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Abstract. We propose a new combinatorial description of the product of two Schur functions. In the particular
case of the square of a Schur function SI, it allows to discriminate in a very natural way between the symmetric
and antisymmetric parts of the square. In other words, it describes at the same time the expansion on the
basis of Schur functions of the plethysms S2(SI) and A2(SI) . More generally our combinatorial interpretation
of the multiplicities cIJ = ( S I S j , SK) leads to interesting q-analogues c I J ( q ) of these multiplicities. The
combinatorial objects that we use are domino tableaux, namely tableaux made up of 1 x 2 rectangular boxes
filled with integers weakly increasing along the rows and strictly increasing along the columns. Standard domino
tableaux have already been considered by many authors [33], [6], [34], [8], [1], but, to the best of our knowledge,
the expression of the Littlewood-Richardson coefficients in terms of Yamanouchi domino tableaux is new, as well
as the bijection described in Section 7, and the notion of the diagonal class of a domino tableau, defined in Section
8. This construction leads to the definition of a new family of symmetric functions (H-functions), whose relevant
properties are summarized in Section 9.
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1. Introduction

The problem addressed in the title of this paper may be formulated in various ways. Recall
that a tensor of rank 2 separates into a symmetric and an antisymmetric part

In other words, if V denotes a finite-dimensional vector space over the field of complex
numbers, one has

which may be seen as the decomposition of the representation V ® V of GL(V) into its
irreducible components S2(V) and A2(V). Now suppose that V = S I ( W ) is itself a model
of the irreducible representation of GL( W) indexed by the partition I. One has again

but the spaces S 2 ( S I ( W ) ) and A 2 ( S I ( W ) ) are no longer irreducible under the action of
GL(W). The problem is to decompose these spaces into their irreducible components.
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Considering the characters of these representations, one can give an equivalent formu-
lation in terms of symmetric functions. Denoting by SI the Schur function indexed by the
partition I, formula (1) is equivalent to

where the symmetric functions S 2 (S I ) and A2(S I) are special cases of plethysms of Schur
functions, as defined by Littlewood in [20] (see also [21], [22] and [29]). The problem is
now to decompose these plethysms on the basis of Schur functions.

As shown by Littlewood, this question admits also an interpretation in classical invariant
theory (actually, invariant theory was his motivation for defining the plethysm of Schur
functions). Indeed, the coefficient aIJ in the expansion S 2 (S I ) = EJ aIJSJ is equal to the
number of concomitants of type J and degree 2 in the coefficients of a ground form of type
I. We refer the reader to [7, 9] for a modern formulation of the general plethysm problem
in invariant theory.

Now, following Littlewood, we present the corresponding combinatorial problem. Since
the decomposition of the tensor square S I ( W ) ® S I ( W ) is given by the well-known
Littlewood-Richardson rule, the problem is in fact to discriminate between the Young
tableaux coming from the symmetric part of this square, and those coming from its anti-
symmetric part. For example, in order to compute the square of S12 the following eight
tableaux are constructed

and by reading their shapes it is found that

This square splits into

But Littlewood could not find a general simple method of discriminating the tableaux
pertaining to S 2 (S I ) .

In Section 4 we shall explain a different combinatorial description of the product of two
Schur functions, in terms of domino tableaux. Using this new rule, the previous example
would correspond to the following tableaux
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All these tableaux have the same shape 2244, and the result of the multiplication is obtained
by reading their evaluation, namely the number of dominoes labelled 1, labelled 2, and so
on. Now the splitting becomes obvious. Count the number of horizontal dominoes, which
is always even, and divide it by two. If the result is even the corresponding Schur function
comes from the symmetric part S 2 (S 1 2 ) , if it is odd it comes from the antisymmetric part
A2(S12).

This observation suggests that the number of horizontal (or vertical) dominoes is an
interesting statistic on domino tableaux. We call it the spin (see Section 3 for a precise
definition). Taking into account the spin of the domino tableaux which correspond to a
given multiplicity cIJ = (SISJ, SK), we are led to a q-analogue c I J ( q ) of this multiplicity.
In Section 8 we study the distribution of this statistic on the set of domino tableaux of given
shape and evaluation, and show how this set may be partitioned into simple classes whose
spin polynomial is of the type qa(1 + q)b. This yields a decomposition of the polynomials
c I J ( q ) into elementary blocks. For example the multiplicity c123356

234 = 18 gives rise to
the q -analogue

The paper is organized as follows. In Section 2 we review the necessary background in
the theory of symmetric functions, including plethysms, adjoint and differential operators,
and the concepts of 2-quotient and 2-sign of a partition. In Section 3 we describe the com-
binatorial objects used in the sequel, viz. domino tableaux, Yamanouchi domino tableaux,
and their associated spin and diagonals. In Section 4 we state the rule for computing the
scalar product (SI w

2 (Sj), SK ) as a number of Yamanouchi domino tableaux (Theorem 4.1),
thus providing a combinatorial description of the expansion on the basis of Schur functions
of various symmetric functions, including the product SISj, the plethysm w2(SI) and the
derivative Dw2(S t )SJ . The connection with a recent formula [24] for expressing a P-Schur
function as a quadratic form of S-Schur functions is also mentioned. In Section 5 we explain
how to split the square of a Schur function (Corollary 5.5), using the spin of the Yamanouchi
domino tableaux of Theorem 4.1, and we introduce the q -analogues c i j(q). In Section 6
we study a bijection due to Stanton and White [33] between domino tableaux and pairs of
ordinary tableaux. We give a description of it explained to us by Schiitzenberger which is
more simple and stresses the role played by the diagonals of the tableaux. This method is
equivalent to the approach of Fomin and Stanton [6]. We also fulfil the program suggested
by Stanton and White of extending the plactic monoid of Lascoux and Schiitzenberger to
dominoes. Indeed we show that domino tableaux may be seen as the elements of a monoid,
which we call the super plactic monoid. It is isomorphic to the direct product of two plactic



