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Abstract. For each element X of codimension two of the intersection lattice of a hyperplane arrangement we
define a differential logarithmic 1-forms tax with poles along the arrangement. Then we describe the class of
arrangements for which forms wX generate the whole module of the logarithmic 1-forms with poles along the
arrangement. The description is done in terms of linear relations among the functionals defining the hyperplanes.
We construct a minimal free resolution of the module generated by wx that in particular defines the projective
dimension of this module. In order to study relations among wx we construct free resolutions of certain ideals of
a polynomial ring generated by products of linear forms. We give examples and discuss possible generalizations
of the results.
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Introduction

Let A be an arrangement of n (linear) hyperplanes in an l-dimensional linear space V over
an arbitrary field F (an l-arrangement). For each H e A fix a linear form aH e V*
such that KeraH = H and put Q = | | H e A a H . Denote by S the symmetric algebra
of V* that is naturally isomorphic to F [ x 1 , . . . ,xl] for any choice of basis ( x 1 , ..., xl)
of V*. Denote by O p [ V ] the S-module of all differential p-forms on V with coef-
ficients from S. Of course O P [ V ] is free with the natural basis (dxi1 A dxi2 A • • • A
dxip)1<i1<i2<...ip<l. Also denote by OP(V) the S-module of differential p-forms with co-
efficients from the field (S) of quotients of S, i.e., O P ( V ) = OP[V] xs (S). Clearly all
the modules Op( V) can be graded by the degrees of coefficients at elements of the natural
bases.

The modules of logarithmic differential forms with poles along a divisor were defined
by Deligne [2] for a divisor with normal crossings and by Saito [9] for an arbitrary divisor.
The following specialization of these modules to the union of hyperplanes (and to the
category of S-modules) became the subject of extensive studies in arrangement theory. Put
Op(A) = {o e Op(V) \ Qw e Q P [ V ] , Qdw e O p + 1 [ V ] } and call it the S-module
of logarithmic p-forms with poles along A. Under the condition 77 = Qo e Op[V] the
condition Qdo e OP+1[V] is equivalent to daH A aH A n e a H O p + 1 [ V ] for every H e A.

The structure of modules O p ( A ) is known to certain extent for some classes of arrange-
ments. For generic arrangements (i.e., in the case where every l forms aH are linearly
independent) certain free resolutions of these modules were constructed by Rose and Terao
in [8]. If A is just r-generic (3 < r < l — 1), i.e., every r forms aH are linear independent,
then Ziegler [14] announced that every module O P (A) with p < r — 2 was generated by
the exterior products of the forms daH. He proved this for r = 3 and even constructed



a resolution of the module O1(A). For r > 3 a complete proof was given by Lee [5].
Another class of arrangements that has been studied is the class of free arrangements, i.e.,
arrangements A for which O1 (A) is a free S-module. Then every module OP(A) is free
that is equivalent to the fact that this module is generated by (l

p) elements. Explicit bases
for Ol-1 (A) have been found in [3] for certain subclasses of free arrangements.

Let us focus our attention now on O1 (A), the module that often defines the structure of all
modules Op(A). The forms daH belong to this module and according to [14] generate the
whole module if and only if A is 3-generic. Introducing the intersection lattice L = L(A),
i.e., the set of all intersections of hyperplanes from A ordered opposite to inclusion, we can
view daH as the forms corresponding to the atoms of L. For A that is not 3-generic it is
natural to look for forms in O1 (A) that correspond to the elements X of L of codimension
2, i.e., the intersections of pairs of hyperplanes from A. Then the natural question arises
for what arrangements these forms generate the whole module.

In this paper, for each X e L of codimension 2 we define a unique (up to a constant)
form ox e O l (A) and describe the class of arrangements for which these forms together
with the form dx1 generate O1 (A). This class is given by the condition that for any subset
B C {aH | H € A} of rank 3 all linear relations of length 3 among aH e B are linearly
independent (see Theorem 3.1). Naturally this class includes all the 3-generic arrangements
since they do not have linear relations of length 3 at all. This class can be viewed as the
collection of general position central arrangements using a weaker definition of the general
position than the usual one. We also find a minimal free resolution of the module O1 (A) for
A from this class. In fact we construct a minimal free resolution of the module generated
by the forms OX for any arrangement (see Theorem 2.9). In order to find all the relations
among these forms we need to resolve certain ideals of S generated by products of linear
forms. This is done in Section 1 (see Theorem 1.3). In Section 4, we give examples and
suggest possible generalizations of the main results of the paper.

