds to <.

The most succinct mode is sequences. An n-tuple i = ( i 1 , i2, • • •, in) with entries from
{1,. . . , m} is associated with the monomial Pxis-1 (and so also with a flag). Define the
type of a sequence by this correspondence, too. Moreover under this correspondence, "is a
multiple of" becomes the natural product order <n:
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2. Background

2.1. Notation
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which we denote by < provided that there is no danger of confusion. Note that infimum
i n j and supremum i U j of i and j are given explicitly by
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If the sets AFt are being emphasized rather than Ft, the term tabloid rather than flag is used.
For instance, the flag F = {{1,..., 8}, {2, 4, 6, 8}, {4, 8}} of type (4, 22) corresponds to
the (3-rowed) tabloid
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and denote by 0 the least element ( 1 , . . . , 1 ) of this lattice. For instance, the above flag F
corresponds to the sequence (1, 2, 1, 3, 1, 2, 1, 3) which we abbreviate to 12131213 when
there is no danger of confusion.

Let B = Bn,m denote this lattice of n-tuples on the set {1, . . . , m} (alias flags, tabloids,
or monomials). We will use standard lattice theoretic terminology freely, for example a
coatom of [0, j] is a maximal element among those strictly less than j.

The symmetric group Sn acts as an automorphism group on the lattice (B,<) by place
permutation cf. [10, 3.4.5]: ( i 1 , . . . ,in)P = ( i ( 1 ) P , • • •, i(n)P) for all P € Sn. For each
partition v of n into m parts, the elements Bv of B having type v form an Sn-orbit
under the above operation. By linear extension of the action of Sn on B, the free Z-
module ZB with distinguished orthonormal basis B is a right ZSn-module. Denote the
associated nondegenerate symmetric bilinear form by (,), so (i, j) = 6i,j where 6 denotes
the Kronecker delta. Now Sn acts as a group of orthogonal linear transformations on ZB.
The decomposition

is an ZSn-module decomposition. The ZSn-module ZBv is the natural permutation Sn-
module of type v [7, 17.4].

In spite of equation (1), the Mobius function u' on the lattice of all partitions of n ordered
by dominance and the Mobius function u on (B, <) are quite different. (For example,
u'((3,2), (5)) = 0 but u(11111, 11122) = 1.) Fortunately, we have chosen the easy one
to compute.

Lemma 2.1

(1) A < v if and only if i < j for some i 6 Bv, j € BL.

(2) If i, j € Bv with i < j then i = j.

(3) Let u denote the Mobius function on (B, <):

Proof: If i < j then observe that for every positive integer s, the number of digits 1, . . . , s
occuring in i is not less than the number of digits 1 , . . . , s occuring in j. Hence, A < v.
Conversely we may take i and j as the lexicographically least sequences of type v resp. A.
Thus A < v implies i < j. To prove part 2 observe that two distinct sequences of type v
belong to the same Sn-orbit and are thus <-incomparable (cf. [10, 3.4.4]). Finally, part 3
follows from the fact that the Mobius function is multiplicative on any product order and
< is composed of n linear orders (cf. [10, 2.2]). D
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2.2. Pure submodules and Z-homomorphisms

As mentioned in the introduction, the ZSn-endomorphisms of ZB are of central interest
to us. Although our use of Z-pure ZSn-submodules is not new (one can find their implicit
use in lines -13 to -7 on page 219 of [2]), we wish to emphasize it because we feel that
this is the best available setting for the interplay of algebraic and combinatorial methods.

A Z-submodule P of the finitely generated Z-module M is called pure [3, 16.15] if the
quotient module M/P is torsion free. This is equivalent to the condition that m € P
whenever 0 = t e Z, m e M and tm e P. In [13] this concept is phrased as "P has index
1 in M".

Lemma 2.2 Let Q be the field of rational numbers and K an arbitrary field.

(1) The intersection of two pure submodules and the kernel of a Z-homomorphism P
between finitely generated free Z-modules are pure.

(2) If P is a pure submodule of the free Z-module M then P is also free and its rank equals
its dimension when coefficients are extended to K.

(3) If two pure submodules determine the same Q-subspace when coefficients are extended
to Q, then they coincide.

(4) Suppose M is Z-free and endow it with a nondegenerate bilinear form ( , } . If N is an
arbitrary submodule of M then N| is pure and NLL is the smallest pure submodule
containing N.

Proof: The first statement follows from the definition and the fact that Z is an integral
domain. The second claim appears in [3, 16.16, 16.17], (and follows directly from the
structure theorem for finitely generated modules over a principle ideal domain). The third
is immediate from the second and appears in [3,16.19]. In part four, NL = nn€Nker(*,n)
is pure by the first claim. The form (,) extends to a nondegenerate K-form, and so NLL

extends to the same K-space as the smallest pure submodule containing N. Now apply the
third part.

The incidence maps ^ and V£ € Hom(ZBv , ZB) and the projection maps PL 6
Hom(ZB, ZBA) are defined by:

for n 6 Bv, i € B. In the case v = £ being of particular importance we obtain by
Lemma 2.1:
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Proof: The first assertion is immediate since Sn acts as an automorphism group on the
lattice (B, <). Assertions 2 and 3 follow from Lemma 2.2 and linear algebra and amount
to the observation that PLPv and PvP

L resp. PLCv and PvC
L are adjoint maps with respect

to the form {,}. D

We next identify the ZSn-submodule of ZB that supports representations dominating the
representation labelled by A. The stabilizer of 1 e BA in Sn, (Sn) l := {a e Sn \1a = 1} is
the Young subgroup associated with 1. If 1' is a second sequence satisfying 1 = |A1i n A1'J|
for all nodes (i, j) in the diagram of A, then 1' has type A' and is called a conjugate of 1 [11].
Here Alt is defined as ALt where L is the flag corresponding to 1. For A proper, define

In view of the fact that the Specht module SA (as defined below) is generated by A-
polytabloids [7], the LL that appears in this definition could be omitted. The careful
reader will further note that the assumption that A be proper is really driven by equation (2)
below and not essential now.

The (integral) Specht module Sx : = PL(ZBKL) is the central object of study in the module
theoretic approach to the symmetric group [7]. In this theory James defines a sequence of
modules SL,V when At < vt for all t > 1. These (integral) James modules can be expressed
in the above language as (nkl 'ZSn)LL where n € Bv is obtained from 1 by lowering
entries from (only) the first row of 1. An important result of [7] gives an algorithm for
finding a submodule series of an arbitrary James module whose terms are Specht modules
when coefficients are extended to a field K. This result holds also over Z.