monoids. In Section 7 we describe a different algorithm associating to a given domino
tableau a pair of tableaux, the first being a Yamanouchi domino tableau and the second
an ordinary tableau. This algorithm, which is the analogue for domino tableaux of the
classical algorithm used by Robinson [31], Littlewood [22] or Macdonald [29] for proving
the rule of multiplication of Schur functions, furnishes the proof of Theorem 4.1. It also
enables an action of the symmetric group on domino tableaux to be defined, which permutes
the evaluation without changing the spin. In Section 8 we analyse the distribution of spin
on the set of domino tableaux of given shape, evaluation and diagonals, and deduce from
this study the proof of Theorem 5.3. In Section 9 we show that our construction leads to
the definition of a new family of symmetric functions (H-functions), and we sum up their
relevant properties. Finally, we give in Section 10 the proof of a series of lemmas stated
and used in Section 8.

2. Symmetric functions and plethysms

Our notations for symmetric functions are as in [26]. In particular a partition / =
i1, i2, • • •. in) is a weakly increasing sequence of nonnegative integers. The integer n
is called the length of I. When there is no risk of confusion, we sometimes write for short
I = 1,12 • • • * ' „ . Schur functions and monomial functions are denoted respectively by SI

and wI • When I = i is reduced to one part, one obtains the complete symmetric function
Si also denoted by S i, and the power sum wi also denoted by wi . The products of these
functions are denoted by S1 := SiSi2 • • • Sin and Wi := Wi1 Wi2 • • • Win . We write I~ for
the conjugate partition of / (i.e. the partition whose diagram is obtained by interchanging
the rows and columns of the diagram of /), and we set AI = SI~ . In particular, AI = AI

denotes the i-th elementary symmetric function.
The algebra of symmetric functions is endowed with a scalar product denoted by ( . , . ) ,

defined by the requirement that the Schur functions form an orthonormal basis. Given a
symmetric function F, one defines the differential operator DF as the adjoint operator of
the multiplication by F for this scalar product. In other words, for any symmetric functions
G, H there holds

More generally if G is another symmetric function, we express G = g ( S 1 , S2,...) as a
polynomial in the Sk and we define theplethysm G(F) by G(F) := g ( S 1 ( F ) , S2(F),...).
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As an example one has D s IS j = Sj/i , the skew Schur function associated with the skew
diagram J / I .

Usually, we omit to specify the set of variables on which depend the symmetric functions
we are dealing with. When it proves to be necessary, this set of variables, or alphabet
is denoted by A = {a1 < a2 < • • •}. Let aj = aj1aj2 ... denote the monomial with
multi-degree J in the polynomial algebra Z[A], and suppose that the symmetric function
F admits the expansion F = Ej Xja

J, where the Aj are integers. The plethysms Sk(F)
are defined by means of the generating series
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The plethysms that will be dealt with in the sequel are S 2 (S 1 ) , A2(S1) and W 2 (S 1 ) =
S1(W

2) = S 1 (x 2 , x2,,.. .). We note the following simple but important relations

We recall that for any k, F —> W k ( F ) is a linear operator on the algebra of symmetric
function (the so-called Adams operation). Its adjoint operator with regard to the scalar
product defined above is denoted by Ok. In this paper we are primarily concerned with a
combinatorial expression of

The particular case when I=0 gives a combinatorial description of the expansion on
the basis of Schur functions of W 2 ( S K ) and O2(SK). Now, as shown by Littlewood
[23], (O2(SK) is either zero or equal up to sign to the product of two Schur functions
SK 0SK 1 .

Here is how to obtain the ordered pair ( K 0 , K1) , called the 2-quotient of K. Make
K into a partition of even length 2n by adding if necessary a zero part. Add to K the
staircase partition p2n = (0, 1, 2 , . . . , 2n — 1). Reduce modulo 2 the successive parts of
L = K + p2n without using two times the same representative. This gives a sequence
M, which is put in increasing order by means of a permutation a. Then, if a(M) ^
P2n, set e 2 ( K ) = 0, otherwise € 2 ( K ) = sign(a). This is the 2-sign of K. Finally if
e 2 ( K ) = 0, subtract from the even parts of L the corresponding residues in M and di-
vide by 2 to obtain K0. The same procedure applied to the odd parts gives the second
partition K1.

Example 2.1 Consider K = (1,1,1,3,5, 5). Then

Thus the 2-quotient of K is ((1,2, 3), (2)).

A key observation is that this process can be reversed, that is, given an arbitrary ordered
pair of partitions (I, J), there is a unique partition K of weight 2|/| + 2\J\ whose 2-
quotient is equal to (I, J). Thus one can write S1Sj = e 2 ( K ) O 2 ( S K ) . As a consequence
the multiplicity cH

j is equal to the scalar product

Example 2.2 The particular case when I = J is important for us. One can check that the
partition K whose 2-quotient is ( I , I ) is nothing but K = 2 I v 2 I := (2i1 , 2 i 1 , . . . , 2in,2in).
Moreover the 2-sign of 2I v 2I is +1 for all 7. Thus
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Figure 1.

Example 2.3 More generally, let K = 2I = (2i1, 2i2,...) be a partition whose parts are
all even. Then, setting I0 = (i1, i3, i 5 , . . . ) , h = (i2, i4. i6 , • • •). we have, O 2 ( S K ) = S IoS1e.

We shall return to the 2-quotient in Section 6, where a bijection is described which rests
entirely upon this operation. This will give an alternative description of it, in terms of
domino tableaux.

