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Abstract. We coordinatize the Moufang generalized octagons arising from the Ree groups of type 2 Fy. In this
way, we obtain a very concrete and explicit description of these octagons. We use this to prove some results on
suboctagons, generalized homologies, Suzuki-Tits ovoids and groups of projectivities of the Ree octagons. All
our results hold for arbitrary Ree octagons, finite or not.
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1 Introduction

Let A = (P, £, I) be arank 2 incidence geometry with point set P, line set £ and incidence
relation I. A path of length d is a sequence vg, ..., vy € PUL with v;Jv;41,0 <i < d.
Define a function §: (P U L) x (PU L) —» N U {w} by é(v,v") = d if and only if d is
the minimum of all d’ € N such that there exists a path of length d’ joining v and v’, and
§(v, V") = w if there is no such path.

Then A is a generalized n-gon, n € N\{0, 1, 2}, or a generalized polygon if it satisfies
the following conditions:

(GP1) There is a bijection between the sets of points incident with two arbitrary lines.
There is also a bijection between the sets of lines incident with two arbitrary points.

(GP2) The image of (P U £) x (P U £) under & equals {0,...,n}. Forv,v' € PUL
with 8(v, v') = d < n the path of length d joining v and v’ is unique.

(GP3) Each v € P U £ is incident with at least 2 elements.

Generalized polygons were introduced by Tits [12]. Note that we have excluded the
trivial case of generalized digons here.

As an immediate consequence of the definition a generalized polygon is a partial linear
space and a dual partial linear space.

We will mainly be concerned with the case n = 8, the generalized octagons, and also with
the case n = 4, the generalized quadrangles. Generalized polygons are in fact the (weak)
buildings of rank 2. We will use some of the building terminology below. For instance, we
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will call a generalized octagon (or any generalized polygon) thick if every line contains at
least three points and every point is incident with at least three lines. Note also that the dual
AP = (£, P, ) of a generalized n-gon A = (P, £, I) is again a generalized n-gon.

If A is finite, i.e. if it has finitely many points and lines, then there are constants s, r € N
such that every line is incident with 1 + s points and every point is incident with 1 + ¢ lines.
In this case, we say that A has order (s,¢). If s = ¢t = 1, then we have an ordinary n-gon.
For all finite generalized polygons restrictions on the parameters (s, ¢) are known. If n = 8
and s, t > 2, aresult of Feit and Higman [2] states that 2s¢ is a square and that s < 1 < 5%,
If A is an octagon with = 1 and s > 2, then A can be obtained by “doubling” (taking the
flag complex of) a generalized quadrangle. We will meet this situation later.

The number n = 8 plays a very special role in the theory of generalized n-gons. Some-
times it is included in the “nice” cases, sometimes it is not. This can best be seen in the
following short list of known results (some of the notions below will be defined later on):

(FH) A thickfinite generalized n-gon must satisfyn € {3, 4, 6, 8} (Feit and Higman [2]).
(TW) A Moufang generalized n-gon must satisfy n € {3, 4, 6, 8} (Tits [17] and Weiss
[24D).
(K) A compact connected topological generalized n-gon must satisfy n € {3, 4, 6}
(Knarr [6]).
(VM) A generalized n-gon with valuation must satisfy n € {3, 4, 6} (Van Maldeghem
[19).

Also, as far as Moufang generalized n-gons are concerned, there are several classes of
examples in each of the cases n = 3, 4, 6, but there is only one class of Moufang octagons
and this class is related to the Ree groups of type 2Fy (Tits [18]). For obvious reasons we
will call a member of this class a Ree octagon, although these octagons are due to Tits [13].

The purpose of this paper is to give an elementary description of the Ree octagons using
coordinates. We will then show that this description can be used to solve some specific
problems. It should be noted that Tits’ paper [18] is crucial for us; our description depends
essentially on the commutation relations given there and so we do not provide a new
existence proof of the Ree octagons, though the coordinatization may be used to do so
a posteriori.

Whereas there is an abundance of literature on generalized quadrangles and hexagons,
only a few articles can be found on octagons. So an alternative geometric descripion might
be helpful. In fact the octagon coordinates are especially convenient for reasoning with
several geometrical objects at a far distance of one particular apartment of reference. Our
Theorem D may serve as an example. We would like to point out though that the direct
use of the commutation relations sometimes provide a much shorter and elegant proof (cp.
Proposition 4.3; its proof was suggested to us by the referee, who we hereby would like
to thank). On the other hand, theorems like Theorem D below are much harder to prove
without coordinates. Other applications of this coordinatization of the Ree octagons can be
found in Van Maldeghem [22].

For the convenience of the reader we will now state our main results (without defining
all the notions needed; these can be found below).

Theorem A Every Ree octagon O(K, o) is (x, y)-transitive for all pairs of opposite
points (x, y), and it is (L, M)-quasi-transitive for all pairs of opposite lines (L, M) if and
only if K is perfect.
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Theorem B  Every thick suboctagon of any Ree octagon O(K, o) arises in a standard
way from a subfield K' < K closed under o.

Theorem C Let ST be a set of points of the Ree octagon A for which there exists a
Suzuki subquadrangle A’ in which ST can be seen as the set of flags corresponding to a
Suzuki-Tits ovoid,

Then there exists a unique point xst of A such that

(i) xsr is at distance 4 (within the octagon A) from each point of ST,
(i) xs7 Is fixed by the full group of automomorphisms of A stabilizing ST,
(iii) xg7 is the middle element of the root with respect to which there is a (n involutory) root
elation in A inducing a polarity in A’ defining the Suzuki-Tits ovoid corresponding
to ST.

The point xst is uniquely determined by each of the properties (i), (ii) or (iii).

Theorem D  There are no generalized quadrangles arising from the Ree octagons by the
method described by Lowe [7].

Theorem E  The groups of projectivities of the Suzuki quadrangles are given by

(W (K, 0)) = TT4(W(K,0)) = PSLK x(K")* /(KD)"
= nN(W(K, o)) =2 (W(K, ).

The action is equivalent to the natural action of PSLy K x(K”)* /(K Y on the projective
line over K.

Theorem F  The groups of projectivities of the Ree octagons are given by

M(O(K, o)) = M (O(K, o)) = PSL,KxKt/(KH)™
and
NM°(0(K,0)) = N2(0(K,0)) = GSz(K, o).

The actions are equivalent to the natural actions of PSL; K © K tI(K 2y (resp. GSz(K, 0))
on the projective line over K (resp. the Suzuki-Tits ovoid).

2 Preliminaries

We have already defined the notion of a generalized octagon in the introduction. Usually
the Ree octagons are defined in the literature via the theory of B N-pairs. We spend a few
words on that subject. Also, we will briefly give some generalities about the introduction of
coordinates in generalized octagons. Finally, we spend a few words on a class of Moufang
quadrangles, introduced by Tits [16], which are closely related to the Ree octagons.