For x of type £ and 1' of type A':

because, if a, 6 6 {1,..., n} are in the same row of the tabloid(!) x, i.e., xa = Xb, then
x((1) - (ab)) = 0. Thus XKl' = 0 implies that the transposition (ab) is not contained in
the Young subgroup associated with 1'. The Basic Combinatorial Lemma [8] now implies
A" > £.

Theorem 2.4

(1) ZBKL is a pure ZSn-submodule of ZB depending only on A not 1 or 1'.

(2) if A is proper and A £ £ and P 6 HomZSn (ZBe, ZBv), V € Homzs, (ZBv, ZBe),
then

Lemma 2.3

(1) Pv, Cv and PL are ZSn-homomorphisms.

(2) (ker PLTv)L = (im PvP
L)LL and (ker PvP

L)L = (im PLCv)LL.
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(3) For X, v proper. ZBV
K L = 0 if and only if L >v.

(4) For X proper, ZBv
KL = nA d e d v ker PeCv = nL d e ker PeCv.

Proof: ZBkL is pure by Lemma 2.2.4, so part one follows from the fact that Kl'p =
P-1Kl'P for any P € Sn. For the second part, note that if L j E, J E Bv and 1' is of type A'
then the fact that{,} is Sn-invariant, implies (P(x),Jk l '} = {P(X)KJ',J} = ($(xK|<)j) = 0,
by choice of </> and Equation (2). The second part follows. Part three appears in [8, 1.4.20].

By Lemma 2.2.3, it suffices to establish the final assertion when coefficients are extended
to the field Q of rationals. The second equality follows from the fact that Tr^V" = 0
unless £ > v. By Lemma 2.3.2 and part two above, QB"K\ C ker ir^ip" whenever A J£ £.
Suppose M is an irreducible QSVj-submodule of p|A ^ ^ ker Tr^V"• Then M is labelled by a
proper partition ^ t> v (cf. [10, Section 4.3]) and there is a nontrivial QSn-homomorphism
P: Q£" -> M -» 5^ that factors through M.

If A > fi, let eM € QSn be the central primitive idempotent of type u. Then 0 = C^KI> e
QSn for 1' of type A' as above (cf. [8, Section 3.1]). Consequently, there is 1' such that
0 = M K l ' , and so the irreducibility of M implies M C QBV

K L .
Therefore we may suppose A ̂  u. Let A = (aij) be an upper triangular m by m matrix

with having non-negative integer entries with row sums {ui} and column sums {vj}. Define

are partitions of n. Then the image V A (n ) , n € Bv, is the sum of all tabloids m € Bu

that have aij elements from the j-th row of n in the i-th row of m. James [7, Theorem
13.13] asserts that these maps (followed by the canonical projection P: QBu —> Su) form
a Q-basis of HomQsn(QBv, Su) .

Now James' result implies that P = 0 is a Q-linear combination of maps of the form
PCA. Consequently V A ( M ) = 0 for some such matrix A. Argue that this is impossible
by induction on the number of distinct partitions v[k]. In the initial case u = v, A Jfr u,
does not arise. In the general case, the choice of M in ker PECv for all A £ £ implies that
A >v [2]. The result follows by replacing v with v[2] and applying the induction hypothesis.

Theorem 2.4.2, the first part of proof of Theorem 2.4.4 and Lemma 2.2.2 imply that (cf.
[11, 2.6])

Corollary 2.5

(1) If P > A are proper then ZBVKP > Z B V K X .

(2) The character of QBv
K L is EA d c d v kc,v{C} where the Kostka number kC,v is the

multiplicity of the irreducible character {£} in QBv.

(3) For K an arbitrary field, the dimension of KB v
K L is the degree of the above character.
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In order to argue inductively we require a "branching" result. For this, let v(t) be the
partition obtained from v by replacing vt by vt - 1 unless vt = 0 when v ( t ) is the
partition of 0. Now define the natural ZSn-1-epimorphism PT: ZBv —> ZBV(t) mapping
j = (J1, • • •, Jn) 6 Bv to ( j 1 , . . . , j n - 1 ) if jn = t and to 0 otherwise.

Corollary 2.6 If 1 < t < v'1 and T = L(L'1) then iri(ZBvKX) = ZB"^«T.

Proof: Let n € B", 1' of type A' and suppose 7rt(n/ei') ^ 0. Suppose n is in the r-th row
of tabloid 1' and \'r = • • • = X'r+s > X'r+a+1 (s > 0). Now exchange the r-th with the
(r + s)-th row of 1', which obviously leaves (5n)j/ invariant, and call the resulting element
again 1'. If £' is the (proper!) partition of n - 1 obtained from A' by replacing X'r+3 by
X'r+3 - 1, then 7rt(nKc) 6 ZB"^K£. Conversely, every generator m«x/ of Z5"^«{ can
be obtained in this way. Indeed, by appending t at the end of m we obtain a sequence n of
type v. Moreover, appending n to the (r + s)-th row of £' yields an element 1' of type A',
and so 7rt(n/«i/) = IHKX>. Hence,

summed over all proper partitions £ of n - 1 so that the diagram of £' is obtained from that
of A' by deleting one node at the end of its r-th row, as r varies. But for each such £, T > £
and ZB"(t)KT is a summand ofnt(ZB"Kx). So by Corollary 2.5.1 the Z5n_i-modules
Z£"(t)K? are all contained in ZS"w/tT. D

Whenever n 6 B", 1' of type A' and nK;< ^ 0, the argument establishing (2) allows us
to construct an array whose rows are the rows of n and whose columns are the rows of 1'
by placing the number k in the position (i, j) where {k} = {An, n Al^}. In general, the
array will have empty positions scattered about, e.g., n = 11223,1' = 32121. However,
if 1 £ Bx and 1' is conjugate to 1, one may label node (i, j) of the diagram of A with the
element of Alj n Al^ as above and there are no blank positions. The resulting array T
is called the X-tableau associated with the pair (1,1') and the element pr := lkl' is called
the L-polytabloid based on T [8]. We will show in Theorem 4.4 that the minimum weight
words in a Specht module are all multiples of polytabloids.

Remark 2.7 The requirement that £ takes all values such that A £ £ in Theorem 2.4.4 can
be weakened, cf. Theorem 5.4.1. The importance of James "kernel intersection theorem"
[7, 17.18] underscores the value of further improvement of this result.