3. Domino tableaux

A domino tableau of shape I is a tiling of this shape by means of 2 x 1 or 1 x 2 rectangles
called dominoes. Each domino is numbered by a nonnegative integer, and it is required
that these integers be weakly increasing along the rows (from left to right), and strictly
increasing along the columns (from bottom to top). For example Fig. la shows a domino
tableau of shape 11244, but Fig. 1b does not represent a domino tableau (the second column
is not strictly increasing), neither Fig. 1c (the second row is not weakly increasing). We
shall also use domino tableaux of skew shape I/J, as illustrated in Fig. 1d.

As in the case of ordinary tableaux, a commutative monomial in Z[A] is associated with
each domino tableau T. It is defined by aT := aK1ak2 • • • aKn, where ki is the number of
dominoes of T numbered i. The sequence knkn-1 • • -k1 is called the evaluation of T. We
denote by Tabi(I/J; K) the set of all domino tableaux of shape I/J and evaluation K.
Thus the tableau of Fig. 1d belongs to Tab2(23334/12; 1113). In Sections 6 and 7, we shall
also associate with a domino tableau two noncommutative monomials in the super plactic
algebra and the plactic algebra.

The column reading of a domino tableau T is the word obtained by reading the successive
columns of T from top to bottom and left to right. Horizontal dominoes, which belong to
two successive columns i and i + 1, are read only once, when reading column i. Thus the
column reading of the domino tableau of Fig. 1d is 413121.

A Yamanouchi word is a word w = w1 w2 • • • wn such that each right factor wiWi+1 • • • wn

contains at least as many letters j than j + 1, and this for every j. For example, w =
31423211 is a Yamanouchi word, while w1 = 431223211 is not because its right factor
223211 contains more 2 than 1. A Yamanouchi domino tableau is a domino tableau whose
column reading is a Yamanouchi word. The set of all Yamanouchi domino tableaux of
shape I/J and evaluation K is denoted by Kzm2(I/J; K).

Example 3.1 There are four Yamanouchi tableaux of shape 3344/13
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We define the spin of a domino tableau as half the number of its vertical dominoes. Thus
the four domino tableaux of Example 3.1 have respective spins 1,2, 1,2. The spin is in
general a half-integer. It is a classical result that the parity of the number of vertical dominoes
of a domino tableau T depends only on its shape I/J [12, 32]. Set €i(I/J) = (-1)2SPin(T).
This is the 2-sign of I / J , and it coincides with the definition of Section 2 in the case when
J = 0. Also we define € 2 ( I /J) = 0 if there is no domino tableau of shape I / J . For
instance, one has 62(3344/13) = +1.

Let T be a domino tableau of shape I. Each domino of T is intersected by a unique
straight line DK of equation y = x + 2k, k integer. It is very convenient, as will be
demonstrated in Sections 6 and 8, to materialize this intersection by writing the number
attached to each domino in the square box cut by the line DK. This is illustrated by the
following picture.

The diagonals of a domino tableau are the sequences of numbers read along the lines Dk.
Thus the preceding tableau has the following diagonals

9; 5,9; 4, 5, 8; 1,2,5,7; 1,2,6; 3.

We shall distinguish between 2 types of dominoes, according to the square box cut by
the diagonal DK. A domino is said to have the colour 0 if this box is the bottom or right
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box, and to have the colour 1 otherwise (we prefer the name "colour" to the name "orienta-
tion" used by Stanton and White, which may create confusion with the different distinction
between horizontal and vertical dominoes).

4. An analogue of the Littlewood-Richardson rule for domino tableaux

Recall that according to the classical Littlewood-Richardson rule, the multiplicity

is equal to $Yam(K/I; J), that is, the number of Yamanouchi (ordinary) tableaux of shape
K/I and evaluation J. Now we claim

Theorem 4.1 Let I, J, K be three partitions and set

the number of Yamanouchi domino tableaux of shape K/I and evaluation J. Then

The proof of Theorem 4.1 is postponed to Section 7.

Example 4.2 There are three Yamanouchi domino tableaux of shape 14466/122 and
evaluation 134

which correspond to the scalar product (S122w
2(S134), S14466) = 3.

Corollary 4.3 Yamanouchi domino tableaux provide combinatorial descriptions of the
following expansions:
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Note that putting I = 0 in (4) and (5) one obtains the expansions on the basis of Schur
functions of the plethysm W 2 ( S j ) and of the adjoint O 2 ( S K ) . Taking into account (2), we
also deduce

Corollary 4.4 (Multiplication of Schur functions) Let I, J be two partitions and let H
be the partition of weight 2\I\ + 2\J\ whose 2-quotient is equal to (I, J). Then for any
partition K, the multiplicity ck

J = (S 1 S J , SK) is equal to dH
K = $Yan2(H; K), thenumber

of Yamanouchi domino tableaux of shape H and evaluation K.

Example 4.5 We choose I = 122 and J = 12. Then H = 113344. There are ten
Yamanouchi domino tableaux of shape H

from which we deduce that

In a recent paper a new expression was found for P Schur functions [24]. Recall that P1

is not zero only if all parts of / are different, that is, if

with 0 < j1 < J2 < • • • < jn- Now there holds

where pn + 2H = (0, 1, 2 , . . . , n - 1) + (2h1,, 2h2 2hn). We deduce from (6) and (7)
the following
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Corollary 4.6 (Quadratic expansion of P Schur functions) For every partition J of length
less or equal to n, one has

Example 4.7 We shall explicitly expand the symmetric function P257. We can write
(0, 2, 5,7) = (0, 1, 2, 3) + (0, 1, 3,4) so that J = 134, and we have to enumerate all
Yamanouchi domino tableaux of shape 134/K. These are

whence

5. A q-analogue of the multiplicity cKj—Splitting of the square of a Schur function

Corollary 4.4 gives a new combinatorial rule for describing the multiplicities (or Clebsch-
Gordan numbers) cK

j = (SiSj, SK) = MultvK(Vi O Vj) in a tensor product of irreducible
representations of the general linear group. Several different combinatorial expressions of
these multiplicities are already known, including the Littlewood-Richardson rule in terms
of Young tableaux [22], the James-Peel rule in terms of pictures [13, 35], the Gel'fand-
Zelevinsky rule in terms of Gel'fand-Tsetlin schemes [10,11], the Lascoux-Schiitzenberger
rule in terms of Schubert polynomials [28], Kirillov's rule in terms of configurations [14] and
the Berenstein-Zelevinsky rule in terms of Berenstein-Zelevinsky triangles [2]. We men-
tion that an explicit bijection between the Littlewood-Richardson rule and the Berenstein-
Zelevinsky rule has been constructed in [3].