Firstly we introduce some notation.

For any field K the set of elements of X distinct from 0 will be denoted by K.

We always denote by A = (P, £, I') a generalized n-gon as defined in the introduction.
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2.1 Some further notation

2.1.1 Paths and roots. As a general rule, we denote by L, M, L, etc. elements of L; by
X, ¥, z,etc. elements of P; by v, vy, v/, etc. elements of PUL; by a, b, @', etc. elements of R,
(seelater); by k, k', [, etc. elements of R, (see later); and by e, ¢’, etc. elements of R;UR;. The
set of elements incident with a given element v will be denoted by A(v). As already stated in
the introduction a path is a sequence of d+ 1 consecutively incident elements. If the first and
the last element of a path coincide, then we have a closed path. A path is non-stammering if
two consecutive points (resp. lines) never coincide. A closed non-stammering path of length
2n is called an apartment. A path of length 1 is called a flag. A non-stammering path of
length n is called a root. The extremal elements of aroot are called opposite elements. If two
elements v, v’ are not opposite, then by axiom (GP2), there is a unique chain (v, vy, ..., V')
joining them. We call the element vy of that chain the projection of v’ onto v.

Note that, if n is even, there are two kinds of roots: one kind has two points as extremities
(and we call them p-roots) and the other one two lines (and we call them [-roots).

2.1.2  Root-elations and the Moufang property. A root elation with respect to the root
¢ = (v, vy, V2,...,0,), where v; € P U L, is a collineation of A fixing every flag
containing vy, v, ... or v,—;. Itis easily seen that the group of all root elations with respect
to a fixed root ¢ acts semi-regularly on the set of apartments containing ¢. If this action is
transitive, then we call the root ¢ Moufang and the corresponding group a root group. If
every root of A is Moufang, then A itself is said to be Moufang. All Moufang generalized
octagons have been determined by Tits [18]: they arise from Ree groups of twisted type 2 Fy.

2.1.3  BN-pairs of Moufang polygons. Most of the theory of buildings goes along with
the theory of BN -pairs, cp. Tits [15], Ronan [9]. The Moufang polygons are no exception.
We will not get involved in this theory, nor will we even define the notion of a BN -pair.
But, we will use a few very basic facts, that can be easily found in the literature, to give a
little insight into the structure of the group that is generated by all root collineations; cp.
also Tits [18], Section 2, p. 569.

Assume that A is a Moufang n-gon. We fix an apartment A = (vg, V1, ..., Uz = Vp)
with v; € P U L. Then A contains the roots ¢; = (v;, ..., Vj4,). Take indices modulo 2n.
The root group corresponding to ¢; will be denoted by Ud,A,_. For an octagon we will later
introduce a second notation for the root groups that is more convenient once the octagon
is coordinatized. Set G4 = (U;'|0 < i < 2n) and let B4 = G, be the stabilizer
of the flag (v,—y, v,) in the group G2. For any u € Ug \ {1} there are unique elements
w,u' e UdrA.-+,. such that m(u) = u'uu” stabilizes the apartment A, Let u € U",Al_\{l}. Then
m(u)—‘Uq,Ajm(u) = U«fzm_;‘ Set Np = {m(u)|u € Up\{1}}, N* = (N2 |0 < i < 2n)
and H® = B2 N N%. The pair (B4, N*) is well known to be a BN-pair for G2, cp.
Ronan (9], (6.16); especially we have G = (B*, N*) and B* = (Ug, ..., Uy ) HA.
Finally, H4 = (", N (Ug), where A (-) denotes the normalizer in G2, cp. Tits [18], 2.8.
The action of H2 on the elements incident with an element of A is equivalent to the action
of H* on the root groups U, by conjugation.

The structure of G* does not depend on the choice of the apartment A, because G acts
transitively on the set of all ordered apartments of A. This means that G* is the group that
is generated by all root elations.
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2.1.4 Generalized homologies. Let v,v' € P U L be two opposite elements of the
generalized polygon A. A generalized homology of A with centers v and v’ is a collineation
fixing all elements incident with v or v'. Let v* be an arbitrary element incident with v.
Then A is called (v, v')-transitive if the group of generalized homologies with centers v and
v’ acts transitively on the set of elements incident with v*, different from v, and different
from the projection of v’ on v*. This definition is independent from the element v* on v or
v’. Now let v** # v be the projection of v’ on v*, Then A is called (v, v')-quasi-transitive
if the group of all generalized homologies of A with centers v, v’ acts transitively on the
set of elements incident with v**, different from v*, and different from the projection of
v’ on v**. In Van Maldeghem [20], it is shown that a thick finite generalized octagon is
Moufang and has order (g, ¢%) if and only if it is (x, y)-transitive for every pair of opposite
points (x, ¥), and (L, M)-quasi-transitive for every pair (L, M) of opposite lines. There is
no obvious relationship between (v, v')-transitivity and (v, v)-quasi-transitivity; especially
(v, V')-transitivity does not imply (v, v')-quasi-transitivity.

2.1.5 Subpolygons. A subpolygon A’ = (P', L', 1') of A is a generalized polygon,
where P’ C P, £’ C £ and I’ is the restriction of / to P’ x £'. A subpolygon is called full,
or ideal, if for some v € P'UL’ we have A(v) = A’(v). In Van Maldeghem and Weiss [23]
it is noted that it follows from a result of Thas [11] that no finite thick generalized octagon
contains a full thick suboctagon.

We will also need the following well known result; a proof is indicated for the sake
of completeness.

Propesition 2.1  Every subpolygon of a Moufang polygon is itself Moufang.

Proof: Let A’ be a subpolygon of A and let A be an apartment in A’. Let ¢ be a root
contained in A and let v, v’ be its extremities; thus v is opposite to v’. Let B be an apartment
of A’ containing ¢b. Let u be the unique root elation with respect to ¢ mapping A to B (in A).
Then A’ N A’ contains B and all elements of A’(w), where w is an element of ¢ different
from v and v'. It easily follows that A’ N A™ is a subpolygon which must clearly coincide
with A’ (if A’ is thick, this is almost immediate; if A’ is not thick, then one should consider
the corresponding generalized §-gon, where A’ is a generalized n-gon, see Tits [12]). Sou
is a root elation in A’. The result follows. a

2.1.6 Projectivities. Assume that A is thick.

Choose a pair of opposite elements v, w € P U L. For any x € A(v) there is a unique y
in A(w) which is nearest to x in the incidence graph of A. The element y is the projection
of x onto w. Considering all elements incident with v we obtain a map

fv, wl: Alv) > AQw),

the perspectivity from v to w. For a sequence of elements vy, ..., v, € P UL, where v; is
opposite to v; 41, the product

[vi, .. uml =Tv, val - [y, Um]

is called a projectivity from v to v,,.
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Fixing anelement v € P UL the set of all projectivities from v back to itself forms a group
IT(v) with composition as multiplication, the group of projectivities of v. The restriction to
those projectivities which can be written as a product of an even number of perspectivities
leads to a subgroup I1, (v), the group of even projectivities. It has index at most 2 in IT(v).

