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Abstract. We determine the p-rank of the incidence matrix of hyperplanes of PG(n, pe) and points of a
nondegenerate quadric. This yields new bounds for ovoids and the size of caps in finite orthogonal spaces. In
particular, we show the nonexistence of ovoids in O10(2e), O10(3e), O9(5e), O12(5e) and O12(7e). We also give
slightly weaker bounds for more general finite classical polar spaces. Another application is the determination of
certain explicit bases for the code of PG(2, p) using secants, or tangents and passants, of a nondegenerate conic.
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1. Introduction

Let F be a finite field of order q = pe where p is prime. Choose a nondegenerate quadric
of PG(n, F), denoted by Z(Q), the zero set of a nondegenerate quadratic form Q, as
defined in Section 2. Let P1, P2, • • •, PS denote the points of Z(Q), where s = s(Q) is
given by Lemma 2.2 below; and let P s + 1 , . . . . Pm be the remaining points of PG(n, F),
where m = [n+1 }q = (gn+1 - 1 ) / (q - 1). Denote the tangent hyperplanes to the quadric
by Hi = Pi- for i = 1 ,2 , . . . , s, where L denotes orthogonal 'perp' relative to Q, and
denote the remaining hyperplanes by H s + 1 , . . . , Hm . Then we have a partition of the point-
hyperplane incidence matrix for PG(n, F) given by

where aij = O or 1 according as Pi £ Hj or P, € Hj. Here, for example, A1 = (A11 A12)
consists of the first s rows of A, and the upper-left s x s submatrix A11 is symmetric. The
following result, which by today is well-known, originates from numerous independent
sources; see Goethals and Delsarte [5], MacWilliams and Mann [9], and Smith [12]. See
also [3] for a treatment closer in spirit to ours, or [1] for more details and related results and
discussion.

Theorem 1.1 rankp A = (p+n-1 Y + 1.

Here rankp denotes the rank in characteristic p. In Section 2 we prove the following related
result.

'The second author gratefully acknowledges the hospitality of the Eindhoven University of Technology where
this research was conducted.
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Theorem 1.2 Let n > 2. Then
(i) rankpA, = [ p n + 1 ) - ( P + n - 3 ) ] e + 1.

(ii) If q and n are both even, then rankp A11 = ne + 1.

Note that for n odd, conclusion (i) is remarkably independent of whether the quadric Z( Q) is
of hyperbolic or elliptic type. Also note that the binomial coefficient (p + n - 3) vanishes when
p = 2, so that if q is even and n is odd, we have rank2Ai = (n+1)e + 1. Theorem 1.2(ii) is
a trivial consequence of Theorem 1.1; see Lemma 2.1. Our proof of Theorem 1.2(i) relies
on the following Nullstellensatz: If f is a homogeneous polynomial of degree at most
q — 1 in n + 1 indeterminates, where n > 3, and if / vanishes on a nondegenerate quadric
Z(Q), then Q divides f. Actually we prove a slightly stronger form of this statement; see
Theorem 2.11.

In Section 3 we make some remarks concerning the representations of the orthogonal
group on the codes of A\ and A\\.

An application of these results to caps and ovoids is given in Section 4. Recall (cf. [7],
[8], [14]) that a cap on a quadric Z(Q) is a set of points on 2(Q), no two of which lie
on a line of Z(Q). A generator of Z(Q) is a projective subspace of PG(n, F) contained
in Z(Q), which is maximal among such subspaces. An ovoid on Z(Q) is a cap O such
that every generator of the quadric contains a (necessarily unique) point of O. Examples
of such ovoids are known for n < 7, and they abound for n < 5. The question of whether
such ovoids can exist for n > 8 remains unsettled. An elementary consequence of Theorem
1.2 is that for any p, there exists an upper bound on n such that a nondegenerate quadric
Z(Q) cPG(n, q) may admit an ovoid. We stress the remarkable fact that this bound depends
only on p, the characteristic of the field. This we see immediately from the following results.

Theorem 1.3 If S is any cap on a nondegenerate quadric in PG(n, q), where q = pe,
then |S| < [(p+n-1) - (p+n-3)]e + 1. Moreover, if n and q are both even, then the stronger
inequality |S| < ne + 1 holds.