As explained in Section 1, our rule in terms of domino tableaux has the advantage of
discriminating very naturally between the symmetric and antisymmetric parts of the square
of a Schur function. Moreover Corollary 4.3 and 4.6 show that the same rule applies also
to the expansion of other symmetric functions, such as the plethysms W2(SI) and the P
Schur functions.

We believe, however, that its main interest lies in the fact that it enables a q-analogue
of cK

j to be defined, in a purely combinatorial way, which seems to possess an algebraic
meaning.

Definition 5.1 Let I, J, K be three partitions, and q an indeterminate. Denote by H the
partition whose 2-quotient is equal to (I, J). We define

the sum being over all Yamanouchi domino tableaux T of shape H and evaluation K.

Example 5.2 We consider the case of the multiplicity C33356
1234= 5. Using our rule, this

multiplicity is computed by enumerating the five Yamanouchi domino tableaux of shape
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22446688 and evaluation 33356 (cf Example 2.2). These five tableaux have respective
spins 4, 5, 5, 6, 6, and thus c33356

1234 = q4 + 2q5 + 2q6.

We note that our polynomials cK
j(q) do not coincide with the Clebsch-Gordan poly-

nomials defined by Kirillov and Reshetikhin by means of the q-Kostant partition function
and the Kostant-Steinberg formula [18]. Indeed Clebsch-Gordan polynomials can have
negative coefficients which is not the case for ours, as is clear from their combinatorial
definition.

The splitting of the square of a Schur function announced in Section 1 may be stated
now. Recall that by Corollary 4.4, cj

i(l) = ( S i S i , Sj).

Theorem 5.3 Let I, J be two partitions. There holds

where \I\ = i1 + i2 + is the weight of the partition I.

The proof of Theorem 5.3 is relegated to Section 8.
It is important to note that the two combinatorial descriptions of w2(Si) provided by

Corollary 4.3 and Theorem 5.3 are different. This is illustrated by the next example.

Example 5.4 There are five Yamanouchi domino tableaux of shape 22446688 and evalu-
ation 33356, among which three have even spin and two have odd spin (see Example 5.2).
Therefore, c33356

1234(-l) = 1 = (w2(S1234), S33356), by Theorem 5.3. On the other hand,
there is only one Yamanouchi domino tableau of shape 33356 and evaluation 1234, which
gives also (w2(S1234), S33356) = d33356

34 = 1 by Corollary 4.3.

An immediate consequence of Theorem 5.3 and Example 2.2 is the following

Corollary 5.5 (Combinatorial description of S2(SI) and A2(S i)) Let I be a partition,
and put

Then aIj (resp. Bij) is the number of Yamanouchi domino tableaux of shape 21 v 2I :=
(2i1 ,2i1 , 2i2, 2i2 , . . . ) and evaluation J, whose number of horizontal dominoes is = 0 mod 4
(resp. =2 mod 4).

The reader is referred to Section 1 for an illustration of this Corollary.
We mention that some efficient algorithms for the computation of the plethysms W k (S i ) ,

A*(Si), S
k(Si) on the basis of Schur functions are described in [4] and [5], and have been

implemented in the system SYMMETRICA. However, these algorithms are not based upon
a combinatorial description of the coefficients such as those given in this article.

The next sections are devoted to proving Theorem 4.1 and Theorem 5.3. This is achieved
by lifting the symmetric functions $2(Si) to the noncommutative super plactic algebra
defined in Section 6, and then mapping them to the plactic algebra as described in Section
7. Lastly, Section 8 is dedicated to the additional properties involving the spin.
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6. The super plactic monoid and algebra

In this section we describe, in the particular case of domino tableaux, a bijection discovered
by Stanton and White between k -ribbon tableaux and &-uples of ordinary tableaux [33], Our
description differs from the one of these authors in two points. First we need to consider
tableaux of arbitrary evaluation, while Stanton and White developed their algorithm for
standard evaluation only. Secondly we follow a different combinatorial method explained
to us by M.P. Schiitzenberger which is more simple and more illuminating. This method
appears also in [6]. The algorithm is the following.

Algorithm 6.1

• Input T, a domino tableau of shape I.
• Delete on each diagonal of T all dominoes of colour 1. Let
the remaining numbers slide down along their diagonals. The
new sequence of diagonals so obtained is the sequence of
diagonals of an ordinary tableau t0.

• Proceeding in the same way but deleting now all dominoes of
colour 0, construct a second ordinary tableau t1 .

• Output

— A tableau to of shape I0

— A tableau t1 of shape I1

Example 6.2 Let us apply this algorithm to the domino tableau shown in Section 3.
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Theorem 6.3 Algorithm 6.1 realizes a bijection T -*• ( t 0 , t1) between domino tableaux
of shape I and ordered pairs of ordinary tableaux of shape ( I 0 , I 1 ) , the 2-quotient of I.

Proof: It is enough to describe the reverse algorithm. So suppose that the pair (to, t\) is
given. The tableau T can be reconstructed step by step. The key observation is that the
correspondence between an ordered pair of partitions (I0, I1) and the partition / whose
2-quotient is (I0, I1), is compatible with the adjonction of one box. Namely, suppose that
a box is glued to I0 on diagonal D, which gives a new partition I'0. The partition /' whose
2-quotient is (I0, I1) is obtained from / by glueing a domino of colour 0 on the diagonal
corresponding to D. And the same, of course, for colour 1. Clearly this fact may be used
to reconstruct T by induction, for a tableau is nothing but a chain of partitions. This will
be illustrated by working out the previous example.