The (integral) James module Sx'v is possibly proper submodule of ZB" K\ . The programs
of Eidt [6] provide a starting point of this paper with the following explicit example that
KBVK\ may properly contain the James module 5Ai" when v^ > A2 and Xt < vt for
all t > 1. Set v = (23), A' = (22,12), n = 112233, 1' = 121234, and k = 121342.
Then n/tfc = 112233 - 211233 - 132231 + 231231 is a generator of KB"KX, but nKk

is not contained in SAi" - n.KiiKSn. This shows that[11, 2.5, 2.6] are incorrect for the
James modules.
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2.3. Partial orders and parity checks

By extending coefficients to a (finite) field K, the module ZB V KL and each of its submodules
can be viewed as a linear code in KBV whose block length is the cardinality of Bv and
where distance is measured relative to the distinguished basis Bv.

In order to establish lower bounds on the minimum distance of these codes, we construct
parity checks with disjoint support in all characteristics. For this purpose the characteristic
functions of subsets of elements of the lattice introduced at the beginning of this section
are ideal. The simplest possible decoding method (cf. Corollary 3.3) appears in case the
partitions v and A have just two parts and is discussed in Section 3. The first step is to
decompose the images of PL and PL into partial sums.

Let i, j € B and define

By abuse of notation we also use Pv(i, j) and Cv(i, j) to denote the sum of all elements in
Pv(i, j) and Cv(i, j), respectively. It will always be clear from the context whether we use
Pv(i, j) and Pv(i , j) as sets or as elements of ZBv.

Lemma 2.8 Let i, j 6 B. If i < j then {n i < n, typ(n) = v] is a disjoint union of sets
Pi/(k, j) taken over all k € [i, j].

Theorem 2.9 Let i, j e B with i < j.

Proof: While the first assertion follows from Lemma 2.8, the second assertion is obtained
from the first by Mobius inversion. To prove assertion 3 we conclude from Lemma 2.1.1
and A £ typ(j) that A £ typ(k) for all k e [i, j]. Thus in view of Theorem 2.4.2,
im PvP

typ(k) C (ZBV
K L) | . Hence the third assertion follows from the second. Finally

we conclude from the second assertion that

Moreover, by Lemma 2.1.1, A £ typ(i) implies A £ typ(k) for all k e [x, i] and x of
type £. Hence the last assertion follows from Theorem 2.4.2 and Eq. (3).

Assertions similar to Theorem 2.9.1 and 2.9.2 also hold for ty and \f.



Lemma 2.10 If A, £ > v, A $> £ and j € S« then
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forms a set of parity checks for ZB v KL that are, in the usual coding theoretic sense [12, p.
389], orthogonal on ?r,,<^(j).

Proof: By Theorem 2.9,

But Lemma 2.1.1 shows that typ(k) > £ and thus A £ typ(k) for each k € [i, j). In view of
Theorem 2.4.2, $i/(i, j) — ̂ ( i ,} )^ i / ^ ( j ) is in the orthogonal space of ZB"K\. Therefore,
Lemma 2.8 implies that Pv, e ( j ) forms a set of parity checks orthogonal on PVPE(J).

The following direct consequence of Lemma 2.10 is remarkably useful.

Lemma 2.11 If L,£ > v, L $> £ and c € ZBV
K L , then one of the following holds:

(1) (PvC
e(J), c) = 0 for all j of type £.

(2) Take j 6 B* for which (PvPe(j) , c) = 0 and take t such that 1 < t < £'1 and define
k as the sequence obtained from j by replacing all (t + 1) 's by t's. Then the function
j fl —from the sequences n with n > k in the support of c to the interval [k, j] is onto.
Thus, there exist at least 2Et+1 sequences involved in c each of which has an entry at
least as large as that in j at all positions except where j has entry t or t + 1. In case
£ = A — v these sequences coincide with j at all entries different from t and t + 1.

Proof: Suppose 1. fails and take j and t as in 2. For 6 € {0,..., Ct+1} let E ( 6 ) be the
partition obtained from £ by replacing Et with Et + Et+1 - 6 and replacing Et+1 with 8.
The set

equals the interval [k, j]. But the latter is a Boolean lattice and so u(i, j) = 0 for all
i 6 It(j). Moreover by Lemma 2.10, Pv,E belongs to (ZBv

KL)L. Hence the hypothesis
(PvPe(j), c) = 0 implies that Pv(i, j) = 0 for all i e [k, j). The result follows.

Corollary 2.12 Let L = (n). For each sequence j of type A, the set P L , L ( j ) equals

and is thus a set of 2 n - A 1 - 1 parity checks contained in (SL)X orthogonal on j.
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3. 2-part partitions

The above machinery has natural application to combinatorial designs. We pause to make
this connection explicit because it motivates the more elaborate arguments to come. The
initial cases of these inductive arguments also appears in this section.

Throughout this section K denotes an arbitrary field, m = 2 and v = (n — k,k),
X = (n — l, l) partitions with two parts satisfying 0 < l < k < n/2. Each sequence
j e Bv is identified with the k-set of positions where j has entries 2. (Equivalently, the
tabloid j is identified with the k-set that is its second row.) With this identification, the
natural product order < of the lattice (B, <) is set inclusion.

We begin with an example. Let L = v = (4, 3). Then KBX can be regarded as the set
of K-linear combinations of the 3-sets of {1,.. . , 7}. Corollary 2.12 provides seven parity
checks for the Specht module SL orthogonal on 567. Namely:

567 - 156 - 256 - 356 - 456, 567 + 125 + 135 + 145 + 235 + 245 + 345,
567 - 157 - 257 - 357 - 457, 567 + 126 + 136 + 146 + 236 + 246 + 346,
567 - 167 - 267 - 367 - 467, 567 + 127 + 137 + 147 + 237 + 247 + 347,
567 - 123 - 124 - 134 - 234.

(In sequence notation the first of these parity checks is 1111222 - 2111221 - 1211221 -
1121221 - 1112221.)

It is well known [8] that SL has dimension 14. Since BL has cardinality 35, SL is a
(35, 14)-code. We will show in Theorem 3.1 that SL has minimum distance 8. This code is
very easy to implement because each message symbol can be correctly decoded by a simple
majority vote of such parity checks (cf. Corollary 3.3).

A Fano plane is a 2-design with parameters (7, 3, 1). It is easy to show that any two
Fano planes are isomorphic and have full automorphism group of order 168. Therefore a
given 7-set supports 7!/168 = 30 different Fano planes. The difference of the characteristic
functions of any two Fano planes on the same 7-set is an element of SL. It follows from
Corollary 3.2 that any Fano plane is uniquely constructible from any 4 (but not any 3) lines.

In the final section we will show how SL considered as binary code is obtainable as a
truncation of the classical binary Reed-Muller code R(3, 7) with parameters (128, 99, 8) and
investigate more elaborate combinatorial structures that extend the connections illustrated
by this example to partitions with more than 2 parts.
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Hence, for each j involved in c € SL and every t 6 {1,..., A'1 — 1} there are at least
2At+1 sequences involved in c coinciding with j at all positions with entries 1 , . . . , t — 1,
t + 2,.. . ,L'1.