Besides the notation introduce above we will use the following. The lattice L is ranked by
codimension of its elements in V. Denote the rank of L by m. Clearly m is the dimension of
the subspace W of V* generated by all aH whence m < l. If m = l (equivalently UHeA H
= 0) then A is called essential. If A is not essential we will always assume that a basis
( x 1 , . . . , xl) in V* is chosen so that x1 xm are among aH and thus form a basis in W.
The forms aH define an essential m-arrangement A1 in W*. It is easy to compute (e.g.,
cf. [10]) that O1 (A) = ( Q l ( A 1 ) x F F [ x m + 1 , . . . . x l } ) + s ( F [ X l , . . . , xm}xFE l

i=m+1 Sdx i).
For each i, 0 < i < m, we put L(i) = [X e L \ rank X = i). Finally, for each X e L,

we put Ax = (H € A \ H C X), Qx = Y\HeAx aH, and nx = Qx.

1. Polynomial ideals generated by products of linear forms

Let A be an l-arrangement. With every nonempty A C L we associate the (homogeneous)
ideal J( A) of S generated by {px | X e A}. Clearly J( A) does not change if one substitutes
for A the subset of all maximal elements of A. Thus without loss of generality we can assume
that all elements of A are pairwise incomparable. The goal of this section is to exhibit a
minimal free resolution of the graded S-module J (A).

Denote by K = ( 0 - > K r -> -> Ki -> Ki-1 -> > K0 -> k-1 = F -> 0) the
chain complex over F of the simplex with the set of vertices A. In particular Ki has the
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where Av = Uxev Ax for every v c L. Also put K-1 = J(A) and define the S-linear
map d0; K0 -> K-1 by d0(X) = pX for every X e A. n

The following lemma is straightforward.

we obtain the result.
Now we define a sequence of S-modules and their homomorphisms. Put Ki = Ki xF

S, i > 0, and define the S-linear map di: Ki -> Ki-1 by the following matrix (with respect
to the standard bases of Kj)

basis consisting of all the subsets of A with i + 1 elements and di is given in this basis by a
matrix (dp,T) where a, T c A, \a\ = i, \T\ = i + 1. The entry da,T may be non-zero only
if a C T.

We will also use other complexes over F defined by A. For every Z e L put Az = [X e
A | X > Z] and fix Y € L, Y # V. Then for every Z < Y define two subcomplexes of
K: K>z whose linear spaces K>Z,i are generated by subsets of Az and K>z whose linear
spaces K>z,i are generated by subsets a of AZ with the extra condition Aa X A Y > Z.
Finally put Kz = K>Z/K>Z.

Lemma 1.1 For every Z €. L (Z < Y) the complex Kz is exact in any dimension i such
that i > rank Y.

Proof: First notice that if Az = t then K<z,i = 0 for every i > 0 and the result follows.
Thus it suffices to consider the case where Az #t whence K>z is the complex of a (non-
empty) simplex and thus exact. Denote by Z1,z2, ..., Zk all the successors of Z such
that Zi < Y, i = 1 k, and Azi # t. Clearly K>z = Ek

i=1 K>ZI (recall that all the
complexes under consideration are subcomplexes of K so it is possible to add them). Again
it suffices to consider the general case where k > 0 since otherwise the result is immediate.

In the general case we need to study K>z. For that we define two posets. The poset
P\ consists of all ordered by inclusion nonempty subsets a of A such that Va X > Zi

for some i. The poset P2 is the subposet of Lop defined by P2 = {U e Ui[Y, Zi] |
AU #t}. Define the order preserving map p: P1-> P2 via t(a) = Vf X A Y. For
every Z e P2 we have p - l ({U e P2 | U < Z}) = {a & P1 \Vn X > Z} that
is the poset with the unique maximal element Az and thus contractible. Thus by [7]
p is a homotopy equivalence. Now consider two cases. If Y e P2 (i.e., Ay #t)
then F is the greatest element of P2 whence P2 is contractible. Then P1 is contractible
also.

Suppose Y e P2. Then H j ( P 1 ) = 0 for i > rank Y — 1 since the length of any linearly
ordered set in P2 is smaller than rankY. In any case since K>z is homotopy equivalent to
the order complex of P1 we have Hi(K>z) = 0 for i > rankY — 1. Applying the homology
long exact sequence corresponding to the short exact sequence
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Lemma 1.2 The sequence K = ( K i , di) is a complex and do is surjective.

Now we are ready to prove the main result of the section.

Theorem 1.3 For every nonempty subset A of L the complex K is exact, i.e., it is a free
resolution of the S-module J(A).

Proof: We will prove the result by checking the conditions (a)-(c) of [6, Sect. 6.4, Theorem
15]. For that we use the evaluation of K at points of V (cf. [12, p. 437]). For every x e V
define the complex K (x) of linear spaces putting K(x)i = Kj for i > — 1 and defining the
differential d i ( x ) by evaluating at x the matrix of di. Now we consider two cases.

