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Abstract. We use the character-table of PGL(2, q) to determine the subsets of that group acting uniformly
3-homogeneously on the projective line.
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1 Introduction

A set S of permutations on n letters is u-uniformly t-homogeneous if for every pair A, B
of unordered t-subsets, the same number (u, = 0 of permutations in 5 carry A into B. If the
parameter u = 0 is not specified, we speak of a uniformly t-homogeneous set of permu-
tations. The set 5 is also called an APAu(t, n,n), where "APA" stands for "authentication
perpendicular array." This stems from an application in the cryptographical theory of un-
conditional secrecy and authentication (see [1,2,8]). In this paper we determine completely
the subsets of PGL(2, q), which are uniformly 3-homogeneous on the projective line.

Theorem 1 The S be a uniformly 3-homogeneous proper subset of the group PGL(2, q),
q > 4. Then one of the following holds:

(i) S = PSL(2, q)orS = PGL(2, q) - PSL(2, q), q = 3(mod 4).
(ii) q € {5, 7, 8}, S is 3-uniformly 3-homogeneous.

The proof is based on properties of the characters of PGL(2, q) and will be given in Section
2. It is essentially a corollary of the following:

Theorem 2 Let p be the permutation character of PGL(2, q) on unordered 3-subsets of
the projective line, where q > 8. Then the following holds:

If q = 3(mod 4), then every irreducible character of PGL(2, q) is a constituent of p.
If q = 3(mod 4), then sgn (where sgn(g) = 1 if g € PSL(2, q), sgn(g) = —1 otherwise)
is the only irreducible character which is not a constituent of p.

It is well-known and easily checked that PSL(2, q) is a uniformly 3-homogeneous proper
subgroup of PGL(2, q) if and only if q = 3(mod 4). This explains Theorem 1, (i). It also
shows that the case q = 1 of Theorem 1 is not very interesting. The exceptional cases q = 5
and q = 9 deserve attention: In [1] a 3-uniformly 3-homogeneous subset of PGL(2, 8)
has been constructed. It was shown that this leads to the construction of authentication
perpendicular arrays
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and to cryptocodes achieving perfect 3-fold secrecy, which are also 2-fold secure against
spoofing . The situation in case q = 5 is quite interesting:

Theorem 3

(i) Let F be a subgroup of order 5 of PSL(2, 5). Then PSL(2, 5) contains a 2-uniformly
2-homogeneous subset SQ (an APA2(2, 6, 6)), which is the union of two double cosets
of F (see [1, Theorem 12]).

(ii) Let g € PGL(2, 5) - PSL(2, 5). Then S = S0 U S0g is 3-uniformly It-homogeneous
(an A P A3(3,6,6)).

Proof: (i) was proved in [1]. The group PGL(2,5) is transitive on the 3-subsets of the
projective line, but PSL(2, 5) has two orbits, each of length 10. It is easily checked, that
the number of permutations from S0 mapping the 3-set A onto the 3-set B is exactly 3 if A
and B are in the same PSL(2, 5)-orbit (the number is of course 0 otherwise). As g maps
the two PSL(2, 5)-orbits on 3-sets onto each other, (ii) follows. O

An APA3(3, 6, 6) has already been constructed in [6]. The author wants to thank G. HiB
for a number of helpful discussions.

2 Proof of Theorems 1 and 2

Let G = PGL(2, q), D(3) the complex permutation representation of G on unordered 3-
subsets of the projective line, and V the complex vector-space of elements f = E g e G a g g e
[G] satisfying

(*) D(f) = 0 for every irreducible non-principal constituent D of D(3).

Let S C G and S = EgeG g the corresponding element in Z[G]. It has been shown in [1]
that S is uniformly 3-homogeneous if and only if S e V. It follows from the Schur relations
([5, p. 32]) that

where D runs through the similarity classes of non-principal irreducible constituents of
D(3).

