Journal of Algebraic Combinatorics 4 (1995), 99-102 © 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

The Uniformly 3-Homogeneous Subsets of PGL(2, q)

JÜRGEN BIERBRAUER

Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931

Received July 13, 1992; Revised May 16, 1994

Abstract. We use the character-table of PGL(2, q) to determine the subsets of that group acting uniformly 3-homogeneously on the projective line.

Keywords: authentication, secrecy, permutation, group, character-table, perpendicular array

1 Introduction

A set S of permutations on n letters is μ -uniformly t-homogeneous if for every pair A, B of unordered t-subsets, the same number $\mu \neq 0$ of permutations in S carry A into B. If the parameter $\mu \neq 0$ is not specified, we speak of a uniformly t-homogeneous set of permutations. The set S is also called an $APA_{\mu}(t, n, n)$, where "APA" stands for "authentication perpendicular array." This stems from an application in the cryptographical theory of unconditional secrecy and authentication (see [1, 2, 8]). In this paper we determine completely the subsets of PGL(2, q), which are uniformly 3-homogeneous on the projective line.

Theorem 1 The S be a uniformly 3-homogeneous proper subset of the group PGL(2, q), $q \ge 4$. Then one of the following holds:

(i) S = PSL(2, q) or $S = PGL(2, q) - PSL(2, q), q \equiv 3 \pmod{4}$. (ii) $q \in \{5, 7, 8\}, S$ is 3-uniformly 3-homogeneous.

The proof is based on properties of the characters of PGL(2, q) and will be given in Section 2. It is essentially a corollary of the following:

Theorem 2 Let ρ be the permutation character of PGL(2, q) on unordered 3-subsets of the projective line, where q > 8. Then the following holds:

If $q \neq 3 \pmod{4}$, then every irreducible character of PGL(2, q) is a constituent of ρ . If $q \equiv 3 \pmod{4}$, then sgn (where sgn(g) = 1 if $g \in PSL(2, q)$, sgn(g) = -1 otherwise) is the only irreducible character which is not a constituent of ρ .

It is well-known and easily checked that PSL(2, q) is a uniformly 3-homogeneous proper subgroup of PGL(2, q) if and only if $q \equiv 3 \pmod{4}$. This explains Theorem 1, (i). It also shows that the case q = 7 of Theorem 1 is not very interesting. The exceptional cases q = 5and q = 9 deserve attention: In [1] a 3-uniformly 3-homogeneous subset of PGL(2, 8)has been constructed. It was shown that this leads to the construction of authentication perpendicular arrays

$$APA_3(3, 9, 8^f + 1), f \ge 1,$$

and to cryptocodes achieving perfect 3-fold secrecy, which are also 2-fold secure against spoofing. The situation in case q = 5 is quite interesting:

Theorem 3

- (i) Let F be a subgroup of order 5 of PSL(2, 5). Then PSL(2, 5) contains a 2-uniformly 2-homogeneous subset S₀ (an APA₂(2, 6, 6)), which is the union of two double cosets of F (see [1, Theorem 12]).
- (ii) Let $g \in PGL(2, 5) PSL(2, 5)$. Then $S = S_0 \cup S_0 g$ is 3-uniformly 3-homogeneous (an $APA_3(3, 6, 6)$).

Proof: (i) was proved in [1]. The group PGL(2, 5) is transitive on the 3-subsets of the projective line, but PSL(2, 5) has two orbits, each of length 10. It is easily checked, that the number of permutations from S_0 mapping the 3-set A onto the 3-set B is exactly 3 if A and B are in the same PSL(2, 5)-orbit (the number is of course 0 otherwise). As g maps the two PSL(2, 5)-orbits on 3-sets onto each other, (ii) follows.

An APA₃(3, 6, 6) has already been constructed in [6]. The author wants to thank G. Hiß for a number of helpful discussions.