(l)Let x be in general position with respect to A, i.e., aH (x)# 0 for every H e A. Define
for each a c L the subarrangement Aa = Uxep AX and the polynomial Qa = ||HeAp aH.
Then the matrix for di (x) can be obtained from the matrix for di by multiplying the a-row
by Qa (x) and the T-column by Qr(x). Since all the polynomials Qa do not vanish at x the
multiplication do not change the rank of the matrices. Thus the exactness of K implies the
exactness of K(x). Since besides the evaluation at x does not increase the rank of a matrix
we have
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whence

In a similar way, using induction, one can show that

for every i, 0 < i < r. These are the conditions (b) and (c) from [6].
(2) Now let x e V be such that Ax = {H e A \ a H ( x ) = 0} #t. Then put

Y = UHeAx H and notice that AY = Ax. In particular Y # V. Now the evaluation at
x annihilates some entries of the matrices of di. More precisely dp,T(x) = 0 if and only
if Vn X v Y # V r X v Y . This means that K(x) = + z K z ( x ) where the subcomplex
KZ(X) of K(x) is generated by [p c A | Va X A Y = Z}. Now we use Lemma 1.1. The
matrix of a differential of complex KZ(X) can be obtained from the matrix of the respective
differential of complex Kz by multiplying its rows and columns by the same factors as in
the case (1). Because of the restrictions on the generators a and t these factors are again
non-zero whence the multiplication preserves the ranks of the differentials. According to
Lemma 1.1 the complex KZ is exact in dimension greater than or equal to l — dim Y. This
implies that for k > codim Y at least one minor of size rank dk of the matrix of dk is not
annihilated at x or, in other words, x does not belong to the variety of the Fitting ideal Ik of
dk. Thus the variety of Ik lies in the union of elements of L of codimension greater than k.
Extending F to an algebraically closed field and applying the Hilbert Nullstellensatz one
sees that any prime ideal containing Ik contains at least k + 1 linearly independent forms
aH (H e A). Thus depth Ik > k + 1 which is the condition (a) of [6]. This completes the
proof of the theorem. D
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Corollary 1.4 Let ExeL(2) Pxpx = 0 for some px € S. Then for every X we have

px e EHcx SQH. If besides for every X with px # 0 we have H1 D X then px e SQx.

Proof: Let A = L(2) and consider the resolution K of J(A). Since (px)x e Ker d0 =
Im d1 we have ExeA pxX=E{X,Y}CA cxx(GxX - QyY) for some CXY e S where
axy = aH if ,Ax n Ay = {H} and axy = 1 if Ax n Ay = t. Comparing the coefficients
of X we obtain the result. D

Remark 1.5 Since ideal J = J ( A ) is homogeneous one can consider its Hilbert series
P ( J , t) or the polynomial p ( J , t) where P ( J , t) = p(J,t). Then Theorem 1.3 gives

where xk = Ei>0(-1)idi(k) with d i ( k ) = |{p C A | |p| = i + 1, |Ap| = k}|.

2. A free resolution of a module of logarithmic forms

In this section we define certain canonical logarithmic 1-forms with poles along A and
construct a minimal free resolution of the module generated by these forms.

To make the notation simplier let us agree that any time when we use a lower or an
upper index for H e A we use the same index for aH. For instance, we linearly or-
der A and use ai for a HI. We will always assume that ai = Xi for i = 1 , . . . , m.
For every X e L(2) we denote by H1

x, H2
x the first two elements from Ax in this

ordering.
Recall that O1 = O1 (A) is the S-module of all logarithmic 1-forms with poles along A.

For each X e L(2) we define the form OX by

One checks easily that ox e O1. Also if one changes the ordering, i.e., uses other a1, a'2
from Ax in the definition of ox, then ox is multiplied by the determinant of the transition
matrix from the basis (a1

x ,ax
2) to the basis (a1 ,a2) of AnnX C V*. In particular the

S-module O1 (A) generated by all the ox (X e L(2)) does not depend on the ordering of
A. Since each OX is homogeneous in the natural grading of O1 (V) the module O1 (A) has
the structure of a graded S-module.

In the rest of the section the elements X of L with X C H1 will play a special part.
Every H e A, H # H1 defines XH = H1 O H e L(2) (of course it is possible that
XHi = XHJ for i # j). Then we have a1

xH = x1 and aH = tHx1 + sHa2
xH. To simplify

computations we will normalize every aH (H # H1) by the condition SH = 1 and by
virtue of this assume from now on that aH = t H x 1 + a2

xH. Putting QH = QxH we have

oXH= Q H ( X 1 d a H - aH'dx1) for any H' e AXH, H ' # H 1 .
Now denote by £0 the free S-module with basis L(2) and by S0 the S-linear surjective

map E0 ->O 1 {A} sending X to wx. First we study the kernel of S0.
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Denote by C = (0 -> Ck -> Ck-1 - > • • • • - > C0 ->• 0) the chain complex over F
of the atomic complex of the subposet L(l) U L(2) of L. In particular Ci is the linear
space spanned by all i + 1-element subsets of A, each lying in AX for some X e L(2).
Let z = E1<i<j<n C i j ( H i , H j } be a 1-cycle in C. Every 2-element set {Hi, Hj} defines
Xij = Hi C Hj e L(2). We define r1(z) e E0 by

where Qij = Qxij and Ay is the determinant of the transition matrix from (a1
x, a2

x) to
(ai,aj) for X = Xij.