Let q > 8 and assume Theorem 2 is proved. As the sign-character is linear, we get

If dim(V) = 1, then G is the only subset S of G satisfying S e V, In case q =
3(mod 4),q > 8 a basis of V is given by PSL(2, q) and G -PSL(2,q). Thus Theo-
rem 2 implies Theorem 1 if q > 8. We turn to the proof of Theorem 2. For the con-
venience of the reader, we reproduce the character-table of PGL(2, q). Let a and ft be
primitive (q — l)st and (q + l)st roots of unity, a and b elements of orders (q — 1) and
(q + 1), respectively. In case q = 2?,G has q + 1 conjugacy-classes with representatives
1 , z , a r , b s ( r = 1 , 2 , . . . , ( q -2)/2,s = 1 , 2 , . . . , q/2), where z is an involution.
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Table 1. The character table of SL(2, 2f ).

1
St
X,
oj

1

1
1

9 + 1
9 - 1

z

1
0
1

-1

ar

I
1

a" + a-ir

0

bs

1
-1
0

-(BJs + p-JS)

Here i= 1, 2 , . . . , (q - 2)/2; j = 1 , 2 , . . . , q/2.
This can be found in [4].
For q odd, the character table of PGL(2, q) is not as easy to be found in the literature.

Steinberg's paper [7] is not correct. The easiest way is to use Deligne-Lusztig theory, even
in this smallest of all cases.

PGL(2, q), q odd, has q + 2 conjugacy classes with representatives 1, u, ar, bs, z - , z +
(r = 1,2, . . , (q — 3)/2, s — 1, 2, ..(q — l)/2), where u is unipotent of order p, z-
= a(q-1)/2, z+ = b(q+1)/2 are involutions. We have

Table 2. The character table of PGL(2, q), q odd.

1
sgn
S/
sgn • 5;
Xi
0;

1

1

1

1

1

9 + 1

9-1

u

1
1
0
0
1

-1

a'

1

(-1)'
1

(-Dr

or l r+a- l r

0

Z-

1
(_1)(q- 1)/2

1
(-1)(q-1)/2

2(-t)i

0

bs

i
(-1)s

-1
(_1)s+1

0
_(B

js
 +B -JS)

z+

1
(_l)(q+1)2

-1
(_l)<«-0/2

0

2(-lH+1

Here r,i = l,2,.., (q - 3)/2; s,j= 1,2,. . , (q - l)/2. Thus x; are the characters RT e,
where T is the maximal split torus and © is in general position, ©y = —RT,&, where T
is the unique maximal non-split torus and © is in general position (see [3]). Let p be the
character of Dm, H = 83, and x an irreducible character of G. It is clear, by Frobenius
reciprocity, that x is a constituent of p if and only

It is now a trivial task to check that Theorem 2, and with it Theorem 1 for q > 8, are
true. The exceptional cases q = 5 and q = 8 have been dealt with in the introduction.
Only the case PGL(2,7) remains to be considered. We know that PSL(2, 7) is 3-uniformly
3-homogeneous. Consider the character table of PGL(2, 7). It follows from case 6 above
that sgn and xi are the only irreducible characters of PGL(2, 7) which are not constituents
of p. Let S be a /z-uniformly 3-homogeneous subset of PGL(2, 7). We want to show fj, > 3.



102 BIERBRAUER

We can and will assume 1 e S. Let 07, a^, 03,02-, a&A, 04, aSB, 02+ be the numbers of ele-
ments in S which belong to the conjugacy-classes of u, a, a2, z_, b, b2, b^, z+, respectively.
Property (*) implies in particular

where/ is the character of an irreducible constituent!) ^ 1 of £>(3). Thus each non-principal
constituent of D(3) yields a linear equation for the above parameters:

It follows «4 = 2fl2+-

In conjunction with (/2) this shows

(50 - (sgn • St) yields then

Thus all the parameters are expressed in terms of a2+ and 02-. Summing up we get

It follows (j, = 0(mod 3) and we are done.
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