Remark 2.13 Lemma 4.1 provides a kind of converse to Corollary 2.12.
The claims concerning minimum weight and simple decoding algorithms made in [11,

3.4] assumed that in PV,L(J), u(i, J) = 0 for all i e [0, j]. As shown in Lemma 2.1.3, this
is only correct for 2-part partitions. The presentation of a reasonable decoding algorithm
for the general KB v K L remains open and seems to be a difficult but worthwhile problem.
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Theorem 3.1 The minimum distance of KB v
K l is 2l.

Proof: Let c = SCi i be a codeword of KBv
Kl with minimal weight and let 1' be of type

A'. We argue by induction on k - l If k = l, then K B v K L is the Specht module. Hence
by Corollary 2.12 there exist at least 2l l-sets involved in c. But every generator PT of SA

is a A-polytabloid and has weight 2l, so SA has minimum distance 2l.
Now let l < k and £= (n -l-1,l+ 1). Since KB V

K e has, by induction, minimum
distance 2l+1 and every generator jkl' of KBv

KL has weight 2l, it follows that c g KBV
K E .

Hence, by Theorem 2.4.4, c £ ker Pi/*"- Therefore there exists an l-set j such that
(j, PLCv(C)) = 0. But (j, P L C p v ( c ) ) = Z i>jC i = {PVPL(j), c) and so we conclude from
Lemma 2.11 that K B V

K L has minimum distance 2l. D

Corollary 3.2 [4] A t-design S is uniquely reconstructible if fewer than 2t blocks are lost.

Proof: Suppose S' is a second t-design sharing all but 2t-1 blocks with S. By assumption,
S' has the same parameters t, v, b and k as S, so the parameter conditions [12, 2.5.10]
imply that they have the same parameter A as well. Consequently the difference of their
characteristic functions in ZB(v-k,k) is in the kernel of the incidence map to t-sets. Thus
S - S' e ker P(v-t, t ) C ( v - k , k) = ZB(v-k , k ) k ( v - t - 1 , t+1), by Theorem 2.4.4, and by
construction has weight < 2t — 1 + 2t — 1, contrary to Theorem 3.1. D

Remarkably enough this result is, in some sense, best possible. Indeed, consider the sum
S € ZB(4,3) of the 7 lines of your favorite Fano plane. Let a be any transposition in the
symmetric group S7. Then Ss is again a Fano plane on the same points but with a slightly
different line set and S - Sa is of weight 8 in the Specht module ZB ( 4 , 3 ) K ( 4 , 3 ) . Theorem
3.5 implies that this difference is a polytabloid.

Corollary 3.3 The code SL is fully threshold decodable.

Proof: Let c be a codeword of SA with l-set j involved in c. For [0, j] is a Boolean lattice,
u(i, j) = 0 for all i e [0, j]. Hence, Corollary 2.12 yields a set PA,A(J) of 2l - 1 parity
checks orthogonal on j. But Sn acts as an automorphism group on the product order <. So
[PL,A(J)]P is a set of 2l - 1 parity checks orthogonal on JP, for each P € Sn. Since BL is
an Sn-orbit and SA has minimum distance 2l by Theorem 3.1, the result follows from the
definition of threshold decoding (see [ 12, p. 395] for details). D

The last result (and method) goes back at least to Wong [ 14] in the binary case. Corollary
5.7 gives a multi-step majority decoding algorithm for KB V

K L that extends the Reed
algorithm and the geometric view of the classical Reed-Muller codes.

Lemma 3.4 Suppose c € SL has minimal weight and j 6 BA is involved in c with
coefficient 1K. Let C be the set maximal proper subsets of j, i.e. the set of coatoms of [0, j],

(1) For 1 € C there exists a transposition S1 € Sn such that y = jS1 is the unique y € BA

which is involved in c and has the property j n y = 1.
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consisting of 2l — 1 elements of ( S A ) L is orthogonal on j. Hence for each 1 6 [0, j) there
exists exactly one l-set j(l) € BL involved in both PL(1, j) and c. We call this simple
observation the uniqueness assertion for j.

Conversely, every l-set y involved in c belongs to the set $A(J n y, j). This establishes
the uniqueness assertions in part one and part three.

If 1 € C, then there exists exactly one position pl € j\1. But j(l) n j = 1 and j(l) is an
l-set. Hence j(l) = 1u {p' l} with p'l = pl. Therefore j(l) = jS1 where a1 = (p'l, p l ) , and
part one is proved.

Suppose k, 1 € C are distinct coatoms of [0, j]. By the preceding paragraph, there
are transpositions ak = (p'k, pk) and al = (p'l, pl) with pk, pl € j and p'k, p'l g j so that
j(k) = skj and j(1) = s1j. Since k = 1 implies pk = Pl, it suffices to show p'k = p'l. Suppose
p'k = p'l and put x: = k n l. But j n j(x) = x and x C k, 1 C j imply k n j(x) = x = 1 n j(x)

and so j(k) n j(x) = (ku{p'k}) n j(x) = x u [j(x) n {p'k}] = (1u{p'l}) n j(x) = j(l) n j(x).
Therefore j(k) and j(l) are both involved in c and in PL(J(k) n j(x), j (x )), contrary to the
uniqueness assertion for j(x). Part two follows.

Now let 1 6 [0, j)\C, and fix an atom a 6 [1, j], i.e., a minimal element of (1, j]. Hence
a = 1U {p'} for some p'. Since j n j(a) = a, there exist coatoms k e [0, j] and i € [0, j(a)]
such that k n a=1 = i n a. In particular, by part one, j(k) = jsK, Sk = (p'k, Pk) as above.
So p' e j, k n a = 1 and j = k U {pk} imply p' = Pk.

Replacing in part one j by j(a) yields a unique l-set y involved in c so that j(a) n y = i
and y = j(a) s for some transposition a. In particular, j(a) = i U {p'} for some p'. But
i n a = 1 implies pk E i and so it follows from a C j(a) that p' = pk. Hence, a = (p, pk)
and so y = i U {p} for some p.

Claim that s = sk. Indeed, suppose p = p'k. By induction, j(a) = jSa, where aa

is the product of all transpositions ax as x varies over all coatoms of [a, j]. But part
two shows that ak commutes with each ox, x coatom of [a, j], and so p'k E j(a) D i.
Hence, y n j(k) = (i U {p}) n (k U {p'k}) = (i n k) U ({p} n k). Moreover, y n j =
(i U {p}) n (k U {pk}) = (i n k) U ({p} n k) since pk E i as shown above. Thus
y n j = y n J(k) and hence j and j(k) belong both to PL(y n j, y) contradicting the
uniqueness assertion for y. Therefore a = ak.