Lemma 2.1
(i) TTie map z -> r1(z) w F-linear.

(ii) The element r1 (z) depends only on the homology class of z.
(iii) For every 1-cycle z we have r1 (z) e Kenp0.

Proof:
(i) is clear.

(ii) Due to (i) it suffices to show that r1 (z) = 0 for z being the boundary of a basic element
u of C2. Supposew = [Hi, Hj, Hk} C X (X e L(2))where i < j < k: and ak = aai+baj

with a, b € F. Then r1(z) = (aiaj- aaiak - baiak )x= aiajak(ak - aai - ba j)X = 0.

(iii) For arbitrary 1-cycle z = Ei<jcij{Hi,Hj} we have

because z is a cycle.

From now on for any z € H1 (C) we put r1 (z) = r1 (z) where z is an arbitrary cycle from
the class z.

Now let A: C0 -> V* be the linear map sending H € A to aH and R = R(A) = KerX,
i.e., R is the space of all F-linear relations among aH. Also let R0 be the subspace of R
generated by all the relations of length 3 that include x1. According to the convention above
each of these relations is a scalar multiple of

for some non-zero c e F.
For every p = EHeAaHHeR we put

(recall that XH = H n H1 and QH = QXH).
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Lemma 2.2

(i) The map r2: R -> E0 is F-linear.
(ii) r2(R) c Ker p0.

(iii) Ker r2 = R0.

Proof:
(i) is clear,

(ii) For every p = EHeAaHHeR we have EH#H1 aHaH = -aH1x1 whence

On the other hand

since p e R. Put HX = H2
x and recall that aH = tHX1 + aX for every X C HI and

H D X, H # H1. Thus projecting (2.3) to x1 we obtain

Now we can put pH = H — t H H 1 — H X H e RXH for every H # H1, HXH and compute

by (2.2) and (2.4). Thus p = EaHpH € R0 which completes the proof. D

Lemmas 2.1 and 2.2 give two F-linear subspaces of Ker p0, namely k1 = r1(H1(C))
and K2 = r2(R). Their importance can be shown as follows.

Theorem 2.3 The sets K1 and K2 generate the whole S-module Ker p0.

(iii) One computes easily that r2(p) = 0 for every p of the form (2.1) whence R0 C Ker r2.
Conversely let p = EHeAHH e Kerr2, i.e, EH#H1AHQHXH=0. Thus for every
X e L(2) such that X c H1 we have
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Proof: Let q = ExeL(2) cx X e Ker p0 for some cx e S. This means that Ex cxox = 0.
Multiplying by Q we have Ex C x X x B i ( X ) = 0 for every i = 1 l0 where Bi(X) =
a2i

xa1
x — ax

1ia2
x with ax

j = El
i=1a

x
jixi for every j = 1.2. Due to Corollary 1.4 we have

c x B i ( X ) e EHeAx SaH. Since two of B 1 ( X ) , . . . , B 1 ( X ) are linearly independent and thus
a1

x can be expressed as their linear combination we have

for some qH € S. Clearly (2.5) implies that a1
x divides qHtx whence upon canceling a1

x

from (2.5) we have

where summation is taken over all 2-subsets {Hi, Hj} of AX • Now for every X e L (2) such
that X C H1 and for every Hi, Hj D X denote by zij the 1-cycle {H1, Hi} - { H 1 , Hj} -
{H i , HJ} of C. Due to (2.6) there exists a linear combination q\ = Esijr1(zij) e K1

(sij e S) such that in the representation q — q1 = E x d x X we have dx # 0 only if
X C H1. Using that q - q1 e Ker p0 we have similarly to the above Ex dxpxx1 = 0 and
upon canceling x1 we obtain £ x d x p x = 0. Applying now the second part of Corollary 1.4
we have

for every X. Recall that (x1 , x2,..., xm) is a maximal linear independent system in A
and xi = ai (i = 1 , . . . , m). For each X put px = H2

x — Em
i=1 ai(X)Hi, e R for some

ai(X) € F. Then due to (2.7) there exists a linear combination q2 = Exsxr2(px)eK2

(sx e S) such that in the representation q — q1 — q2 = Ex exX we have ex # 0 only if
xi e Ax for some i, 2 < i < m. For such an X we have wx = f x ( d x i — dx1) for some
rational function fx. Since dxi are linearly independent over S we have q — q1 — q2 = 0
whence q € K1 + K2. This completes the proof. D

Corollary 2.4 Put E\ = (H1 (C) + R ) x F S and define the S-linear map P1: E1 -> E0

via p 1 ( z ) = r 1 ( z ) f o r every z e H 1 (C) and p 1 ( p ) = r2(p) for every p e R. Then

is exact.