Now take two lines L, M € L. Because of thickness there is some projectivity p from L
to M, and the groups of projectivities of L and M are related by

(L) = pTI(M)p~" and T, (L) = pTT,(M)p™".

This implies that the isomorphism types of [1(L) and 1, (L) together with their actions
on A(L) are independent of the choice of L. They are an invariant of A. Therefore we
are allowed to refer to the group of (even) projectivities of an arbitrary line as the group of
(even) projectivities of A; it will be denoted by TT(A) (resp. [T4.(A)).

We will use the notation T2 (A) (resp. HQ (A)) for the group of (even) projectivities of
the dual AP of A. When we have to deal with the projectivities of AP we will often view
aline of A? as a point of A.

For n odd the groups IT(A), TI1(A), [TP(A), T2 (A) coincide.

There are two results on the structure of the groups of projectivities of generalized poly-
gons, both due to Knarr [5], (1.2) and (2.3), which are of crucial importance to this subject.

Proposition 2.2  The group of even projectivities T1,. (L) operates 2-transitively on the set
of points on the line L.

Proposition 2.3 Let A be a Moufang polygon.
Then the stabilizer of v € PUL in the group G* that is generated by all root collineations
of A induces the group T1, (v) on A(v).

Especially by the use of the latter proposition Knarr [5] determined the groups of pro-
jectivities of all finite Moufang polygons.

In the following we make use of the notation concerning BN -pairs that has been intro-
duced in Section 2.1.3.

Corollary 2.4 Let A be a Moufang polygon.
Then the group (U, U ) H® induces the group of even projectivities Ty (v,) on A(vy).

Proof: Of course, the group (Ug, U2) fixes v, and acts transitively on A(v,); in fact it
even acts 2-transitively. By (2.3), the assertion follows, if we can show that the stabilizer
of the flag (v,-1, u,) in the group (UA", U,,,A,I)I-IA induces the same group on A(v,) as

G, oy=B*=(Ug, ..., U )H". Butanyelementof A(v,) is fixed by Ug,....Up .
O

Remark The intersection of (Ug, U2) and H* is exactly the stabilizer of v,_; and vy,
inside (U2, U2).

2.2 Coordinatization of generalized octagons

We will use the coordinatization method developed by Hanssens and Van Maldeghem [3]
(for generalized quadrangles), generalized to polygons as in Van Maldeghem [20]. We will
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present here the weakest form of coordinatization. This means that we will not bother about
normalization. See the remark at the end of this section.
Solet A = (P, £, I) be a generalized octagon and let

A= (x01 LO) X1, LZ! X3, L41 Xs, L61 X7, L79 X6, LSv X4, L3r X2, Lls XO)

be a fixed ordered apartment with x; € P, L; € £. We choose sets Ry and R, such that
Ry N R, = {0}, together with bijections

7t Ry = A(L)\[xi—1}, i €{1,2,...,7}
o Ry — A(Lo)\{xp),

ARy — AL} i €{1,2,...,7),
ho: Ry = A(xo)\{Lo},

satisfying

(Col) m;(0) = x;41,i € {0, 1,...,6}, 17(0) = x7, 1;(0) = L;4,,i € {0, 1, ..., 6} and
A7(0) = Lo,

{Co2) the projection of m;(a) onto L;_; is exactly m,_;(a) and the projection of A;(k)
onto x7_; is exactly A7_; (k),{ € {0, 1,...,7},a € Ryand k € R;.

If e € R U R,, then we abbreviate e, e,...,e by ¢/. As a general rule, we will write
Bl

coordinates of points in round parentheses 'and those of lines in square brackets. We label
the point x¢ (resp. line Lo) by (00) (resp. [¢0]), we label the point m;(a), a € R (resp. the
line A; (k), k € Ry),i € {0, 1, ...6}, by (O, a) (resp. [0, k]), and we label the point 77(a)
by (a, 0%) (resp. the line A;(k) by [k, 0%1). Consider now a point x opposite to xo = (00).
Let (x, M1, y1, My, y2, M3, y3, [oc]) be a path connecting x with [00]. Suppose the point
y3 has been labelled (a), a € R;. Let [0%,1], (0%, a’), [0%, I'], (03, a”), [0%,1"], (O, a™) be
the labels of the respective projections of M1, y2, M4, y1, My, x on respectively x¢, Ls, x4,
L3, x3, L1, then we label these elements as follows:

M3 [a,l}

y2 > (a,l,a)

My fa,l,a,l]

nt (ala,l',a’)
My [a,l,dl',a" 1"

x> (al,al',a'l",a™.

If we also apply the dual labelling, then we have labelled all points and lines of A in a
unique way. We call this labelling a coordinatization of A. An element is said to have i
coordinates, i € {0, 1, ..., 7} if itis labelled by an i-tuple (if i # 0), or if it is labelled (o)
or [oo] (if i = 0). A label of an element is also called the coordinates of that element. We
will frequently identify an element with its coordinates without further notice.

Now we will be able to recover the generalized octagon A from the coordinatization
only if we know the relations between the coordinates of incident elements. Obviously a
point x with { coordinates, i € {0,1...,7}, is incident with a line L with j coordinates,
Jj€{0,1,...,7} (, j) # (7, 7), if and only if one of the following holds
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1. x =(o0)and L = [k], k € Ry U {00).
2. L =[oc]and x = (a),a € R, U {c0}.
3.x=(e1,...,e)and L = e, ..., e, ei11).
4, L = [e;,...,ej] and x = (61, ...,€j,€j+1).
Consider arbitrary elements a, b, b’,b” € Ry and k, k', k", k" € R,. We define “oc-
tanary” operations O;, i € {1,...,6} as follows: let x be the point with coordinates

(a,l,a',l'a",l"”,a"”) and let the projection L of [k] on x have coordinates [k, b, k', &',
k", b", k™). Then

Ol(k, a, l’ a/, l/, a//, l”, a///) = k"
Oz(k, a, l’al, l/, a//, l", a™ =b"

O¢tk,a,l,a l',a"l",a") = b.

Consequently, these equalities are satisfied if and only if x is incident with L. It is an
elementary but tedious exercise to show that the sets R; and R, together with the operations
01, ..., O, which we call an octagonal octanary ring, allow one to reconstruct in a unique
way the generalized octagon A.

Remark The coordinatization of the points on the respective lines Lo, Lo, Lg and Lg
has been done independently from each other. Hence in general, one cannot expect to get
a unique octagonal octanary ring from this process. There are however ways to relate the
coordinates on the lines mentioned. Then one assumes to have an element 1 in both R; and
R, and one could require that the projection of the point (a), @ € R;, on the line [1, 0%]
coincides with the projection of (0%, @) on the same line (this relates the coordinates on Ly
to the coordinates on L1, or equivalently, on Lg). If also the dual holds, then we say that the
octagonal octanary ring is normalized. Further normalization can be obtained similarly by
relating the coordinates of Lg to those on L, and L. But as we do not want to establish a
theory on coordinatization, and since we are only interested in one particular example, we
do not consider this here.