Finally claim that y n j = 1 and y = jsl. Indeed, since p'k E k and j(a) = i U {pk} as
shown above, y n j = (i U {p'k}) n (k U {pk}) = i n k. But 1 C i n k C j(a) n j = a
and pk € a\(i U k) and so i n k = 1. Moreover, k n a = 1, the definition of sl, and the
induction hypothesis on j(a) imply y = j(a)Sk = Jsl; as required. D
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Proof: By Theorem 3.1, SL has minimum distance 2l. Moreover, Corollary 2.12 and
Lemma 2.1.3 show that the set

(2) For distinct k, l e C, the transpositions Sk and Sl commute.

(3) For each 1 e [0, j], set Sl := PiEc,i>l Sl. Then y = jSl is the unique y € BA that is
involved in c and has the property j n y = 1.
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so cl = u(1, j) = (-1)t, where t is the number of coatoms in [1, j] by Lemma 2.1.3. Hence
cl = sgn(s l) by definition of sl.

We now construct a A-tableau T whose first and second row respectively is formed by
{1,..., n}\j and j. For each coatom 1 of [0, j] there is by Lemma 3.4 a corresponding
transposition Sl = (pi, p'l) with pl € j and p'

l $ j. But the transpositions corresponding to
distinct coatoms of [0, j] commute and so we may arrange the entries of T so that p'l appears
in a column above pl. Hence the column group of T is generated by the set {sl |1 € C}.
Thus by the first paragraph, c = pT is a polytabloid. D

Theorem 3.5 does not extend to ZBv
KL . Indeed, let A = (4, 2) and v = (32). Then

126 - 125 - 346 + 345 = (126 - 136 - 126 + 135) + (136 - 345 - 135 + 345) is the
sum of two generators and has minimal weight by Theorem 3.1, but is not a generator.

4. Minimum weight words and polytabloids

We now consider the modules KB V
K L , K an arbitrary field, as linear codes in KBV.

It is conceivable that the minimum weight of K B v
K L be strictly less than the minimum

weight of ZBv
KL because the latter might have a word with many (but not all!) coordinates

divisible by the characteristic of K. The fact that this is not the case, may be the first clue
that these codes are not "good codes".

The first part of this section determines the minimum weight words in the Specht modules,
Theorem 4.4. Lemma 4.1 shows how to use Lemma 3.4 to associate a tableau to c e SL

whenever equality holds for each t in Corollary 2.12. We then describe an algorithm that
constructs a set of (t + 1)A t + 1 sequences involved in c that agree in all positions except at
their entries t + 1. When applied to minimal weight elements of SL equality is forced to
hold for each t in Corollary 2.12.

The last part of this section uses Theorem 4.4 as the basis of an inductive argument
that shows the minimal weight of KBv

Kx depends only on A. In this argument we make
essential use of the fact that we have resisted the temptation to force v to be proper in the
forgoing discussion.

Lemma 4.1 Let A = (n) and let c be a non-zero codeword of SL. Suppose for every j
involved in c and for every t, 1 < t < L'1, there are exactly 2At+1 sequences involved in
c which coincide with j at all positions with entries different from t and t + 1. Then there

Theorem 3.5 The codewords of Sx with minimal weight are the K-multiples of the X-
polytabloids.

Proof: Suppose c is codeword of Sx with minimal weight and j is involved in c with
coefficient 1K. By Lemma 3.4.3, jal is involved in c for each 1 e [0, j]. Since c has
minimal weight, it follows that c = Ele[0, j] cljsl (cl E k) and, by the choice of c, Cj = 1.
If 1 € [0, j), then Corollary 2.12 and the uniqueness assertion for j stated in the proof of
Lemma 3.4 imply,

COMBINATORIAL Sn-MODULES AS CODES
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exists a L-tableau T, k € K\{0}, and c' 6 SL so that c = kpT + c' and all sequences
involved in PT are also involved in c.

Proof: Suppose j is involved in c with coefficient 1. For every t, 1 < t < L'1, we
may invoke Lemma 3.4 with It(j) (cf. proof of Lemma 2.11) instead of [0, j] to construct
a partial sum c(t) of 2At+1 sequences involved in c which turns out to be a polytabloid
for some (A t, At+1)-tableau Tt when puncturing, i.e., deleting all positions with entries
1 , . . . , t - 1, t + 2 , . . . , L'1. Clearly we may choose Tt so that x is in the first row of Tt if
and only if j has entry t at position x.

Construct a L-tableau T from the given tableaux Tt as follows: Let the next to the last
and the last row of T be the first resp. second row of TL'1 -1. The choice of the tableaux Tt

assures that the first row of TL'1-1 and the second row of TL'1-2 coincide up to some row
permutation. Now permute the columns of TL'1-2 so that the first row of TL'1-1 coincides
entry by entry with the second row of the permuted TL'1-2 and take the first row of the
permuted TL'1-2 as the third to the last row of T. By proceeding in this way, obtain a
A-tableau T. Since all of this started from a fixed j, T is well-defined.

Suppose E is the set of all permutations in the column group of T fixing all numbers of
T up to those in rows t and t + 1 as t varies. Hence, by construction,

Therefore, C(s) = c(s) and C(t) and c(t) have disjoint support when s = t. Conclude from
(4) and (5) that for every a & E, jss0 is involved in c with coefficient sgn(s0s).

Since E generates the column group of T we may apply the above argument to show by
induction on the number of generators that all sequences involved in PT are involved in c,
too. Now the proof is complete. D

It is now time to present the algorithm that is used to "fatten up" c € SA so that Lemma
4.1 applies. The algorithm makes heavy use of Corollary 2.12. We first illustrate the idea
by an example:

Suppose j = 11111222233344 is involved in c 6 S(5,4,3,2). From j(0) := j we may
construct in turn sequences j(l+1) involved in c whose entries t + 1 are located at positions
at which j has entries t-l(l < t < 3). The overwritten (t+1)'s will then fill the vacant spots,
e.g., j(1) = 22221333144111, j(2) = 33321442122111, and j(3) = 44321332122111. We
may modify this construction to leave one or both entries 4 at their positions. For instance,
we may obtain from j in turn l(1) = 22221333141114 by fixing the second 4 at the last
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summed over all a 6 E fixing all entries of T outside of rows t and t + 1.
Now let s0 £ E, s0 = 1, fixing all numbers of T up to those in rows s and s + 1. Since

JS0 is involved in c we may similarly construct for every i, 1 < t < A'1, a partial sum C(t) of
sequences involved in c which is a polytabloid for some (A t , At+1)-tableau when deleting
all positions with entries 1 , . . . ,t-1, t+2, . . . ,L ' 1 . But Js0 is involved in c with coefficient
sgn(S0) and so we obtain
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position, 1(2) = 33321422121114, and 1(3) = 34321312121114. For our purposes it is
irrelevant which positions with entries t are replaced by (t + 1)'s. When the construction
(and notation) appearing the proof of Lemma 4.2 is applied to this example one obtains the
sequences: (t = 3) j(1) = k(3,3), j(2) = k(2,2), j(3) = k(1,1), l(1) = k(3,4), 1(2) = k(2,4),
and l(3) = k(1,4).