The result follows directly from Theorem 2.3.
Our next goal is to study Ker P1. First of all it is convenient to choose a specific basis

of H 1 (C) . For every X e L(2) such that X c H1 and for every H D X, H # Hx
1, put

z(X, H) = { H 1 , H 1
x } - {H 1 , H} - {Hx

1, H}. Clearly z(X, H) is a 1-cycle of C. Denote
by z(X, H) the respective homology class.

Lemma 2.5 The classes z(X, H)form a basis of H1 (C).
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Proof: First of all let us compute dim H\ (C). One of many ways to do this is to use the
Euler characteristic of the graph L (1 ) U L(2) that coincide with the Euler characteristic of
C. We have dim H1(C) = £XeL(2)(mx - 1) - (n - 1) = £XeL(2).xcH1(mx - 1) where
mx = \Ax\- Since on the other hand this is the number of classes z(X, H) it suffices to
prove that they generate H1 (C). But this follows easily from the fact that each 2-subset of
A belongs to C1.

Now we put RX = R(Ax) for every X e L(2) and notice that Rx C R. If for every
H e Ax we write

with aXH,bXH £ F then the elements H - axHH1
x - bXHH2

x with H e Ax\(H1
x, H2

x}
form a basis in Rx •

We are going to construct an F-linear map p : + x R x -> Ker p1. Fix X € L(2) and
tx = E H c X t X H H e Rx CR (txH eF). If X c HI put p(tx)=tx. If X C H1 put

In any case p(tx) can be viewed as an element of E1.

Lemma 2.6

Proof: (i) is obvious, (ii) Due to (i) it suffices to consider the case where t = H —
aX HH1

x - bXHH2
x for some X and H D X, H # H i

x,i = 1,2. If X c H1, then
S 1 p ( t ) = r2(t) = 0 by Lemma 2.2. (iii) Suppose X c H1. In this case

where X' = H, n H1
x, X" = H1 n H2

x, and XH = H1 n H. One can easily check that all
the terms in (2.8) cancel out which proves the result. D

Theorem 2.7 The S-module Ker P1 is generated by p(®x Rx).

Proof: Fix a basis ( p 1 , . . . , pk) of R and fix s € E1, i.e.,
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for some s(X, H), si e S. Assume that s e Ker P1. Applying P1 to s and considering the
coefficients of X we obtain for each X C H1

The equality (2.9) implies that s(X, H) = s'(X, H)aH for some s'(X, H) e S such that

of S-modules and their homomorphisms is a free resolution of O l (A) .

Proof: Modulo Corollary 2.4 and Theorem 2.7 we need to prove only that P2 is injective.
For that let us compute the ranks (over S) of the modules in (2.13). Put N = |L(2)| and
recall that mx = \Ax I for every X e L(2). Then it is easy to see that

Theorem 2.8 The sequence

Since besides s1 e Ker P1 and P1 = r2 x 1s on R x S we have by Lemma 2.2(iii) that
s1 e R0 x S. Thus s1 can be represented as a linear combination (over S) of p(tx) where
X c H1 and tx e Rx which completes the proof.

Theorem 2.7 justifies the following construction. Put £2 = +xeL(2)Rx x S and define
an S-linear map P2: E2 -> £1 via P2(t) = p ( t ) for every t e +xRx. Now we are able to
prove the main result of this section. D

for each B e B. The equality (2.12) means that s ' B (X) = EHCx s'B(X,H)H belongs to
Rx.

Now consider s1 = s + ExcH1 (EBeB BP(s 'B (X) ) ) . Clearly

Now for each X C H1 we put s'(X, H1X) = — E H C X , H # H 1 x s ' ( X , H ) a X H to achieve

If one fixes an F-basis B in S (e.g., consisting of monomials) and represent s'(X, H) =
EBeB s'B(X, H)B then (2.10) and (2.11) imply



where e = (1H1(C) + e) x 1s. Denote by pi (i = 0,1, 2) the projections of Ei to the first
summands in (2.15)-(2.17) and by pi the restrictions of pi to the first summands. Now we
can put So = S0, S1 = pop 1 € , and p2 = €-lnp1p2.

The surjectivity of SQ follows from the fact that for every X e L(2) with Ax =
{ a i , a j } (i < j) we have wx =dai - daj whence wx is a linear combination over 5

and

is exact.
(ii) The sequence (2.14) is a minimal resolution of O1 (A).