2.3 The Suzuki quadrangles

The structure of the Ree octagons is intimately related to a class of exceptional Moufang
quadrangles described in Tits [16]; see also Tits [15], Chapter 10. They arise as subquad-
rangles of the symplectic quadrangles over certain fields of characteristic 2.

Let K be a field of characteristic 2. Select a base e, e, e, e3 of the vector space K*.
Then the set of totally isotropic one- or two-dimensional subspaces, with respect to the
bilinear form 8 on K* defined by the matrix

with natural inclusion as incidence is a generalized quadrangle, the so-called symplectic
quadrangle W(K). Note that this symmetric bilinear form is also an alternating form
because of char K = 2.
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Set vy = (e;) and vaiyy = (e;, €;41). Then By = (vo, vy, ..., v7, 1) is an apartment
of W(K). Let ¢; = (v;, ..., vi+4). The corresponding root groups are given by U;'/(K) =
{u;(t)|t € K}, where

up(t) = 1 ) = 1 ,

u(t) = yus(t) = I )

1
\ ! 1) r1

and u;+4(t) = u;(t)". Altogether they generate the symplectic group Sp,K. Note that,
again because of char K = 2, this group is simple for | K| > 2, cp. Dieudonné [1], Section 5,
p- 49.

Let K' be a subfield of K which contains the subfield of squares K 2. For any K’-vector-
space E which is contained in K and any K2-vectorspace E’ which is contained in K’,
the group which is generated by the respective restrictions of the root groups uy; (E’) and
usi1 (E) fixes a subquadrangle Q(K, K'; E, E"). This can be derived immediately from
the commutation relations for the root groups of the symplectic quadrangle. In Tits [16] the
quadrangles Q(K, K'; E, E’) are characterized as the only Moufang quadrangles which
have regular points and regular lines at the same time; cp. Payne and Thas [8], (1.3), for the
definition of regularity.

According to Hanssens and Van Maldeghem [4], (1.5.1), a coordinatizing *-normalized
quadratic quaternary ring for Q(K, K’; E, E'} is given by

Q%a,k,b, k') =ka+band Qi(k,a,l,a') =a* +1,

where a,a’,b € E and k, k', € E’. Here we take the addition and the multiplication of
the field K.

Here we are interested in a subclass of these quadrangles. From now on we always
assume that K has a field endomorphism o whose square is the Frobenius endomorphism
x — x%. Then we refer to the quadrangle Q(K, K7; K, K) as the Suzuki quadrangle
W (K, o). The Suzuki quadrangles are self-dual. This can be deduced from the structure
of its quadratic quaternary ring (see above). In fact, the Suzuki quadrangles are even self-
polar, as it is proved in section 5.1, cp. also Tits [16]. If K is perfect, i.e. if the Frobenius
endomorphism is surjective, we have K = K and W(K, o) = W(K). Note that this is
always the case if K is finite.

If K is a finite field, then such an endomorphism o exists if and only if |K| = 22 +!;
moreover, in this case o is uniquely determined, cp. [14], Section 4. Therefore o will be
omitted occasionally.

2.4 The Suzuki-Tits ovoids and the Suzuki groups

We use the same notation as in the previous section. We also keep the bilinear and alternating
form B on the vector space K*. The symplectic groups are meant to preserve 8. Consider
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the set
O = {{eg + xey + yes + (xy + x"*2 4+ yM)es3) | x, y € K} U {(e1)}

of points in the projective space PG3 K. This is an ovoid in PG3; K as well as in the symplectic
quadrangle W (K); for a definition of the notion ovoid inside a generalized quadrangle see
Payne and Thas [8], (1.8). Ovoids of this type are called Suzuki-Tits ovoids.

Define GSz(K,0) = {y € PGSp,K | 0¥ = O} and Sz(K, 0) = GSz(K, o) N PSp,K,
where PGSp,K is the group of symplectic similarities. The groups Sz(K, o) are called
Suzuki groups.

We give some properties of GSz(K, o) and Sz(K, o) which are due to Tits [13], [14].
The groups Sz(K, o) and GSz(X, o) operate 2-transitively on the Suzuki-Tits ovoid O,
cp. [13], Theorem 4, and [14], Theorem 10.1.

Now assume that |[K| > 2. Then Sz(K, o) is simple; it is the commutator subgroup of
GSz(X, 0),cp. [13], Theorem 8, and [14], Theorem 6.12. The stabilizer H of (eo), (¢;) € O
in GSz(K, o) is the group

{(x,y) > (bx,b"y)|be K™},

where (x, y) is identified with (ep + xe; + yes + (xy + x°F2 + y")es) € O, cp. [13],
Lem. 1. The intersection of H and Sz(K, o) is given by

{(x,y) > (bx,b7y) | b € (K7)*}.

The group Sz(2) is isomorphic as a permutation group to AGL,{5) in its natural action,
cp. [14], Thm. 6.12. Of course, the stabilizer of two points in the group AGL,(5) is trivial.

3 Coordinatization of the Ree octagons

The Ree octagons arise naturally from the Ree groups of type % Fy, see Tits [18]. For each
field K of characteristic 2 admitting an endomorphism ¢ whose square is the Frobenius
endomorphism x — x2, there exists such a group 2 F4(K, o) and hence such a generalized
octagon O(K, o). Our goal is now to describe these Ree octagons only using the field
K and the endomorphism o. Therefore we coordinatize O (K, o) using the commutation
relations in Tits [18] as follows. We choose an apartment 4, (keeping this notation for the
rest of the paper) in O(K, o) and label its elements (c0), [oc], (D), etc., as in Section 2.2,
For each root ¢ in Ay, there is a root group U,. According to Tits [18], half of these root
groups, say those corresponding with /-roots, are parametrized by the elements of the field
K (and the root group is in fact isomorphic to (K, +)); the other ones are parametrized by
the pairs (ko, k1) € K x K with operation law (kq, k1) @ (o, [}) = (ko + 1o, ky + 1) + lokg)).
Following Tits [18] we denote this group by K®. It is isomorphic to a regular normal
subgroup of the point stabilizer in the Suzuki group Sz(KX, o).