Lemma 4.2 Let j be a sequence involved in c e SA, A = ( n ) . Let 1 < t < L'1. For
each z € {1,... ,t + l}At+1 there exists a sequence k- involved in c with the following
properties:

(1) k- coincides with j at all positions with entries > t + 1.

(2) For distinct z, z' 6 {1,..., t + 1}At+1 the sequences k- and k- can be distinguished
by only looking at positions with entries t + 1.

Proof: Adopt the notation of the proof of Lemma 2.11. Let z € {1, . . . , t+1}At+1 and
suppose y1 > • • • > yq are the distinct entries of z.

We recursively construct a sequence k(0) := j, K ( 1 ) , . . . , k(t+1-yq) =: k- of elements
involved in c each of which has the following properties:

A1: k(t) coincides with j at all positions with entries > t + 1.

A2: k(l) has all entries t' at positions at which j has entries t' - t (l < t' < t).

A3: The set XL := {x1 < • • • < xm,} of all positions at which k(l) has entries t + 1 and
j has entries t — l + 1 is nonempty and the sequence obtained from z_ by deleting all
components greater than t + 1 - i is an |Xl|-tuple.

When 2 contains the entry ys = t + 1 — t, as in condition A3, let z(s) denote the tuple
obtained from z by deleting all components > ys and define YL c Xv as follows:

Xi € YL :<=> ys occurs at position i in z(s).

In view of A3, YL is well-defined. Moreover YL is a proper subset of Xt since i < t + 1 — y q .
(If z contains no entry t + 1 - l, put YL := 0.)

Suppose k(l) has already been constructed (0 < t, < t — yq). The construction of
k(l+1) from k(l) and z (resp. Xl and Yl) is itself accomplished by constructing a sequence
x( t+1),..., x(t+1) terminating in k(t+1) each of whose terms is involved in c:

(i): Start with x(t+1) = k(l) and choose i(t) € I t(k(l)) of type £(At+1 -\X l\YL\) differing
from k(l) at the positions in XL\Yl. Construct a sequence x(t) from k(t) by replacing
all entries at positions in Xl\Yl by t's and |Xt\Yt| entries t by (t + 1)'s so that x(t)

coincides with k(l) at all positions in YL where both contain entries t + 1. Then x(t) is
involved in both c and P L ( i ( t ) , k( l)).

(ii): Suppose x(t'+1) already has been constructed (L <t' < t). Choose the least element
i(t ') of It'(x(t'+1)). Construct a sequence x(t') from x(t'+1) by replacing each t' +1 by
t' and Lt'+1 entries t' by (t' + 1)'s. Then x(t') involved in both c and $L(i(t'), x(t'+1)).
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We must verify that k(t+1) := x(t+1) fulfills the assertions Ai+1, for i = 1, 2, 3. The
construction ensures that x ( t ) , . . . ,x ( t + 1 ) coincide at all positions with entries > t + 1.
Hence, by A1 and part (i), k(t+1) satisfies Ai+1.

In view of A2, k(l) contains all its entries t at positions at which j has entries t — L. Thus
by part (i), Xt+1 = XL\Yi = 0 is the set of all positions at which k(t+1) has entries t + 1
and j contains (t - l)'s. Thus in view of the definition of YL, z(s+1) is a |Xi+1|-tuple. Hence
AL+1 follows.

Finally, k(l) and x(t'+1) coincide at all positions with entries < t' + 1, while k(t+1) and
x(t') coincide at all positions with entries > t' + 1 (t < t' < t). Hence part (ii) shows
that k(l+1) has all entries t' + 1 at positions at which k(l) has entry t' (L < t' < t). So AL

2

implies Ai+1.
This completes the construction of the sequence k(0), k ( 1 ) , . . . , k(t+1-yq). All that re-

mains is to verify that k^ := k(t+1-yq) satisfies assertions 1 and 2. The verification of
Al+1 shows that k- satisfies assertion 1.

For distinct tuples z and z' having least entries yq and y'q, respectively, the associated
families (Y0, ..., Y t - y q ) resp. (Y ' 0 , . . . , Y't-y') of sets of positions specified in the above

recursive construction are distinct ( YL = Yl for some l).
But the above construction shows that Yt+1-ys is the set of positions at which k- has

entries t + 1 and j has entries ys for 1 < s < q. (Moreover, the remaining (t + 1)'s
of k- are located at positions at which j has entries yq.) Hence assertion 2 follows.

D

Lemma 4.3 Let c be a codeword of SL such that j is involved in c and let 1 < t < L'1.
Then there exist at least Ps=1 sLs sequences involved in c coinciding with j at all positions
with entries > t + 1.

Proof: We argue by induction. Corollary 2.12 proves the assertion for t = 1. Suppose
the lemma is proved for t < A't. Then applying the induction hypothesis to each of the
(t + 1)At+1 sequences k- constructed in Lemma 4.2 yields the result. D

Theorem 4.4 The codewords of Specht module SL with minimal weight are the K-
multiples of the L-polytabloids.

Proof: It suffices to show that every codeword of SA with minimal weight fulfills the
hypothesis of Lemma 4.1. Indeed, this is clear for A'1 = 2, by Theorem 3.1. Now suppose
L'1 > 2 and c is a codeword of minimal weight. Then it follows from the induction argument
used in the proof of Lemma 4.3 that for every j involved in c and for every t, 1 < t < L'1,
there are exactly Ps=1 sLs sequences involved in c which coincide with j at all positions
with entries > t + 1. Hence Lemma 4.3 can be used to construct all sequences involved
in c.