Proof:

(i) First put E'0 = Exex. SX. Then fix some splittings f.U -> R and P: +Rx-> T
of the projection R ->U and the embedding T C +Rx respectively. Thus we have
R = U' + e(U) and +Rx = T + T' where U' = Imf and T" = Ker p. Also denote
by H' the subspace of H 1 (C) generated by the homology classes of the cycles [ H 1 , Hi] —
{H1, Hj} - {H i , HJ] with m(Hi n Hj) = 2. Then H1(C) = H 1 ( C ) + H ' . This implies that
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(cf. proof of Lemma 2.5), and

This implies that E2
i=0 (-1)i-1rank (£i) = rank (O1 (A)) whence rank (Ker p2) = 0. Since

Ker p2 is a submodule of a free module it vanishes which concludes the proof.
In general the resolution (2.13) is not minimal. Our next goal is to modify it in oder

to get a minimal resolution. First put X = {X e L(2) \ m(X) > 3 or X C H1) and
E0 = ExexSX C E0. Then denote by So the restriction of S0 to £0. Also denote by C the
subcomplex of C generated by all the subsets of A each lying in one of sets AX with X e X.
Consider the F-linear map £: +xeL(2) RX-> R generated by the embeddings Rx C R and
put T = T(A) = Ker e and U = U(A) = Cokere. Finally put E1 = (H1(C) +U) x S
and £2 = T x S. D

Theorem 2.9

(i) S1 induces an S linear map P1: E1 -> E0 and S2 induces an S-linear map S2': E2 —> E1

such that the sequence
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of forms WY with Y c H1. The exactness of (2.14) in the other terms follows from the fact
that the projection of &\(H' x S) to E'0 in the decomposition (2.15) and the projection of
S2(T' x S) to U' x S in (2.16) are isomorphisms.
(ii) To prove the minimality of the sequence (2.14) let us notice that this sequence can be
made into a sequence of graded S-modules and homogeneous homomorphisms (with the
natural grading on O1 (A)). One way to do this is to put degX = n — mx, degz = 0,
deg u = 1, and deg t = 0 for every X e L(2), z € H 1 (C) , u e U, and t e T. Thus not
only all the maps pi become homogeneous but also all entries of their matrices in the natural
bases have positive degrees. Then the minimality of (2.14) follows from a well-known
criterion (e.g., see [11, p. 54. Lemma 4.4]). D

Corollary 2.10

(0 pds(O1(A))<2.
(ii) pds(O1(A)) < 1 if and only if T = 0.

(iii) The S-module Ol (A) is free if and only if A is formal (i.e., U = 0) and H1 (C) = 0.

3. Generating O1 (A)

In this section we are concerned with generators of the S-module O1 = O l (A) for a
(non-empty) arrangement A. To get rid of a trivial summand consider the S-linear map
p: Ol -> S defined by dxi -> xi for every i = 1, 2 , . . . , l . Put O1

0 = O1
0(A) = Ker p.

Since the map f -> f dx1 (f e S) splits p we have O1 = O1
0 +s S(dx1) whence it suffices

to find generators of O1
0. Clearly all the forms ux (X e L(2)) belong to O1

0(A). If A is not
essential there are also forms ni = dxi — xi dx1 (i = m + 1 , . . . , l) in O1

0(A). Denote the
module generated by all these forms by O1 (A). Clearly

where ^(A) is the free module generated by all ni.
The main goal of this section is to prove the following result.

Theorem 3.1 The equality

holds if and only if T (Ay) = 0 for every Y e L(3).

Notice that for an essential arrangement (3.1) means that all the forms wx together with
dx1 generate O l(A).

Also notice that if m < 3 then L(3) = 0. On the other hand O1
0(A) = El

i=2 Sni for
m = 1 and O1

0(A) = Swz + El
i=3 Sni for m = 2 where Z = QA H. In any case (3.1)

holds and this can be used as the base of induction on n.
We will need the following lemma whose proof appeared first in [1, Lemma 3.3.7].

Lemma 3.2 pd sQ
1

0 = pdsQ
1 < 1 - 2.



for some qx,rx e S such that £x qx = 0. Now notice that if X e L(2) and X c Hm then
either X € L'(2) and w'x = xmwx or wx = ±(dxm - dax). In any case xmwx e Q1(B).
Thus we can ignore the summands xmrx in (3.3) and assume that w = Zx qx -Qx wx where
ZX qx = 0. This assumption leads to

where the bar above a polynomial means its evaluation at xm = 0. Since ax divides ny for
every Y = X every ax cancels out. Now by similar reason if H D X and aH = xm, ax
then aH divides sx. This implies that

for some sx,Si e S. Put L' = L(B) and notice that L' c L. If X e L'(2) then denote
by (w'x the respective form from Q 1 (B) . If X e L(2) and X t Hm then X e L'(2) and
w'x = wx. Thus without loss of generality we can assume that if in (3.2) sx = 0 then
X C Hm. Also since ni e Q1 (B) we can assume that each Si = 0 (i = m + 1, . . . ,1) .