Every root in Ag is determined by its middle element v; we denote the root by ¢, and
the corresponding root group by U,. The definition of the root groups in Section 2.1.3 is
related to the new definition by e.g. Uiy = Udffz(K‘”), Uloe) = UdffK'”). The image of the
point (0) (resp. line [0]) under the action of an element of the root group Uy (resp. Ugpsy)
parametrized by a € K (resp. (ko, k1) € KP) is given the coordinate (a) (resp. [(ko, k;)]).
We will, however, abbreviate (0,0) by 0, to be consistent. The element of Uggs; (resp. Ugsy)
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mapping (0) to (a) (resp. [0] to [(ko, k1)]) will be called ug3)(a) (resp. up)(ko, k1)). We
also write mpgy)(a) = m(uys(a)) (resp. m+(a) = m(ug(ko, k1))). In the same fashion,
we give the coordinates (02, a’) (resp. (0%, a”), (0%, a”)) to the image of the point (0%)
(resp. (0°), (07)) under the action of an element of the root group Ul (resp. Uieo) Uper)
parametrized by a’ (resp. @”, a”). Dually, we coordinatize lines. Applying rule (Co2),
we obtain coordinates for every element incident with an element of A;. According to
Section 2.2, this is enough to have coordinates for every element of O(K, o).

In order to have a complete description of O(K, o), we must find the octagonal octanary
ring. So we have to find a necessary and sufficient condition for a point with seven coordi-
nates and a line with seven coordinates to be incident. Let x = (a,!l,d’,!’,a",1l”, a")
be such a point and L = [k, b, k', b, k", b", k"] be such a line, where | = (ly, 1),
U=y 1), .. .. k = (ko, k1), etc. Only in this section we further abbreviate u, = u[p;(a),
ur = uey(!), uy = upg)(a’), etc. Similarly we define (in a dual way) the root elations uy,
up, Uy, etc, Put

Uy = UgmUpUgnUpUg Uiy (1)
and

Uy = UpmUpn Uy Up Up Uplly, . )

Then it is clear that x = (07)* and L = [07]“*. Also remark that the automorphism u,
does not change the first coordinate of any line. This implies that x / L if and only if
O 1 L% l (the latter must then be [k, 0°] by the previous remark, hence:) if and only if
L% = [07]* if and only if [077#:4:' %" = [07]. Since [07)% = [07), the latter is equivalent
with [07]%“c4' 4" = [07]. Dually, x I L if and only if (07)“*“.'%" = (07), which can be
rewritten as (07)*«#-4x ' = (07). Since the group generated by all root elations fixing the
flag 7 = ((00), {o0]) acts regularly on the set of flags opposite F (opposite flags are flags
whose respective points and lines are opposite) (see Tits [18], condition (P2)), we have
that x I L if and only if u,u; = uzu,. Using the commutation relations given in loc. cit.,
one can actually compute this condition and the result is the following (the computations
take approximately five handwritten pages; we have checked afterwards our result with a
computer and found no mistakes).

Fork = (ko, k1), settr(k) = kJ ™' +k; (the trace of k) and set N (k) = k§*2 + kok + k{
(the norm of k); let K be the subgroup of the multiplicative group K * which is generated by
all norm elements. Define a multiplicationa ® k = a ® (ko, k) = (ako, a’ k) fora € K
and k € K. Also write (ko, k1)” for (k§, k7). Then the point (a,!,a’,!',a", 1", a") is
incident with the line [k, b, k', b', k", b”, k'] if and only if the following six equations hold:

ko' ki) = (o, 1) ® a® (ko, ki) ® (0,aly+a’ly) (3
b =a +a" "' N(k) + ko(aly + a” Iy + tr(1))
+a” (a”’ + loky) + al(')'" + l()l(/) )

kg, ky) = a” @ (ky, tr(k)N(k)) @ ko ® (o, 11)” & (0, tr(k)N ()
+a" ' yN (k)" + tr(k)(aa’ + a’loly + a”*'a")
+t()kTa+a”) + kT a" Ty + kG a?le
+kola' + aly” + kia®ly+aa")’
+k§lo(a’ + aly” + kia”lo + a”a") + al] +a" lp + a”'ly)
+lg(a' +a’a") +a"ly + blgly) & g, 1) 6]
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b =a"+a" "Nk +alkoly + loki +a")°
+ (k) + a”ly) + kS (@ +aa") + Iply + 15 a” (©6)
ki, k) = U, 1)) @ a® (tr(k), koN(k)™) @ lp ® (ko, k1)”
® (0, N(k)(a"ly + 1)) + ko(a” + Lply +aa” +15a™)
+ki(kiloa” +a’ +aly” +a®a"”) + kok{ al§
+a"lo + a"l}) ™
b =a" +aN k) + loky + kol§ (8)

Note that these equalities define respectively the operations Oy, O, ..., O¢. Alsoremark
that this octagonal octanary ring is normalized. There is also a set of dual operations, a
kind of inverse formulae, giving as output the [, a’, I/, ..., @ when k, b, .. . k" and a is
given as input. But we will not need them here explicitly.

4 Some immediate applications
4.1 Generalized homologies

In Van Maldeghem [21], it is stated that the finite Moufang octagons possess “a lot of”
generalized homologies. We can here extend this result to all Moufang octagons O (K, ),
giving the explicit form of these automorphisms in terms of the coordinates. Indeed, it is
an elementary exercise to check that the following map n(A, B) preserves the incidence
relation (made explicit by the octanary operations above):

(a,l, a,l')a’,l”,a"

> (Aa, (AB)® 1, A"T'B 2’ (AB°tYY @ I', AT B¥+2" (AB°*HQ!”,
AB 2"y [k, b, k', b k", b k")

— [B®k, AB° b, (AB°t)Y @ k', At B> 2p' (A" B°*Y @ k", A°t B°+2p",
(AB) ® k"1,

where A, B € K> and where the action on elements with less than seven coordinates is
defined by “restricting” the above action to the appropriate number of coordinates. Putting
B = 1, one sees that the corresponding group H (*, 1) of automorphisms n(A, 1) fixes
every line through on (c0) and acts transitively (even regularly) on the set of points incident
with [oo], different from (c0) and (0). Now we remark that the map a — a”*? is always
injective; moreover it is bijective if K is perfect. Indeed, suppose a®*? = b°+2, then
¢"*? = 1, for ¢ = a/b. Applying o to both sides, we obtain ¢***? = 1 = ¢”*2, implying
¢” = 1, hence ¢ = 1. If K is perfect, then b = a'=77" satisfies b2 = a, proving the
remark. Now put A = 1 in the above formulae, then we see that the corresponding group
H (1, %) of automorphisms of type n(1, B) fixes every point on [occ] and acts semi-regularly
on the points of [0] different from (c0) and (0, 0); this action is regular if K is perfect.
Hence we have shown:

Theorem A Every Ree octagon O(K, o) is (x, y)-transitive for all pairs of opposite
points (x,y), and it is (L, M}-quasi-transitive for all pairs of opposite lines (L, M) if and
only if K is perfect.
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Proof: The only thing left is to show that O(K, o) is not (x, y)-quasi-transitive if K is
not perfect. This follows directly from Corollary 4.4 below, proven independently. a

We will show in the next subsection that all generalized homologies are conjugate to the
ones just described by an element of G2,

The two following results give some information about the relationship between gener-
alized homologies and root elations of the Ree octagons. We will need this information
later to determine the groups of projectivities. In fact, (4.2) is a reformulation of 1.10 (vii)
in Tits [18]. Remark that (4.4) which is used in the proof of (4.2) is proved independently.
Lemma 4.1 For uj,u; € UE(K‘")\{
homology with centers vjy4, Vi_a.