2 Proof of Theorems 1 and 2

Let G = PGL(2, q), $D^{(3)}$ the complex permutation representation of G on unordered 3subsets of the projective line, and V the complex vector-space of elements $f = \sum_{g \in G} a_g g \in [G]$ satisfying

(*) D(f) = 0 for every irreducible non-principal constituent D of $D^{(3)}$.

Let $S \subset G$ and $\overline{S} = \sum_{g \in G} g$ the corresponding element in $\mathbb{Z}[G]$. It has been shown in [1] that S is uniformly 3-homogeneous if and only if $\overline{S} \in V$. It follows from the Schur relations ([5, p. 32]) that

$$\dim(V) = |G| - \sum \deg(D)^2,$$

where D runs through the similarity classes of non-principal irreducible constituents of $D^{(3)}$.

Let q > 8 and assume Theorem 2 is proved. As the sign-character is linear, we get

$$\dim(V) = \begin{cases} 1 & \text{if } q \not\equiv 3 \pmod{4}, q > 8, \\ 2 & \text{if } q \equiv 3 \pmod{4}, q > 8. \end{cases}$$

If dim(V) = 1, then G is the only subset S of G satisfying $\overline{S} \in V$. In case $q \equiv 3 \pmod{4}$, q > 8 a basis of V is given by $\overline{PSL(2, q)}$ and $\overline{G-PSL(2, q)}$. Thus Theorem 2 implies Theorem 1 if q > 8. We turn to the proof of Theorem 2. For the convenience of the reader, we reproduce the character-table of PGL(2, q). Let α and β be primitive $(q - 1)^{\text{st}}$ and $(q + 1)^{\text{st}}$ roots of unity, a and b elements of orders (q - 1) and (q + 1), respectively. In case $q = 2^f$, G has q + 1 conjugacy-classes with representatives $1, z, a^r, b^s(r = 1, 2, ..., (q - 2)/2, s = 1, 2, ..., q/2)$, where z is an involution.

Table 1. The character table of $SL(2, 2^f)$.

	1	z	ar	b^s
1	1	1	1	1
St	4	0	1	-1
Xi	q+1	1	$\alpha^{ir} + \alpha^{-ir}$	0
Θ_j	q - 1	-1	0	$-(\beta^{js}+\beta^{-js})$

Here i = 1, 2, ..., (q - 2)/2; j = 1, 2, ..., q/2. This can be found in [4].

For q odd, the character table of PGL(2, q) is not as easy to be found in the literature. Steinberg's paper [7] is not correct. The easiest way is to use Deligne-Lusztig theory, even in this smallest of all cases.

PGL(2, q), q odd, has q + 2 conjugacy classes with representatives 1, u, a^r, b^s, z_-, z_+ (r = 1, 2, ..., (q - 3)/2, s = 1, 2, ..., (q - 1)/2), where u is unipotent of order p, z_- = $a^{(q-1)/2}$, $z_+ = b^{(q+1)/2}$ are involutions. We have

$$|C_G(u)| = q, |C_G(a^r)| = q - 1, |C_G(b^s)| = q + 1,$$

$$|C_G(z_-)| = 2(q - 1), |C_G(z_+)| = 2(q + 1).$$

Table 2.	The character	table of PC	GL(2, q), q odd
----------	---------------	-------------	---------	----------

	1	и	a ^r	Z	b ^s	z.+
1	1	1	1	1	1	1
sgn	1	1	$(-1)^{r}$	$(-1)^{(q-1)/2}$	$(-1)^{s}$	$(-1)^{(q+1)/2}$
St	9	0	1	1	-1	-1
sgn · St	q	0	$(-1)^{r}$	$(-1)^{(q-1)/2}$	$(-1)^{s+1}$	$(-1)^{(q-1)/2}$
Xi	q + 1	1	$\alpha^{ir} + \alpha^{-ir}$	$2(-1)^{i}$	0	0
Θ_j	q - 1	-1	0	0	$-(\beta^{js}+\beta^{-js})$	$2(-1)^{j+1}$