So if j is involved in c, then by Lemma 4.2, we obtain for each z € { 1 , . . . , t + 1}Al+1

a sequence k^ involved in c coinciding with j at all positions with entries > t + 1, and in
turn a set of exactly Ps=1 sLs sequences involved in c coinciding with k- at all positions
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with entries > t. Moreover the sets of sequences Ps=1 sLs involved in c constructed from
distinct tuples z and z' are disjoint. Hence each sequence involved in c coinciding with j at
all positions with entries different from t and t + 1 must lie in a set of Hs=1 sLs sequences
constructed from k- where z e {t, t+1}At+1. But by construction, in every set of Ps=1 sAs

sequences constructed from k- (z € {t, t + 1}At+1) there is at most one member coinciding
with j at all positions with entries different from t and t + 1. Hence by Corollary 2.12
there are exactly 2At+1 sequences with the required properties. This completes the proof.

D

We now turn to KB v
k L . As mentioned earlier, the argument is inductive on n and involves

improper v. The epimorphisms pi introduced before 2.6 also come into play.

Lemma 4.5 Let 0 = c e KB v Kx . Then P i(c) = 0 for A'1 distinct i E { 1 , . . . , m } .

Proof: Reorder the parts of v so that Pi(C) = 0 for all 1 < i < t. Argue by induction on
|[v, L] | that t > A'1. In case A = v or c € 5", Theorem 4.4 implies the result.

Now assume c ^ Sv. Then an important result of James [7, 17.13] implies that there are
integers s, v and a partition u obtained from v by adding v to some vs and subtracting v
from vs+1 such that PuC

v(c) = 0. Theorem 2.4.2 implies that u e (v, L). By construction
of u and the initial reordering, the only positions where some n € Bv differs from some
m 6 Bu in the support of PuCv(n) is in positions where s+1 appears in n and the entries
of m in these positions are either s or s + 1. Thus by our hypothesis on c, n is such a
position only if s < t. It follows that PiPuCv(c) = 0 can only occur if i < t. The induction
hypothesis implies t > L'1 as desired. D

Theorem 4.6 The minimum weight of K B v K l is Ps>1 sLs.

Proof: Argue by induction on n. The initial case is trivial. Suppose the theorem holds
for Sn-1 and 0 = c 6 KB v

K L . Lemma 4.5 implies that Pt(c) = 0, for at least L'1 distinct
values of t. The induction hypothesis and Corollary 2.6, imply that pt(C) has weight at
least equal to (Ps A's!)/L'1 for each such t. The theorem now follows from the fact that
the preimages of Pt(c) have disjoint support (as partial sums of c) and Hs L's!

 = Pss
Ls.

D

5. Applications

5.1. Designs

Recall that a combinatorial t-design is a collection of k-sets of an n-set with the property
that each t-set (t < k < n/2) is contained in a constant number A of elements of the
collection. It is well known [12, 21.9] that the characteristic function of the set of blocks
of a t-design has trival projection into the first through t-th representation (eigen) spaces of
the Johnson Scheme J(n, k).

In contrast to the Johnson scheme, the incidence maps associated with partitions having
more than two parts arise in HomZsn (ZB, ZB) as presented in Section 2. The analogous
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representations of HomZsn (ZBv, ZBv) are however not totally ordered in a natural way
as in J(n, k). Instead the total order for J(n, k) extends to the domination partial order.

In an effort to extend the combinatorial interpretation illustrated at the beginning of
Section 3, we are led to identify an element of ZBv having all coordinate values in {0,1}
with the set of flags in its support and to make:

Definition 5.1 A T-design of type v is a subset S C Bv such that P R C v ( S ) = XTBT for
some integer AT > 0. In order to avoid degeneracies, we further require that v1> n/2 and
T >v.

In order to maintain notation consistent with the 2-part case, we may omit the first part
of T and v writing simply "r2 , . . . , rm-design of type v 2 , . . . , vm" rather than the more
formal (T1, T 2 , . . . , Tm)-design of type (v1, v 2 , . . . , vm). Higher type designs are perhaps
best viewed in the "flag mode" of Section 2. Thus, for example, a 1,1-design S of type
a, b, consists of a set of blocks, each of which is an ordered pair (X, Y) of sets, such that
Y C X C {1,..., n}, \X\ = a + b,\Y\ = b and there is an integer A such that for any
ordered pair of distinct points (x, y) the number of blocks (X, Y) with x 6 X, y e Y is
always A, independent of the choice of (x, y).

Some r-designs of higher type that are not just "warmed over" t-designs come from finite
geometry. For example, the incident line, plane pairs in the projective geometry PG(n, q)
form a 12-design of type q2,q + 1. Also, a resolvable 2-design with t + 1 blocks of size k
per parallel class is equivalent to a 0t-1, 2-design of type kt.

It would be of desirable to have a wider variety of examples of higher type designs, but
we suspect that they may be even more rare than t-designs.

Motivated by the fact that every t-design is automatically a t — 1-design [12, Thm. 2.9],
we ask when a T-design is also a u-design, u > T. This leads to the study of the basic
relations and structure constants of HomZsn (ZB, ZB) viewed as a combinatorial object.
This study is certainly not as straightforward as in case m = 2. For example, the incidence
maps and projections defined in section 2 do not span an algebra. Indeed, the intervals
[1122, 1233] and [1122, 3123] contain a different number of sequences of type (2, 12). In
order salvage something, we say

Definition 5.2 A triple (A, u, v) of partitions of n is balanced if there is an integer aL,u,v =
0 so that
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Thus aL,u,V is the number of m e BM such that n > m > 1 for arbitrary n € Bv, 1 € BL

with n > 1. The requirement aL,u,V = 0 implies that A > u > v.

Given partitions A > v there are many (but as shown above, not all) intermediate partitions
u for which (A, u, v) is balanced. For instance, suppose A, u and v are partitions of n and
AS = us = vs for all s unless s e {t - 1, t}, and that At-1 > ut-1 > vt-1. Then for
1 € BL, m e Bu and n e Bv, the condition 1 < m < n implies that the associated flags
L = {L1 D • • • 3 Lm}, M = {M1 D • • • D Mm} and N = {N1 D • • • D Nm} coincide
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For the natural balanced sequence (L(t)) from A to v, A = A(1), A(t) > A(t+1) for all t > 1
and A(m) = v if v has m parts. For instance, the natural balanced sequence from (5, 1) to
(22, 12) is (5,1) > (2, 4) > (23) > (22, 12).

Theorem 5.4 Let u > T > v and let (u = u(1), • • •, u(T) = T) be the natural balanced
sequence from u to T. Take M < T for M of type u and T of type T.

(1) There exist unique flags M = M(1) < . . . < M(r) = T with M(t) of type u(t), so
PTPu = PTPu(r-1)^<r~a>- • -vx^ andn^T = PuC

u(2). . .Pu(T-1) C
T.