214 CARRE AND LECLERC

Theorem 6.3 admits the following formulation in terms of symmetric functions.

Corollary 6.4 Let I be a partition. One has

where the sum runs over all domino tableaux T of shape I.

Proof: By Section 2, €2(I)O2(S I(A)) = SI0(A)SI1(A), where (I0, I1) denotes the 2-
quotient of /. Now it is a classical fact that Sj(A) = Et at, t running over all ordinary
tableaux of shape J. Thus, putting J = I0, I1, one finds

the last equality following from Theorem 6.3. D

Thus the sum in Corollary 6.4 is a symmetric function in the variables a1, a2,... whose
expansion on the basis of monomial functions is given by

Corollary 6.5 Define K(2) as the number of domino tableaux of shape I and evaluation
J.Then,

the sum being over all partitions J.

Using the fact that O2 is the adjoint morphism of W2, we have the following equivalent
formulation.

Corollary 6.6 For every partition J one has

Proof: As is well known, (Wj, S1) = 8IJ. D

Corollary 6.5 and 6.6 show that the numbers K(2) — $Tab2(I , J) are to be seen as the
domino analogues of the Kostka numbers Kij = $Tab(I, J). Indeed Kij = (SJ, SI), while
K(2) = | ( W 2 ( S J ) , S i ) | = |(S j,O2(SI))|. Moreover, using the results of [25], one sees that,
denoting by J v J the partition ( j 1 , j1, j2, j2, • •.), there holds K(2) = \KI,jvj (—1)|, where
Kh,L(q) is the Kostka-Foulkes polynomial (cf. [29]). Finally, in the particular case of
a standard evaluation (i.e. J = (1 ,1 , . . . , 1)), it was shown by Morris and Sultana [30]
that KI1...1 is given by a "modular hook formula", obtained by specializing to q — —1 the
q-hook formula for standard Kostka-Foulkes polynomials.

We shall end this Section by an algebraic formulation of Theorem 6.3. To this end we must
first recall the main lines of the proof of Littlewood-Richardson rule given by Lascoux and
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Schiitzenberger in [27]. It consists in interpreting Young tableaux as elements of a monoid,
the so-called plactic monoid, which is defined as the quotient of the free monoid by Knuth's
relations [ 17]. The combinatorial expressions of Schur functions Si as sums of all tableaux
of shape I, are then lifted to the algebra of the plactic monoid, generating a subalgebra of
this noncommutative algebra, isomorphic to the algebra of symmetric functions. In this
setting, the multiplicity cij is nothing but the number of ways of writing a tableau of shape
K as a product of two tableaux of shape I and J.

Consider now the direct product Pl(A0) x Pl( A1) of two plactic monoids on the alphabets
A0 = {a0 < a0 < • • •}, A1 = (a1 < a1 < • • • } . This monoid may be described as the
quotient of the free monoid on A0 U A1 by the following relations

It will be called the super plactic monoid and denoted by SPl(A). Theorem 6.3 shows that
the elements of this monoid can be viewed as domino tableaux. For instance the domino
tableau of Example 6.2 represents the following element of SPl(A)

The Z-algebra Z[SPl(A)] of the super plactic monoid contains now some remarkable
elements, namely, for each partition I, the sum EI of all domino tableaux of shape /.
Corollary 6.4 shows that the projection on the commutative algebra T -> aT sends EI

onto the symmetric function 62(I)O2(SI). Thus, we see that the elements EI generate
a commutative subalgebra of the super plactic algebra, isomorphic to the tensor product
Sym(A) ® Sym(A) of two copies of the algebra of symmetric functions of A.

More generally the yew de taquin for dominoes, as described by Stanton and White [33],
enables skew domino tableaux to be interpreted as elements of the super plactic monoid.
It can be shown similarly that the sum of all domino tableaux of shape I/J is a lifting in
Z[SPl(A)] of the symmetric function e2(I/J)O2(SI/J).

7. An analogue of the Robinson-Littlewood Injection for domino tableaux

The proofs of the Littlewood-Richardson rule in [31 ], [22] and [29] result from the existence
of a bijection, due to Robinson and Littlewood,

Their method consists in starting with a tableau t of shape I/J and evaluation K, and
successively modifying it until its column reading becomes a Yamanouchi word. Simulta-
neously, a tableau is built up, which serves to record the sequence of moves made (see [29],
p. 69). We shall explain now an analogue of this bijection for domino tableaux.



216 CARRE AND LECLERC

We need first some definitions. A pseudo-tableau is a generalized Young tableau, in the
sense that we allow its shape to be any sequence of nonnegative integers, and that we only
require that the rows and columns be weakly increasing from left to right and bottom to top.
Thus, the following picture shows a pseudo-tableau of shape (1, 2,0,4,2) and evaluation
(1,1,3,2,1, 1).

A word is a Yamanouchi word iff all its indexes are < 0.

Algorithm 7.1

• Input T, a domino tableau of shape I/J and evaluation K.

• The algorithm recursively modifies the data (Y, t, w) composed of a domino tableau Y
of shape I/J, a pseudo-tableau t of evaluation K, and a word w.

• Initialize

— Y := T

— t := the canonical pseudo-tableau associated with K

— w := the column reading of T

• While w is not a Yamanouchi word do the following

— Begin

* Select in w the letter i satisfying

1. i has positive index and no letter <i has;

2. among letters i, it is the rightmost with greatest
index.

* Change in Y the corresponding domino i to i — 1

The canonical pseudo tableau associated with a sequence K = ( k 1 , . . . ,kn) is the pseudo
tableau having kn letters 1 in its first row, kn-1 letters 2 in its second row, etc. When K is a
partition this is just the Yamanouchi tableau of shape and evaluation K.