1} the collineation m(uy)m(uy) is a generalized

Proof: Omit all upper indices O(K, o). Clearly m(u)m(u,) € H = ﬂi N (Us)).
There are unique u}, uy, uy, u; € Uy, with m(uy) = wjuzuy. From the commutation
relations of Tits [18], 1.7.1 (1), we infer that [Uy,, Uy,,,] = 1 for arbitrary j. This implies
that m(u,) centralizes Uy,,, and Uy, ,. Therefore the claim. O

Proposition 4.2 HOK.9 = (n (K, 1), H (1, K*)).

Proof: Again omit all upper indices O(K, o). Following the proof of [18], 1.10 (vii),
we have H = (m(oo)m’(oo), m[oo]mfoo] | my, m), € Ny). From [18], 1.8.1 (12), we know that
(see also Sarli [10], Table II, p. 6)

[k]nl[wl(“)m[wl(b) = [(a”_lbl—“) ® k]7

a,be K*, k e K. By (4.1) the collineation me)(a)mco) (b} is a generalized homology
with centers [00], [07). We infer mo)(a)m(e)(b) = n(1,a”~'6'~") by (4.4).

To prove the dual it is necessary to embed the field K in its perfect closure; cp. [18],
1.8.2 (b). By virtue of [18], 1.8.1 (10), the result

(@ymeo®me® = (NI~ N1 a),

a € K, k,l € KP\{(0,0)}, can be read off again from [18], 1.8.1 (12). We have
meo) (k)Mo (1) = n(N (k) ™" N (1)"™", 1) by (4.4).

Now the claim follows because ¢ — 1 and 1 — ¢ are bijections from K onto K> where
(kH" = (kH'™" = k1. o

4.2 Suboctagons

Let A = O(K, o) be a Moufang octagon coordinatized as in Section 2.2. Let K' be a
subfield of K such that K € K’. Then by restricting the coordinates to K’ and K ’5,2)
respectively, one obtains in a natural and standard way a suboctagon A" = O(K', o) of
A. This suboctagon A’, or any isomorphic image under an element n(A, B) of A’, will
be called a standard suboctagon. The main result of this section is that no other thick

suboctagons containing Ag exist.

Proposition 4.3 No Ree octagon possesses a proper thick full suboctagon.
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Proof: We use the commutation relations (1.7.1) of Tits [18]. Solet A’ be a full suboctagon
of A = O(K, o). First suppose that A(L) = A’(L) for every line L of A’ and suppose
that A’ is thick. We may assume that A4y is in A’. By proposition 2.1 and its proof, we
have that U;, < G’ for every line L of Ay (where G’ is the collineation group of A’). By
the thickness assumption, Uy, N G’ # 1, for all points x of Ay. By the relations (2) and
(3) of (1.7.1) in [18], U, < G’ (where the former is the subgroup of U, with trivial first
component when U, is identified with K®). By (6) of (1.7.1)in [18], (U})~! € G’ (where
U} is the subset of U, consisting of elements with trivial second component when U, is
identified with K(?). It now follows easily that U, < G’ for all points x in A, and hence
A=A,

Using relation (8) of (1.7.1) in [18], one shows similarly that whenever A(x) = A’(x)
for every point x in Ag (and A’ is not necessarily thick), then A = A, O

Note that we also proved that no non-thick full suboctagon A’ exists with A(x) = A’(x),
for all points x of A’. Later on, we shall see that there is a unique (up to an isomorphism
of A) full non-thick suboctagon A’ with A(L) = A’(L), for all lines L of A’.

Theorem B Every thick suboctagon of any Ree octagon O(K, o) arises in a standard
way from a subfield K' < K closed under o.

Proof: We may assume that the apartment 4 belongs to a suboctagon A’ of A =
O(K, o). As in the previous proof, we may also assume, by the Moufang property of
A', that Ugy o6y N G’ # | (where G’ is the collineation group of A" and U, is as in
the previous proof) and hence the line [(0, k)] is in A’ for some k; € K*. By applying
suitable generalized homologies, we can assume that A’ contains the point (1) and the line
[(0, 1)]. Let S be the set of all x € K such that (x) is a point of A’ and let a € S. Then
the generalized homology 7n(a, 1) maps A’ to a suboctagon which intersects A’ in a full
suboctagon, hence by the previous proposition, A" = A’ and so, S is closed under
multiplication. Similarly, § is closed under taking inverses. By the Moufang property, S
is also closed under addition. Hence S is a subfield of K. We now claim that S is closed
under o, i.e. S” C S. For any b € S, the octagon A"®™) coincides with A (it has all
points on [oo] in common and also all lines through (0); this follows from the explicit form
of n(b, b~") in 4.1). Since [(ko, k;)] is mapped by (b, b=") to [b~! ® k], it follows that
whenever [k] is in A/, the line ¢ ® k is also in A’, for all ¢ € S. This in turn has as conse-
quence that A”1@ ™7 coincides with A’ (since all points on [0] are fixed by n(d="~", d)),
whenever d € S, which means that d="~2 € S (look at the image of the point (1)). So we
have d” € S and S is closed under o.

We conclude that there is a Ree suboctagon A” = O(S, o) naturally embedded in A
via the restriction of the coordinates to S. Assume that A’ % A”. Then the intersection
A" N A” is a proper thick full suboctagon in at least one of A’ and A" if A’ % A”. This
contradicts the previous proposition and hence the result follows. a

As an application we show the following
Corollary 4.4 The only generalized homologies of a Ree octagon O (K, o) in its full au-

tomorphism group are, up to conjugation, the generalized homologies n(A, 1) and n(1, B),
A,BeK.
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Proof: Let n be a generalized homology with centers (00) and (07). Suppose n maps (1)
to (a), a € K. Then n(a™!, 1) fixes a thick full suboctagon. This must be O(X, o) itself
by the proposition, hence n = n(a, 1).

