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Abstract. Decompositions of the complete graph with n vertices Kn into edge disjoint cycles of length m whose
union is Kn are commonly called w-cycle systems. Any m-cycle system gives rise to a groupoid defined on the
vertex set of Kn via a well known construction. Here, it is shown that the groupoids arising from all m-cycle
systems are precisely the finite members of a variety (of groupoids) for m = 3 and 5 only.
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1. Closed trail systems and groupoids

A closed trail in a graph G is a connected subgraph all of whose vertices have even degree.
The closed m-trail (closed trail of length m) with edges {x1, x2}, {x2, x3}, • • •, { x m , x l } is
denoted by ( x 1 , x 2 , . . . , x m ) . A traverse of a closed m-trail is an Euler walk in the trail. The
traverse with vertex sequence x1, X2, ... ,xm ,x1 is denoted by the m-tuple ( x 1 , x2, • • •, xm).
Note, for example, that (a, b, c, a, d, e) and (a, b, c, a, e, d) are distinct traverses of the
6-trail (a, b, c, a, d, e) = (a, b, c, a, e, d).

A closed trail system of order n is a pair (S, T) where S is the vertex set of a complete
graph G = Kn (\S\ = n) and T is a set of edge disjoint closed trails (in G) whose union
is G. If the closed trails of a closed trail system are all of the same length, m say, then
the system is called a closed m-trail system. Two obvious necessary conditions for the
existence of a closed m-trail system of order n are:
(1) n is odd; and
(2) n(n — I)/2m is an integer.

Closed m-trail systems are also known as neighbour designs and it has been shown (see [3])
that the above necessary conditions for the existence of a closed m-trail system of order n
are also sufficient.

A closed m-trail with all vertices of degree 2 is an m-cycle. A cycle system (S, C) is a
closed trail system in which all the closed trails are cycles. If there exists an m-cycle system
of order n then, as well as the above two conditions it is also necessary that n > m (if n > 1).
Whether or not these three necessary conditions are also sufficient for the existence of an
m-cycle system is in general an unsolved problem. For a survey of cycle systems see [5].

Given a closed trail system (S, T) and a traverse T(t) of each trail t € T, we can define
a binary operation (denoted by juxtaposition) on S as follows:
(1) x2 = x, for all x e S; and
(2) if x = y, xy = z and yx = w if and only if ( . . . , w, x, y, z,. •.) e r(T), where

T(T) = ( r ( t ) : t e T } .
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Clearly, if (S, T) is a cycle system then the binary operation is independent of the choice
of the traverses. However, this is not the case in general.

It is easy to verify that any groupoid (5, •) obtained in the manner described above satisfies
the identities x2 = x, (xy)y = x and the quasi-identity xy = x -> x = y. It is not difficult
to see that the converse of this is also true. That is, any finite groupoid satisfying the above
identities and quasi-identity gives rise to a closed trail system. The closed trail system ( S , T )
is constructed from the groupoid (S, •) by letting ( . . . , x(yx), yx,x,y, xy, y(xy),...) e T
for each distinct x, y e S. The quasi-identity xy = x -»• x = y is necessary to ensure that
T consists entirely of closed trails. For example, if the quasi-identity is not satisfied, the
(open) trail consisting of the edges {a, b} and {b, c} could be included in the set T; it would
be denoted by (a, b, c, b). These ideas were first introduced in 1970 by Kotzig [4].

This note deals with universal algebraic properties of the groupoids corresponding to
m-cycle systems. For the standard definitions and results of universal algebra which are
used here see the text [2]. If the groupoids corresponding to all finite m -cycle systems are
precisely the finite members of a variety then we say that m-cycle systems are equationally
defined. In this paper we will prove the following theorem:

Theorem 1.1 The only values ofm for which m -cycle systems can be equationally defined
are m = 3 and m = 5.

For m = 6 and for all m > 8, it has been shown [1] that there is an m-cycle system whose
corresponding groupoid has a homomorphism onto a groupoid which does not correspond
to an m-cycle system. In fact, the result was proven for a special class of m-cycle systems
(called 2-perfect) whose corresponding groupoids are quasigroups. The result means that
for these values of m, m-cycle systems cannot be equationally defined. Hence we need only
consider the cases m = 3,4,5 and 7.