Given a word on the alphabet {1, 2 , . . . , n} , that is, a sequence w = i1i2 . . . ir of letters
i between 1 and n, we associate to each letter i > 1 in w, an index equal to one plus the
difference between the number of letters i and the number of letters i — 1 situated to the
right of this letter in w. For example the indexes of w = 321341233 are

letter 3 2 1 3 4 1 2 3 3

index 2 0 / 2 -1 / 1 2 1
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* Take the rightmost letter in the i'-th row of t and put
it at the rightmost place in the (i — l)-th row

— If Y is no longer a domino tableau, then the last change i ->• i — 1 has resulted into
one of the following situations:

We must then apply an elementary transformation of one of the two following types:

* While Y is not a domino tableau apply an elementary
transformation R1 or R2

* Put in w the column reading of Y

— End

• Output

— Y, a Yamanouchi domino tableau of shape I/J and evaluation L,

— t, an ordinary tableau of shape L and evaluation K.

Example 7.2

1. The execution of Algorithm 7.1 for

goes through the following steps.
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Note that the last step requires a transformation of type R2.

2. A simple example without transformation R1 or R2

3. An example requiring several transformations R2
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4. An example requiring several transformations R1

Note that a domino tableau whose dominoes are all horizontal (or all vertical) may be
replaced by an ordinary tableau in the obvious way. In this particular case, no transformation
R1 , R2 occurs during the execution of Algorithm 7.1, and we recover the usual Robinson-
Littlewood algorithm.

We are now in a position to state the main theorem of this Section.

Theorem 7.3 Algorithm 7.1 realizes a bijection

Proof: The proof proceeds along the same lines as the detailed proof given by Macdonald
[29] pp. 69-73 for the Robinson-Littlewood correspondence, the only difference lying in
the transformations R1 and R2 of Algorithm 7.1 which are specific to the domino case.
These transformations are required to obtain after each step a domino tableau Y, while the
corresponding condition in the original Robinson-Littlewood algorithm is automatically
satisfied (cf. [29] (9.6)). Hence after the last step, by construction, y is a Yamanouchi
domino tableau. Moreover, it follows from [29] that after this last step, t is an ordinary
tableau of evaluation K and shape equal to the evaluation of the Yamanouchi word w.
It remains only to prove that the mapping T ->• (Y, t) is a bijection, which can be done
by showing that each step of the algorithm is reversible. Here again, we can imitate the
argument in [29] and read off from the pseudo-tableau t which letter i must be changed into
i + 1 to return to the preceding step, and this completes the proof. D

We shall now develop some important consequences of Theorem 7.3. We introduce a not-
ation for the tableau t obtained from the domino tableau T by application of Algorithm 7.1.



220 CARRE AND LECLERC

Definition 7.4 The Z-linear map 7t:Z[SPl(A)] ->• Z[Pl(A)] which sends a domino
tableau T on the ordinary tableau t produced by Algorithm 7.1, is called the natural pro-
jection of the super plactic algebra on the plactic algebra.

The situation is summarized in the following commutative diagram

where the two arrows pointing on Z[A] denote the commutative evaluation of noncommu-
tative polynomials. Theorem 4.1 amounts to the following property of n, which is readily
implied by Theorem 7.3.

Corollary 7.5 The image under jt of the sum of all domino tableaux of a given shape I / J
is a sum of plactic Schur functions.

Proof: The plactic Schur function SL is the sum in the plactic algebra of all tableaux of
shape L. Theorem 7.3 shows that

We can now give the

Proof of Theorem 4.1: Evaluating the last formula in the commutative algebra Z[A] and
using the results of Section 6, one obtains

where SL denotes now the usual Schur polynomial. Thus 6 2 ( I / J ) d j L = ( O 2 ( S i / j ) , SL).
n

Let us now give an illustration of Theorem 6.3 in terms of plethysms. It follows from
Corollary 6.6 that the set of all domino tableaux of evaluation J is a combinatorial description
of the expansion on the basis of Schur functions of the plethysm

Moreover, by Corollary 4.3 the dominant term w 2 ( S j ) of this sum corresponds to the subset
of Yamanouchi domino tableaux of evaluation J, i.e. to the subset of domino tableaux which
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are sent by the natural projection n onto the Yamanouchi ordinary tableau of shape J. More
generally we have

Corollary 7.6 The projection n provides a splitting of the set of domino tableaux of
evaluation J, into subsets corresponding to each summand of Eq. 8. In other words, given
a tableau t of shape I, thepreimage7t-1 (t) is a combinatorial description of the expansion
of w 2 (S i ) on the basis of Schurfunctions.

Example 7.7 The equality w 2 (S 1 2 ) = w 2 (S 1 2 ) + w(S 3 ) corresponds to the following
splitting of the ten domino tableaux of evaluation 12:

Hence we have

Proof: Let t and t' be two tableaux of the same shape /. Theorem 7.3 shows that the
preimages T T - 1 ( t ) and n-1 (t') are isomorphic, that is, there exists a bijection g: n-1 (t) -»•
n-1 (t') leaving the shape of domino tableaux invariant. Explicitly, g is defined as follows.
If T is sent on (Y, t) by Algorithm 7.1, then g ( T ) is the unique domino tableau sent on
(Y, t') by the same algorithm. Now if t is the Yamanouchi tableau of shape /, the statement
is true by Theorem 4.1. Therefore it is also true for t'. D

Algorithm 7.1 may also be used to define an action of the symmetric group on the set of
domino tableaux, which permutes the evaluation and leaves invariant the shape and the spin.
Recall that Lascoux and Schiitzenberger defined an action of &n on the set of tableaux over
the alphabet { 1 , . . . , n}, which leaves invariant the shape and the charge [27], [19]. For t a
tableau and z a permutation, let tm denote the image of t under (j, for this action.