As for the dual, we remark that each root elation u2)(0, k;) with k) € K has order 2,
while each root elation ug)(ko, k1), ko # O, has order 4. Any collineation « preserving
Ap and mapping [(0, k{)] to [(ko, k1)], ko. k1, k; € K, kg # 0, would give rise to the
contradiction w2 (0, k; Y = ue2(ko, k1). Hence every generalized homology n with
centers [oo] and [07] maps the line [(0, 1)] to a line [(0, k;)]. As before, this must be the
generalized homology n(1, k). This completes the proof of the corollary. a

5 Some remarkable configurations
5.1 The Suzuki subquadrangles

We keep our notation A = O(K, o) and the apartment Ag in it. We have already remarked
that there is no full non-thick suboctagon A’ for which A(x) = A’(x), for all points x of
A’. However, if we replace R, by {0} and keep R, then all octanary operations (1) up to
(6) are well defined, and they become either trivial or

V' =da +a’a” (S1)
b =a"+aad"” (S2)
b=a" (83)

This coordinatizes a non-thick full suboctagon A’ which is the “double” of a thick
generalized quadrangle A, as follows. The points of A, are the lines of A" having 0, 3,4 or
7 coordinates; the lines of A, are the lines of A’ having 1, 2, 5 or 6 coordinates; incidence
is defined by the existence of a common point. We now coordinatize A,. As there are
no elements of R; involved anymore, we drop our general notational assumption about
k,l...€ Ryandreplaceitbyk, !, ... € Ry,, where the subscript “+” means “with respect
to A,”. Now put Rj, = R;. = K. Put (00), = [o0], [00]. = [0}, (a). = [0,a,0],
[kl. = [k, 0], (0, b). = [0%, b, 0], [0, 1], = [0,1,0], (0°), = (07) and [0*], = [0°]. This
determines a coordinatization of A, in a unique way. It is easy to check that we have the
following correspondences:

(00)x = [00] [c0)y =[0]
(@)« =[0,a,0] [k, = [k, 0]
(k,b)s =[k,0,0,0] [a,!]l, =10,a,0,!,0]
(@, 1,a) =1[0,a,0,1,0,a’, 0] k,b, k'], =1k,0,b,0,k',0]

The quaternary operations expressing incidence between points and lines with three coor-
dinates can be deduced immediately from (S1), (S2) and (S3) above :

a =ka+b

(a,l,a)*l[k,b,k]* — {k’=a”k+l S
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Remark (1) If we recoordinatize by simply putting R,, equal to K7 (and thus formally
substituting [£” ], for [k]., etc.), then the new quadratic operations become

/ ’ al = ka + b
(ayl?a)*l[k’byk]* => [k/=a2k+l
and hence we see that A, is isomorphic to the Suzuki quadrangle W(K, ). But we will
stick to the operations (S.).
(2) The existence of these full non-thick suboctagons in the Ree octagons is well known;
cp. e.g. Sarli [10], (6.1.3); see also Tits [18], 3.17.

Note that the flags of A, are exactly the points of A’. We will call A,, by abuse
of language, a Suzuki subgquadrangle of A. Occasionally we will also use the notation
W(K,o) < O(K, o).

Clearly, A, is self-polar and a polarity is given by swapping the round parentheses with the
square brackets. The set of absolute points (resp. lines) with respect to that polarity consists
of the point (00), (resp. line [0c],) and the points with coordinates (a, a’ +a°*!, a’), (resp.
lines with coordinates [k, k' + k®+1, k'],), with a,a’, k, k' € K. So a flag consisting of
two absolute elements looks like ((a, @’ +a”*', @), [a, a’ +a°*t, a'l,) or ((00)y, [00]4).
Translated to a point of A’ this is (a,0,d’ + a®*1,0,a',0,a) resp. (00). We denote the
set of these points by ST, a Suzuki-Tits set of points in A’, and hence in A.

Now, the set of absolute points of this polarity in a Suzuki quadrangle is a Suzuki-Tits
ovoid on which the Suzuki group Sz(K, ¢) acts as a doubly transitive group. Also, the set
of lines through a point in A can be thought of as a Suzuki-Tits ovoid. Indeed, the group
Sz(K, o) is contained in 2F4(K, o) as the group which is generated by two opposite p-root
groups and it acts on that set in the same way as on the ovoid; see Section 6. The question is:
is there a geometric connection between these two Suzuki-Tits ovoids? First, we remark:

Proposition 5.1 No non-trivial automorphism of O(K, o) fixes the Suzuki quadrangle
pointwise.

Proof: Such a collineation would be a generalized homology, but clearly, no non-trivial
generalized homology fixes all points on A’. This can be established by simply looking at
the coordinates. 0

From this proposition, it immediately follows that the Suzuki group acting on the Suzuki-
Tits ovoid in A,, and hence in A’, acts in a unique way on the Suzuki-Tits set ST as an
automorphism group of A. Now let x be any point at distance 4 from both (c0) and (07)
(i.e. x lies in the middle of a root with extremities (o) and (07)). By the coordinatization,
it follows easily that either x = (k, 0%) or x = (0%). If we now require that x has also
distance 4 from each other element of S7', then from the octanary operation (6), it follows
N(k) = 1, and from the operation (5), one deduces tr(k) = 0. This implies k = (1, 1).
Now the octanary operations (4), (5) and (6) show that the point ((1, 1), 0, 0, 0) does indeed
meet our requirement. We call this point the nucleus xgy of the set ST. Since this point is
unique with respect to a geometric property, it is fixed by the group stabilizing the set ST'.
The projection of the set ST on xgr is the set of lines [(1, 1), 0,0, 0, (4§, af)] together
with [(1, 1), 0, 0]. The Suzuki group acts on this set in a natural way. Hence it also acts



AN ESSAY ON THE REE OCTAGONS 161

on R;. Note that the map ST + xgr is not bijective since obviously the stabilizer of xgr
can move ST around. But it is surjective of course. Note also that the action on a pencil
of lines of the Suzuki group which is induced by the action of the Suzuki group on ST just
described is in fact on R] and not on R; itself. We do not have a geometric interpretation
of that fact.

From all this it follows also that no other point or line in A is fixed by the Suzuki group
stabilizing ST. Indeed, such a point must be fixed by every generalized homology n (A, 1),
A € K (since this stabilizes ST). It follows that all its coordinates must be 0 except if it
has an even number of coordinates and then only the first one can differ from 0. It is now
an elementary exercise to show that only xgr satisfies the assumption.

Now consider the root ¢» with middle element x g7 and extremities (co) and (07). Consider
with respect to this root, the root elation ¥ mapping the line [oo] to [0]. This root elation
must preserve A’ (since A™ contains [0] and [0°], and this completely defines A’). Hence
u maps [0] back to [oc] and so it is an involution, It preserves the set ST, and it fixes every
line through xs7, hence, since every point of ST uniquely defines a line through xg7, u
fixes pointwise the set ST. But u induces in A, a polarity, and the set of “absolute flags”
amounts exactly to ST'; hence we have shown the following theorem.

Theorem C Let ST be a set of points of the Ree octagon A for which there exists a Suzuki
subquadrangle A’ in which ST corresponds to the set of flags of a Suzuki-Tits ovoid in the
way described above.
Then there exists a unique point xst of A such that
(i) xgsr is at distance 4 (within the octagon A) from each point of ST,
(ii) xs7 is fixed by the full group of automomorphisms of A stabilizing ST,
(iit) xgsr is the middle element of the root with respect to which there is a(n involutory) root
elation in A inducing a polarity in A’ defining the Suzuki-Tits ovoid corresponding to
ST.