Since w e Q1
0(B) we know that xm divides Qw. For every X c Hm we can write

wx = cx4-(axdxm — xmdax) where cx is a non-zero scalar and ax — ax
1 or ax = ax

1 if
ax

1 = xm. Then the divisibility condition amounts to

we obtain the result.
The following result shows that the property (3.1) is hereditary. Q

Theorem 3.3 Let (3.1) hold for A and B c A, B^&. Then (3.1) holds for B.

Proof: It suffices to consider the case where n > 2 and B = A\{aH} for some H e A.
We can assume that H = Hm, i.e., aH = xm. Fix w> e Q1

0(B) c Q1
0(A). We need to prove

that w e Q 1 (B) .
By the condition of the theorem
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Proof: First observe that the submodule Q$1 of Q1[V] is the kernel of the S-linear
map Y: Q1[V] -> M = Q 2 [ V ] / Q Q 2 [ V ] defined by w -> dQ ^ w. Since Q2[V] is free
pdsM < 1. Thus due to [4, p. 199, Prop. 1.8] pdsIm y < l - 1. Now applying the same
proposition to the exact sequence

Then since e Q1 (B) we have w e Q1 (B) which completes
the proof. D



If / > 3 then (3.4) contradicts Corollary 2.10(i). Thus in this case M = 0 always. If l = 3
then according to Corollary 2.10(ii) the equality (3.4) is possible only if T(A) = 0. Thus
if T(A) = 0 again M = 0. This completes the proof. D

Corollary 3.5 Suppose l = 3. Then (3.1) holds if and only if T(A) = 0.

Proof: If T(A) = 0 then by Corollary 2.10(ii) and Lemma 3.2 Q1
0(A) = Q1(A) since

their projective dimensions are different. Suppose T(A) = 0. Then (3.1) can be easily
proved by induction on n using Theorem 3.4. D

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. Suppose that (3.1) holds for A and Y e L(3). By Theorem 3.3
the equality (3.1) holds for Ay whence by Corollary 3.5 we have T(Ay) = 0.

Conversely suppose that for every Y e L(3) we have T(Ay) = 0. Then by Corollary 3.5
the equality (3.1) holds for AY. Now the fact that (3.1) holds for A follows by induction
on n using Theorem 3.4.

4. Examples and possible generalizations

In order to make the condition of Theorem 3.1 more understandable we consider several
examples.

and using that l > 3 we have

Since this holds for every H e A and A is essential (i.e., ZHeA SaH = S+ where S+
is the irrelevant ideal of 5) we have S+Q1

0(A) C Q 1 (A ) whence the S-module M =
Q1

0(A)/ Q1 (A) is either 0 or has Krull dimension 0 and pdsM = l. Suppose that M = 0.
Then applying Lemma 3.2 and [4, p. 199, Prop. 1.8] to the exact sequence

Now using the results of Section 2 we will prove a partial converse of Theorem 3.3.

Theorem 3.4 Suppose that m > 3 and for every subarrangement B of A (3.1) holds.
Then (3.1) holds for A also if either m > 3 or m = 3 and T(A) = 0.

Proof: First notice that the statement can be reduced to essential arrangements. Indeed
if A is not essential then recall that there exists an essential m-arrangement A\ such that
Q1(A) = ( Q 1 ( A 1 ) ® F [ x m + 1 , . . . , x 1 ] ) ® ( F [ x i , . . . , x m ] ® ' Z 1

i = m + 1 S d x i ) . Thus (3.1)
holds for A if and only if it holds for A1. Also T(A') = T(A). Besides there exists a
natural bijection between the sets of all subarrangements of A and those of A\ preserving
(3.1).

From now on we assume that A is essential, i.e., m — l. If we fix H e A and put
A' = A\{H] then we have
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The first one is the simplest example of a 3-arrangement A with T(A) = 0.

Example 4.1 Let A be given by the functionals

(essentially, A is the braid 4-arrangement or the reflection arrangement of type A3). Recall
that R is the space of all linear relations among the functionals, i.e., the kernel of the
map C0 —> V* sending H to aH. Here the space C0 is 6-dimensional (according to the
number of hyperplanes) and the space V* is 3-dimensional. Since besides the functionals
aH generate the whole V* we have dim R = 3. On the other hand, there are 4 elements Xi

(i = 1 , . . . , 4) of L(2) that can be described by the respective arrangements AXi as

For each of those Xi there is a unique (up to a constant) linear relation among the functionals,
i.e., dim Rxi = 1 for every i (every other X e L(2) has RX = 0). Since R is generated
by relations of length 3, the map c: ®Rx -> R is surjective, and thus dim T = 1. More
explicitly, the following elements generate the images of Rxi in R

(the functionals are enumerated in the order they are introduced). These elements are
subject to the relation

which corresponds to a generator of T.
In any way, since T = 0 the forms cox do not generate c1

0(A).