2. The m = 3,5 and 7 cases

The identities x2 = x, (xy)y = x and xy = yx equationally define 3-cycle systems. The
identity xy = yx ensures that the closed trails are of length 3, and hence are cycles. It also
implies that the quasi-identity xy = x -> x = y holds;

The identities x2 = x, (xy)y = x and x(yx) = y(xy) equationally define 5-cycle
systems. The identity x(yx) = y(xy) ensures that the closed trails are of length 5, and
hence are cycles. It also implies that the quasi-identity xy = x -> x = y holds;

We now show that 7-cycle systems cannot be equationally defined. We construct a 7-
cycle system of order 49 whose corresponding groupoid 649 has a homomorphism onto
a groupoid G7 of order 7 which does not correspond to a 7-cycle system. Let G7 be the
groupoid corresponding to the closed 7-trail system (Z7, T) where

T = {(0, 1, 3,0,4, 5, 6), (1,4, 6, 1, 2,3, 5), (2, 0,5, 2,4, 3, 6)}.
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For each (a, b, c, a, d, e, f) e {(0, 1,3,0,4,5, 6), (1,4, 6, 1,2, 3,5), (2,0, 5, 2,4, 3,6)}
and each (x, y) e Z7 x Z7 let

Then (Z7 x Z7, C) is a 7-cycle system of order 49 (with corresponding groupoid G49 say).
Moreover, the map (p, q) -> p is a homomorphism from G49 onto G7. Hence, 7-cycle
systems cannot be equationally defined.

3. The m = 4 case

It is easy to see that a groupoid corresponds to a 4-cycle system if and only if it satisfies the
identities x2 = x, (xy)y = x, x(yx) = xy and the quasi-identity xy = x -> x = y. The
extra identity x(yx) = xy ensures that the closed trails have length 4 and any closed trail
of length 4 is necessarily a 4-cycle. However we will show that unlike the cases m = 3 and
m = 5, the quasi-identity cannot be deduced from the three identities. First we prove the
following theorem:

Theorem 3.1 Any homomorphic image of a groupoid corresponding to a finite 4-cycle
system is the groupoid of another 4-cycle system.

Proof: Suppose G is the groupoid corresponding to a finite 4-cycle system and suppose
p is a homomorphism from G onto H. We show that H corresponds to a 4-cycle system.
Since p is a homomorphism we need only check that the quasi-identity xy = x -> x = y
holds in H.

Let a, b e H be distinct and suppose ab = a. Now, let p-1 (a) = {a 1 , a 2 , . . . , ar} and
let b* e p-1 (b). Now, for all i e {1, 2 r}

That is, for all i e {1,2,. , . , r}, aib* € O-1(a). Since G corresponds to a 4-cycle system,
we must have ai b* = aj for some j=i. Hence |O-1(a)| is even; we can pair off its elements
by making (ai, aj} a pair if and only if aib* = aj (note that atb* = a; •<->• (atb*)b* =
ajb* <-> ai = ajb*). But, if ai, aj e O-1(a) then

and so aiai E O-1 (a). Hence, (O - 1(a), •) corresponds to a 4-cycle system (a subsystem of
the system corresponding to G) and so |O-1(a)| is odd ... a contradiction. D

We now show that 4-cycle systems cannot be equationally defined by showing that
a 2-element groupoid (which clearly does not correspond to a 4-cycle system) is in the

Also, for each a e Z7, let



variety V generated by the class of groupoids corresponding to finite 4-cycle systems. Let
(N x {a}, Ca) and (N x {b}, Cb) be infinite 4-cycle systems. Let Cc = { ( ( x , a ) , ( y , b ) , ( x +
1, a),(y + 1 , b ) ) \ x , y are odd, x, y e N}. Then (N x {a, b}, C) where C = Ca U Cb U Cc

is an infinite 4-cycle system. Let G be the groupoid corresponding to (N x (a, b}, C) and
consider the map O: N x {a, b} -> {1,2} defined by O (x , a) = 1 and O (x , b) = 2 for all
x € N. Clearly, O is a homomorphism from G onto a 2-element groupoid H.

We now show, that G, and hence H, is in V. If G £ V, then there exists an identity I
which holds in V but not in G. Since I does not hold in G there is a finite collection of
4-cycles in the 4-cycle system corresponding to G (that is, a finite partial 4-cycle system)
which defines a finite partial groupoid in which I fails. This partial 4-cycle system can
be embedded in a finite 4-cycle system, (5, D) say, see [6]. Hence, I fails in the finite
groupoid corresponding to (5, D). This is a contradiction and so H e V. Hence, 4-cycle
systems cannot be equationally defined.
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