Here r, i = 1, 2, ..., (q - 3)/2; s, j = 1, 2, ..., (q - 1)/2. Thus χ_i are the characters $R_{T,\Theta}$, where T is the maximal split torus and Θ is in general position, $\Theta_j = -R_{T,\Theta}$, where T is the unique maximal non-split torus and Θ is in general position (see [3]). Let ρ be the character of $D^{(3)}$, $H \cong S_3$, and χ an irreducible character of G. It is clear, by Frobenius reciprocity, that χ is a constituent of ρ if and only

$$\sum_{h\in H}\chi(h)\neq 0.$$

It is now a trivial task to check that Theorem 2, and with it Theorem 1 for q > 8, are true. The exceptional cases q = 5 and q = 8 have been dealt with in the introduction. Only the case PGL(2, 7) remains to be considered. We know that PSL(2, 7) is 3-uniformly 3-homogeneous. Consider the character table of PGL(2, 7). It follows from case 6 above that sgn and χ_1 are the only irreducible characters of PGL(2, 7) which are not constituents of ρ . Let S be a μ -uniformly 3-homogeneous subset of PGL(2, 7). We want to show $\mu \ge 3$.

We can and will assume $1 \in S$. Let $a_7, a_6, a_3, a_{2-}, a_{8A}, a_4, a_{8B}, a_{2+}$ be the numbers of elements in S which belong to the conjugacy-classes of $u, a, a^2, z_-, b, b^2, b^3, z_+$, respectively. Property (*) implies in particular

$$\sum_{g\in G}\chi(g)=0,$$

where χ is the character of an irreducible constituent $D \neq 1$ of $D^{(3)}$. Thus each non-principal constituent of $D^{(3)}$ yields a linear equation for the above parameters:

$$a_7 = 6 + 2a_4 - 2a_{2+} \tag{\Theta}_2$$

$$a_{8A} = a_{8B}, \quad a_7 = 6 + 2a_{2+} \tag{\Theta_3}$$

It follows $a_4 = 2a_{2+}$.

$$a_3 = 3a_{2+} - 7 \qquad (St) + (\operatorname{sgn} \cdot St)$$

In conjunction with (χ_2) this shows

$$a_6 = 21 - a_{2+} + 2a_{2-}$$

 $(St) - (sgn \cdot St)$ yields then

$$a_8 = 21 - a_{2+} + 2a_{2-}$$

Thus all the parameters are expressed in terms of a_{2+} and a_{2-} . Summing up we get

$$|S| = \mu \binom{8}{3} = 56\mu = 1 + a_7 + a_6 + a_3 + a_{2-} + a_{8A} + a_4 + a_{8B} + a_{2+}$$
$$= 42 + 6a_{2+} + 6a_{2-}.$$

It follows $\mu \equiv 0 \pmod{3}$ and we are done.

References

- 1. J. Bierbrauer and Tran van Trung, "Some highly symmetric authentication perpendicular arrays," *Designs, Codes and Cryptography* 1 (1992), 307-319.
- 2. J. Bierbrauer, Tran van Trung, "Halving PGL(2, 2^f), f odd: a series of cryptocodes," Designs, Codes and Cryptography 1 (1991), 141-148.
- 3. Roger W. Carter, Finite groups of Lie type, Wiley, 1985.
- 4. L. Dornhoff, Group representation theory, Dekker, New York, 1971.
- 5. I. Martin Isaacs, Character theory of finite groups, Academic Press, 1976.
- 6. E.S. Kramer, D. L. Kreher, R. Rees, and D.R Stinson, "On perpendicular arrays with $t \ge 3$," Ars Combinatoria **28** (1989), 215–223.
- 7. N. Steinberg, "The representations of GL(3, q), GL(4, q), PGL(3, q), and PGL(4, q)," Canadian Journal of Mathematics 3 (1951), 225–235.
- 8. D.R. Stinson, "The combinatorics of authentication and secrecy codes," *Journal of Cryptology* 2 (1990), 23-49.