Example 4.2 Consider the 4-arrangement A given by

There are 6 linear relations of length 3 among these functionals. As in Example 4.1, this
shows that dim T = 1. However using similar computation for AY for every Y e L(3) one
can show that T(Ay) = 0. This means that the only (up to a constant) relation among the
3-relations involves the set of functionals of rank 4 (in fact, the set of all of them). Thus for
this A the condition of Theorem 3.1 holds and the forms wX do gnerate Q1

0(A).
The class of arrangements for which the condition of Theorem 3.1 holds is not combi-

natorial, that is the lattice L(A) does not define in general whether A belongs to the class.
To show this we can use an example from [13].

Example 4.3 Suppose that char( F) = 0 or is sufficiently large. Define two 3-arrangements
A1 and A2 by the seven common functionals a1 = x, a2 = y, a3 = z, a4 = x + y + z,
a5 = 2x + y + z, a6, = 2x + 3y + z, a7 = 2x + 3y + 4z and by the two more
a= = 3x + 5z, a9 = 3x + 4y + 5z for A1 and a8 = x + 3z, a9 = x + 2y + 3z for A2.
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For each Ai there are 6 relevant X e L(2), for each of those X we have dim Rx = 1, and
the images of RX in R are generated by

for A\ and

for A2. One can easily see that while the elements (4.1) are linearly independent, there is
a unique (up to a constant) relation among the elements (4.2). In other words T(A 1 ) = 0
while dim T(A2) = 1. On the other hand, the one-to-one correspondence between A1 and
A2 given by the enumeration of the functionals generates an isomorphism between their
intersection lattices.

Notice that there is another principle difference between A1 and A2: while A1 is a formal
arrangement, i.e., the map c: ®Rx -> R is surjective, A2 is not formal. If we restrict our
consideration to the class of formal arrangements then the condition of Theorem 3.1 becomes
combinatorial. More precisely the following proposition follows easily from Theorem 3.1.

Proposition 4.4 Let A be an arrangement such that for every Y € L(3) the arrangement
Ay is formal. Then Q1

0(A) is generated by wx if and only if

for every Y e L(3).

Notice that among all the arrangements with a given intersection lattice the formal ones
form a Zariski open set. One can deduce from this that if a geometric lattice L satisfies
(4.3) then a sufficiently general arrangement having L as the intersection lattice satisfies the
condition of Theorem 3.1. For a concrete example of such an L one can take the intersection
lattice of the arrangements from Example 4.3.

There are at least two directions in which it would be natural to try to generalize the
results of this paper.

First, one can study generators of QP (A) for p > 1. More precisely, the S-linear
map o generalizes to op: Q p (A) —> Q p - 1 ( A ) for every p (0 < p < 1) via dxi1 A • • • A
dxip -> Z p

j = 1 ( — 1 ) j - 1 X i j d X i 1 A • • • A dxij_, A dxi/+l A • • • A dxif (or equivalently via

o p (w) = [w, 0E] where 0E is the Euler derivation 0E — Zi=1xidxi and [.,.] is the interior
product of forms and derivations). The maps op form a chain complex that is homotopy



and it generates O1
0(A) together with DX. Perhaps this process can be continued to obtain

an increasing sequence of classes of arrangements with canonical generators of O l (A)
constructed from some kind of "higher syzygies" of the space of relations among the
functionals.
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equivalent to 0. Indeed as a homotopy between identity map and 0 map of this complex
one can take the collection of maps dx1A: Op-1(A)->Op (A). Since the homotopy maps

form a cochain complex too there is a splitting O p (A) =Op
0(A) +s (dx1 A Op-1

0(A))
where O i

0(A) = Ker pi, for every i. Thus to find generators of Op(A) it suffices to find

generators of O0
p(A) and O0

p-1(A). On the other hand, for every X e L(p + 1) one can

define wx e Op
0 (A) via ox = pP+1 (da1

x...dax
p+1) where (a x

1 , . . . , ax
p+1) is a maximal linearly

independent system from Ax. Clearly a change of the linearly independent system changes
ox by a non-zero multiplicative constant. It would be interesting to find conditions on A
under which Op

0(A) is generated by wx (X e L(p + 1)).
Second, it is possible to give an algorithm that starts with an element t e T(A) and

produces a form wt e O1
0(A). For instance, for the arrangement of Example 4.1 this form

is (up to a constant)