Corollary 7.8 The symmetric group &n acts on the set of domino tableaux filled with
numbers in ( 1 , . . . , n] by:

The action T ->• Tm leaves invariant the shape and spin of T.
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Proof: By definition of Algorithm 7.1, the shape and spin of T are equal to the shape and
spin of Y, and therefore to the shape and spin of Tm. D

8. Distribution of spin—Labyrinths

In this Section we analyse the distribution of the statistic spin on the sets Tab2(I; J) and
Yam2(I; J). For this purpose, we divide these sets into subsets on which the distribution is
very regular.

Definition 8.1 Define an equivalence relation on domino tableaux of shape / by

T ~ T' & T and T' have the same diagonals.

We have the following result concerning the equivalence classes in Tab2(I; J) and Yam2 (I; J),
which we call diagonal classes.

Theorem 8.2 Let C be a diagonal class in Tab2(I; J) or Yam2(I; J). Then, the cardinality
of C is a power of 2, and the spin polynomial of C, namely ETEC qSpin(T), is equal to
qa(1 + q)b for some nonnegative integer b and half-integer a.

Proof: The main idea which is due to A. Lascoux, consists in associating with every
domino tableau T a picture from which it is immediate to recover all the domino tableaux
belonging to the diagonal class C of T. The starting point is the following. If one considers
the domino tableaux T' which belong to the diagonal class of T, one sees that they all
have in common several domino border lines of length 2. If one removes from T all
the border lines which are not present in all tableaux T' of C, one obtains a skeleton of
domino tableaux that we call the labyrinth of T. For the convenience of the reader, we
shall first illustrate this principle and give the outline of the proof by working out a specific
example.

Consider the domino tableau

The labyrinth of T is constructed in the following way. First, draw the external shape of T
and write down the numbers along the diagonals.
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Then, read the anti-diagonals, that is, the diagonals going down from North-West to South-
East, and between any two adjacent numbers, draw a barrier of length 2, according to the
following two cases:

Furthermore, if two adjacent numbers on an ascending diagonal are equal, then place a
vertical barrier between them in the following way:

The picture so obtained is the labyrinth of T. In this case, it is

The labyrinth separates the shape of T into different connected components—four compo-
nents in this example. There are two types of connected components. Some of them can
be tiled by dominoes in two ways, and the others in only one way. For instance
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Moreover, for any component which can be tiled in two ways, the spins of the two tilings
differ by 1. The conclusion is that, if we denote by b the number of components which can
be tiled in two ways, the number of domino tableaux which compose the diagonal class of
T in Tab2(I; J) is 2b, and the spin polynomial of the class is qa(1 + q)b, where a is the
minimal value of the spin in that class. Thus, in our example, the diagonal class of T in
Tab2(3345555; 1211131122) is

and the spin polynomial is equal to q 5 / 2(1 + q)2.
Let us summarize this discussion and repeat the arguments that we have used so far in

the form of a series of lemmas to be proved in general. Let T be a domino tableau, and
define its labyrinth as the configuration of barriers placed in the shape of T according to
the rules explained above.

Lemma 8.3 The diagonal class C of T in Tab 2 ( I ; J) is in one-to-one correspondence with
the set of domino tilings of the shape of T compatible with the labyrinth, that is, such that
no domino of the tiling crosses a barrier of the labyrinth.

Lemma 8.4 The labyrinth separates the shape of T into connected components which
take the form of domino chains. Some of those chains are closed and admit two different
domino tilings, while the others are open and admit only one tiling.

Lemma 8.5 The difference between the spins of the two tilings of a closed chain is equal
to 1.
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The proofs of these three lemmas are presented in full in the last section, and this completes
the proof of Theorem 8.2 for the diagonal class of T in Tab2(I; J).

Finally, if we restrict ourselves to Yamanouchi domino tableaux, we see that among
the connected components of the labyrinth which can be tiled in two ways, some are
such that the two tilings are compatible with the Yamanouchi condition, and the others
such that only one tiling is compatible with this condition. Anyway, we obtain again
a set of tableaux whose cardinality is a power of 2, and whose spin polynomial is of
the form qa(1 + q ) b . For instance, the diagonal classes of the Yamanouchi domino
tableau

in Tab2(22446688; 123356) and Yam2(22446688; 123356), have respectively cardinalities
64 and 8, and the corresponding spin polynomials are g3(l + g)6 and q5(1 + q)3. D

In order to prove Theorem 5.3 we make now the following simple remark, the proof of
which is also explained in Section 10.

Lemma 8.6 Let I be a partition whose parts are all even and have even multiplicities.
The domino tableaux of shape I and evaluation J whose diagonal class in Tab 2 ( I ; J) has
cardinality 1, are the domino tableaux entirely composed of 2 x 2 blocks of type

In other words, these domino tableaux are exactly those sent by Algorithm 6.1 on a pair
( t , t ) of two equal ordinary tableaux.

Example 8,7 The class in Tab2(4466,244) of

is reduced to T.