The point xst is uniquely determined by each of the properties (i), (ii) or (iii) )
5.2 The grid configuration

Consider an apartment in A = O (K, o) for which we can take without loss of generality
Ap. Take the two opposite [-roots ¢, ¢po7; in Ag. Both of them have the extremities
[0%] and [0%]. Let @3 .0+ be the root with same extremities and with the middle element
[0%, 5,0%], b € K*. Then the set of middle elements of roots with extremities [oo] and
[07] coincides with the set of middle elements of the roots [oco] and [0°, &', 0*]. This can
be checked by use of the coordinates; it also follows immediately from the regularity of
every element in the Suzuki quadrangles. We call this the grid configuration on ¢}, P07
and ¢[03,h,03]'

One can ask if there exist three p-roots carrying a (dual) grid configuration. To answer
this, we can consider without loss of generality the roots ¢, $07y and @3 1.3y all having
the points (0*) and (0*) as extremities, and having respectively the point (00), (07) and
(0%, 1, 0°) as middie element. The set of middle elements of the roots with extremities (c0)
and (07) is {(k, 0%) | k € R,} U {(0)} (this follows immediately from the coordinatization
process). From the octanary operations (4), (5) and (6) it follows that the projection of the
line [k] on (0%, I/, 0%) is the line [k, 0%, I/, 0?]. Hence we have a grid configuration on any
three different roots with common extremities.
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This yields an interesting consequence for the perspectivities between the middle elements
of the three roots forming a grid configuration. We have

[{oo], [0"]] = [[o0], [0%, b, 0°1, [O7]]
and

[(00), (0")] = [(00), (0%, 1,0%), (O)].
5.3 The Lowe configuration

Léwe [7] shows that a generalized quadrangle arises from a finite Ree octagon A =
O(2¥*1y as soon as A does not contain the following configuration C. Consider a non-
degenerate 9-gon and denote its lines in cyclic order by L;,i = 1,2, ..., 9. Let x be a point
of A and suppose that there are paths of length 5 connecting x with L3, resp. Lg, Lg. Then
C consists of the 9-gon and the three paths mentioned. Léwe [7] does not actually prove or
disprove the existence of such a configuration. We will show here that such a configuration
is contained in every Ree octagon, finite or infinite.

We start by remarking that every Ree octagon has a finite suboctagon isomorphic to O(2),
since G F(2) is a subfield of every field of characteristic 2 and obviously, it is fixed by every
field endomorphism and hence also by ¢. So if we establish a configuration isomorphic to
C above in O(2), then it exists in every Ree octagon.

Consider the 9-gon

6,0,0,0,0,1) 1[I (0,0,0,0,0,1,00 1[I 0,0,1,0,0,0,00 1
((1,0),0,0,1,0,1,0] 1 (1,0),0,0,1,0,1) [ [(1,0,0,0,1,0] [
((1,0),0,0,1,0,00 I [(1,0),0,0,1,0,0,0] I (0,0,0,0,1,(0,1),00 [
[0,0,0,0,1,0, 1] 1 0,0,0,0,1) [ (0,0,0,01 I
0,0,0,0,0) [ [0,0,0,0,0,0] [ 0,0,0,0,0,0,00 1[I
[0,0,0,0,0,0,0] 1[I 0,0,0,0,0,00 [ [0,0,0,0,0].

Then the point (co) has obviously chains of length S connecting it to the respective lines
[(1,0),0,0,1,0],[0,0,0,0, 01 and [0, 0, 0, 0]. This shows our assertion.

6 Projectivities
6.1 The groups of projectivities of the Suzuki quadrangles

We will now compute the groups of projectivities of the Suzuki quadrangles W (K, o).

For any subgroup G < K * that contains all squares (K2)* let PSLyK % G /(K?)™ denote
the 2-transitive subgroup of PGL, K whose stabilizer of 0 and oo on the projective line over
K is given by the set {x > bx | b € G).

In Section 2.3 the Suzuki quadrangles have been introduced as subquadrangles of the
symplectic quadrangles W(K). So the groups of projectivities of a Suzuki quadrangle
are subgroups of the respective groups of projectivities of the corresponding symplec-
tic quadrangle. Knarr [S] has proved that T(W(K)) = N (W(K)) = PGL,K and
M2 (W(K)) = H?_(W(K)) = PSL;K. Although the result is stated only for finite fields,
for the symplectic quadrangles it holds in the infinite case as well without any change in
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the proof being necessary. The proof of the next theorem is also similar to that result and
hence we omit the proof. Note that PSL,; K” x (K 2y J(K?*) ™ is contained in PSL,K.

Theorem E

M(W(K,0)) = T (W(K,o)) = PSL,K x(K*)*/(K?)™
= NM2(W(K,0)) = NP(W(K,0)).

The action is equivalent to the natural action of PSLy K x(K?)* /(K?)™ on the projective
line over K.

6.2 The groups of projectivities of the Ree octagons

For the finite Ree octagons O(2%*1y the groups of projectivities have been determined by
Knarr [5].

Theorem F

M(O(K,0)) = .(O(K, o)) = PSLKxKt/(K»)™

and

NMP(0(K,0)) = N2(0(K,0)) = GSz(K, o).

The actions are equivalent to the natural actions of PSLoK x K1 /(K?)™ (resp. GSz(K , o))
on the projective line over K (resp. the Suzuki-Tits ovoid).

Proof: We have IT = I1,; this follows from the existence of the grid configurations, cp.
Section 5.2; it also follows from the regularity of the lines in the Suzuki quadrangles by
virtue of W(K, ) < O(K, o). Dually I1? = I'I_l: because of the existence of the dual grid
configurations, cp. Section 5.2.

According to Tits [13], p. 5, and [18], 1.8.2, we have (Ujpy}, Ujg+)) = SL, K = PSL, K
acting on the points of the line {oo] as PSLy K acts naturally on the projective line, and
dually (U, Uiy} = Sz(K, o) acting on the pencil of lines through (oo) as on the Suzuki-
Tits ovoid.

The action of H %X.%) has been determined in (4.2). So we infer

HOED) 5k ovioon = HK, Dlok.ayqoon = {(@) = (Aa)| A € K1),
HO®D ok ayoon = H (1, K)ok oxoon = (k] = [B® k]| B € K*}.

The stabilizer of (0) and (c0) inside the group (U, Ujee)) acting on the points of the
line [00] equals {(a) — (b%a) | b € K*}. The dual is stated in Section 2.4, @]

Remark Becauseof W(K, o) < O(K, o) we haveimmediately PSL, K x (K7)* /(KD
I1. For perfect K (e.g. K finite) the result is [T = 1, = PGL;K = PSL;K and
Mn? = Hf = GSz(K,o0) = Sz(K, 0).

<
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