(2) Suppose (u, r, v) is balanced and S is a T-design of type v. Then S is a u-design of
type v and Xu = LTau,T/au,T,V is integral, where

Proof: There exists a flag M(t) of type u(t) so that its first t - 1 parts coincide with T
and its parts t + s coincide with M for all s > 0. So M < M(t) < T and M(t) is uniquely
determined with this property. Hence there is a unique chain M = M(1) < • • • < M(r) =
T with M(t) of type u(t) (1 < t < r). Part one follows.

The map PuC
v:ZBv —> ZBu has a matrix with integer entries when expressed rel-

ative to the natural bases Bv and Bu and S 6 ZBv has integer coordinates. There-
fore, P u C v (S ) € ZBu has integer coordinates as well. Since (u, T, V) is balanced,
a u , T , v P P u C v ( S ) = P u C T P T C v (S ) = u rPuCT(BT) . But for each flag M of type u, the
number of flags S of type T with M < S is au,T and so L T P L C T (B T ) = X r a u , T B u .

It remains to compute au,t. To do this return to the notation of the first part and let
M = M(1) < • • • < M(r) = T be the unique chain with M(t) of type u(t) appearing in
part one. Count the number of choices for T by counting the number of choices for M(t+1),
given M = M(1) < . . . < M(t) and taking the product of these. Since u(t) and u(t+1)

agree in all parts except the t-th and (t +1)-th part, there are exactly (u(t)) such choices.
a

except that Lt C Mt C Nt (or equivalently that the sequences 1, m and n coincide at all
entries different from t — 1 and t). Ignore the entries not in Lt-1\Lt+1 and reduce to the
situation of 2-part partitions. By, for example Wilson [13, 3.1], (A, u, v) is balanced and
aL,u,v = (vt-Lt). A natural extension of this example leads to the following

Definition 5.3 Let A and v be partitions of n with A > v. We define the natural balanced
sequence (L(t)) from L to v by
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Theorem 5.5 Set u = (T1 - 1, T2 + 1,T3 , . . . ,Tm). A T-design S of type v is uniquely
reconstructible from {PECv (S) | E > u}, if fewer than Ps>1 sTs blocks are lost.

Proof: If S and S' are two T-designs that agree in all of the indicated ways, then S — S' 6
ZBvKu . The result follows from Theorem 4.6 and Theorem 2.4.4 as in Corollary 3.2.

D

The required list of "E-shadows" in Theorem 5.5 is much to large. At least the C for
which there is a £ such that (C, C, v) is balanced are unnecessary. Exactly what a minimal
sufficient list might be is a very interesting question.

5.2. Codes

As already noted at the beginning of Section 4, because our codes are defined over Z, it
would be surprising if they had excellent error correction properties. If these codes are of
practical value it must be because of a simple decoding procedure. None the less, they are
closely related to the widely used Reed Muller codes and we take this opportunity to make
this point.

Adopt the "algebraic mode" of presenting the natural permutation representations of
Sn from Section 2.1. Let Z [ x 1 , . . . ,xn]

<m denote the Z-polynomials (not polynomial
functions) in n variables {Xi} of degree less than m in each variable. Recall that the
monomial p(n) := Pxnj-1 € Z[x 1 , . . . ,xn]

<m is associated with the sequence n =
( n 1 , . . . , nn) and the associated tabloid has s-th part {j |nj = s}. The type of n is v
where vs = \{j \ nj = s}\.

The degree d(v) = E(i—1)v i of p(n), n € Bv, depends only on v (and equals the length
of a covering chain from (n) to v in the domination poset of partitions of n). Unfortunately,
the possible types v for which d(v) = k do not seem easy to describe in general and
consequently clear connections with, for example, the polynomial codes of Kasami, Lin
and Peterson [9] are awkward to establish. However, because the number of parts in a
partition is bounded by m in this discussion, we are able to make some connections.

The incidence map Cv defined in Section 2.2 takes n € Bv to the sum of all sequences
that are termwise, less than or equal to n (or equivalently, all sequences where j appears in
a part no higher than nj). These sequences are algebraically enumerated by the product:

(choices for 1st position) (choices for 2nd position) • • • (choices for n-th position)
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Since this formula makes no explicit mention of v, the Z-homomorphism

is a global algebraic version of the incidence map C. The other incidence map P is given
by the Z-homomorphism P where P(Pxnj) = P P ( x n j ) = P x n j C ( x m - 1 - n j ) .

Let Cm denote the cyclic group of order m. Then Z [ x 1 , . . . , x n ] < m may be identified
with the group algebra ZCn. In case m is prime, a t-flat [1,13.7.4] is a coset of a subgroup



of Cn having order mt. It is helpful to extend this geometric language to the general case.
For each subset T C {1,. . . ,n} of cardinality t, define the associated coordinate t-space to
be C(PteT xm-1) = P(PseTxm-1), and say a coordinate t-flat is anything of the form
(monomial) • • • (coordinate t-space) € Z [x 1 , . . . ,xn]<m.

Theorem 5.6 Let Er = nv D w(r) ker PvC = (imPv | v t> w(r))L where w(r) =
(n - r 0 m - 2 r ) .

(1) Then v > w(T) if and only if d(v) < (m-1)r.

(2) E| is generated by the characteristic functions of the coordinate (n ~ r)-flats,

Proof: By inspection, v > w(r) if and only if v1 > n — r, and this is equivalent to
d(v) < d(w(r)).

Suppose S U T = {1 , . . . , n} and |S| = n - T, |T| = r. The monomial HteT xil is in
Z[x1 , . . . ,xn]< m if and only if typ(PrET xit) > w(r) by part one. Part two follows from
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If m is prime and K = GF(m) be the Galois field with m elements, then Theorem 5.6.2
implies that Er ®Z K contains the m-ary (n - r - 1)-th order Euclidean geometry code over
K[1, 13.7.1], Of course the Euclidean Geometry codes are well studied in their own right
and they admit a multistep majority decoding scheme that yields complete decoding in case
m = 2 [5]. It is quite instructive to compare this scheme with our poset approach. In case
m = 2 = \K\, the code is the classical Reed Muller code and the two approaches coincide.

Corollary 5.7 Let m = 2 and K be an arbitrary field. Then the code Er ®z K admits a
complete (n — r)-step majority decoding scheme.

Proof: Since the partitions of n into at most two parts form a totally ordered set and so
v > w ( r ) if and only if w(r) £ v, so Theorem 2.4.4 implies that Er = ZBK ( n - r , r ) . The
global version of the parity checks defined in Lemma 2.10 have coordinates in {0, 1} and
so are the same in all characteristics. D
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