Let us now deduce Theorem 5.3 from these results.
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Proof of Theorem 5.3: Recall from Example 2.2 that the partition whose 2-quotient is
( I , I ) is 2I V 2I = (2i1 , 2i1, 2i2, 2i2,...). that is, a partition whose parts are all even and
have even multiplicities. Let us introduce the symmetric function

We know from Corollary 4.4 that HIvI(l) = (S I)
2 . Now we want to prove that HIvI(-l) =

(-l) | I |V2(S I). This equality can be checked by comparing the expansions of both sides
on the basis of monomials. First it is clear that

where the sum runs over all ordinary tableaux t of shape I.
On the other hand, Theorem 7.3 shows that

the sum being over all domino tableaux T of shape 2I V 2I. But, Theorem 8.2 proves that
when q is put equal to — 1 in this last equality, one is left with

where T ranges now over all domino tableaux described in Lemma 8.6. Thus we have

and the proof is complete. n

We end this Section by noting that generally, Theorem 8.2 provides a splitting of the
polynomials C I J (q) in elementary blocks of the type q a (1 + q)b. For example, the five
domino tableaux of Example 5.2 are parted into two classes of cardinality 4 and 1, yielding

9. H-functions

We have demonstrated that the combinatorics of domino tableaux is strongly connected to
symmetric functions and the representation theory of the general linear group. In particular
we have shown that the decomposition of the square of the Schur function SI into S2(S I) and
A2(SI) leads to the definition of a symmetric function HIvI(q) (see proof of Theorem 5.3).
More generally we set the following

Definition 9.1 Let / be a partition. Define

where the sum runs over all domino tableaux T of shape 2I.
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It is not immediate from this combinatorial definition that H I ( A , q ) is a symmetric
function of A. This follows from the existence of the action of &n on the set of domino
tableaux defined in Corollary 7.8, which permutes the evaluation and leaves invariant the
shape and the spin. Moreover Theorem 4.1 and Theorem 5.3 imply

Corollary 9.2 Let I be a partition and set 10 = ( i 1 , i3, i 5 , . . . ) , Ie = (i2,i4, i6 , . . . ) , so
that (I0, Ie ) is the 2-quotient of the partition 2I (see Example 2.3). One has

• The family H I ( A , q) is a linear basis of the algebra of symmetric functions with coef-
ficients in Z[q]. The transition matrix from the basis of Schur functions to the basis of
H-functions is unitriangular, and all its entries are polynomials in q with positive integer
coefficients.

Several additional properties of H-functions will be investigated in [ 16], namely a "half Pieri
formula", and some generating series which generalize the following classical identities of
Schur and Littlewood:

10. Proofs of Lemmas 8.3-8.6

Proof of Lemma 8.3: By definition of the diagonal class of T, the domino tableaux T' in
this class have the same shape as T, and the same numbers at the same places. Thus these
tableaux differ only by their domino configuration. In other words they can be regarded as
particular domino tilings of the shape of T. It remains only to characterize those tilings. It
happens that the increasing conditions on the labels of T' can be translated into some simple
constraints. Namely, it is easy to check that the dominoes of the tiling corresponding to T'
are not allowed to cross the barriers of length 2 placed between adjacent labels according
to the rules explained in Section 8. Conversely, these constraints are enough to impose the
increasing conditions on rows and columns, and therefore any such tiling corresponds to
an admissible domino tableau. D

Proof of Lemma 8.4 and 8.6: Let us first assume that T has shape H = 2I v 2I, that is, a
shape whose parts and multiplicities are all even. Actually, this is the only case that we need
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Figure 2.

for proving Theorem 5.3. Moreover, the general case results easily from this one. Let us
also suppose for a moment that the labels on the ascending diagonals are strictly increasing,
so that no barrier of the third type arises in the labyrinth. These assumptions imply (i) that
the middle points of the barriers are all the points of the set L = { ( x , y ) / x + y is odd} lying
inside the shape of T; (ii) the frontier of this shape is also formed by barriers of length
2 with middle points in the same set L. It is straightforward to see that in this case the
frontiers of a connected component are made of vertical and horizontal segments of even
length, the general form of a component being that of a closed chain of width 1, as shown
by Fig. 2a. Note that the interior domain of the chain may well degenerate to a union of
segments, as in Fig. 2b, or to a single point, as in Fig. 2c. It is clear that such a closed chain
admits exactly two domino tilings.

We next relax the second assumption on T and we consider a domino tableau of shape
H = 2I v 2I with possible pairs of equal adjacent labels in ascending diagonals. Consider
a barrier of the third kind placed between two such labels:

The inequalities obeyed by the neighbouring labels imply that the barrier configuration
around this pair is necessarily:

In other words, each such pair of labels gives rise to a pair of connected components reduced
to one domino which therefore admit only one tiling, and this already proves Lemma 8.6.

To finish the proof of Lemma 8.4 it remains to relax the assumption on the shape of T.
Let then T be a domino tableau of arbitrary shape J. We can easily recover the previous
situation by glueing at the periphery of T a rim of dominoes labeled by sufficiently big
numbers, so as to obtain a tableau T' of shape H = 2I V 2I. This process is illustrated in
Fig. 3. The connected components of the labyrinth of T ' are of the two kinds described so
far. When returning to T we get a new kind of connected components, by restricting those
components of T' intersecting the domino rim H/J. These components take the form of
an open chain and admit only one tiling. D
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Figure 3.

Proof of Lemma 8.5: Recall from the proof of Lemma 8.4 that the outer and inner frontiers
of the closed chains arising in the labyrinth are formed by vertical and horizontal segments
of even length made of vertical and horizontal barriers of length 2. Consider now the two
domino tilings of the chain. The main observation is the following. The vertical barriers
of the outer frontier coincide with the outer borders of the vertical dominoes of one tiling,
while the vertical barriers of the inner frontier (if any) coincide with the inner borders of the
vertical dominoes of the other tiling. Therefore the spin difference of the chain, which is by
definition half the difference between the number of vertical dominoes of the two tilings,
can be expressed as

where L0 (resp. Li) denotes the sum of lengths of the vertical segments of the outer (resp.
inner) frontier of the chain. Strictly speaking, formula (9) applies only to "generic" closed
chains such as the one shown by Fig. 2a. For "singular" chains like the one in Fig. 2b, one
must take into account that some segments of the frontiers are travelled up and down when
one goes round the inner or outer frontiers. These segments must therefore be counted twice
in the sums LI and L0 , in order that (9) be correct. Now, with these conventions on L0 and
Li, it is an elementary geometric fact that for any closed chain, the difference L0 — LI is
equal to 4. Therefore, A5 = 1 and the proof is complete. D
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