Corollary 1.4 Suppose a nondegenerate quadric in PG(n, q) admits an ovoid. If q is
odd, then p[n/2] < ( P + n - 1 ) _ (p+n-3). If q is even, then n < 5 or n = 7.

Corollary 1.5 There are no ovoids in 07(2
e), 010(2e), O10(3e), O9(5

e), 012(5e) or
0+(7e).

Most of Corollary 1.5 is new, although it was previously known (see [8], [11], [14]) that no
ovoids exist in O7(2

e), 010(2) or 010(3). Here 02m+1 (q) denotes a (2m + 1)-dimensional
vector space over F equipped with a nondegenerate quadratic form Q, so that Z(Q) is
a nondegenerate quadric in PG(2m, q). Also O2m(q) is a 2m-dimensional vector space
together with a nondegenerate form Q of Witt index m, so that Z(Q) is a (nondegenerate)
hyperbolic quadric in PG(2m — 1 ,q ) .

As a measure of the strength of Theorem 1.3 in cases where ovoids cannot exist, the
second author has constructed caps of size 55 in 010(3), thus attaining the upper bound of
Theorem 1.3.

In Section 4 we prove the following, which is slightly weaker than Corollary 1.4 in the
case of orthogonal spaces, but applies also to symplectic and unitary spaces. All terminology
will be defined in Section 4.
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Theorem 1.6 Let P be any finite classical polar space, naturally embedded in PG(n, q).
If S is any cap in P, then |S| < ( p + n - 1 Y + 1.

This shows that for any classical family of finite polar spaces over F = GF(pe ) , ovoids
cannot exist when the rank of the polar space exceeds some bound depending on p (but not
on e). In as much as Theorem 1.6 is an elementary consequence of the known Theorem
1.1, it is surprising that this bound has until now remained unnoticed. The question of
which finite polar spaces admit ovoids has been settled in the symplectic case [7] but not
completely in the unitary case, as we now describe. The polar space U(n, q2) of unitary
type is defined as the set of all projective subspaces of PG(n, q2) which lie on a given
nondegenerate Hermitian variety. Ovoids of U(n, q2) are defined just as for quadrics; see
also Section 4. Ovoids of W(3, q2) exist trivially, but U(2m, q2) has no ovoids for m > 2.
The situation in U(2m - 1, q2) is open for m > 3, and the following bound applies.

Corollary 1.7 If U(2m — 1 ,q 2 ) contains an ovoid, where q = pe, then p2m-1 <

(p+2m-2)2.

Corollary 1.8 No ovoids exist in U (7, 22e), U(7, 32e), U(9, 52e) or U(9,72e).

The proof, given in Section 4, depends ultimately on Theorem 1.1. Also in Section 4 we
prove the following.

Theorem 1.9

(i) (Bagchi and Sastry [2]) Let O be an ovoid in PG(3, 2e). Then the tangent planes to
O form a basis for the code spanned by (the characteristic vectors of) the planes of
PG(3,2e).

(ii) Let O be an ovoid in O7(3e) or in O8(2e). Then the tangent hyperplanes to O (i.e. the
planes x- for x € O) form a basis for the code spanned by (the characteristic vectors
of) the tangent hyperplanes to the quadric.

Finally, in Section 5 we give an application of this work to codes of projective planes.
The code C of PG(2, q) is the space spanned by the (characteristic vectors of the) lines,
over F = G F (q). It is well known that the complements of the lines span the code C n 1-
(which coincides with C- if q = p), and that dim(C n 11) = dimC - 1 = (p+1)e (cf.
Theorem 1.1). LetZ(Q) be an irreducible conic in the plane. We shall prove the following.

Theorem 1.10

(i) C n 11 is spanned by the complements of the secants of Z(Q); also by the complements
of the nonsecants (i.e. tangents and passants) of Z(Q). Furthermore, the nonsecants
span C itself.

(ii) In case q is prime, the complements of the secants form a basis of CL = C n 11, and
the nonsecants form a basis of C.

The authors are pleased to acknowledge that these investigations have been guided by
stimulating conversations with Ruud Pelikaan, Andries Brouwer, Ron Baker and Robert
Liebler.
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2. Polynomials and p-ranks

Let F = GF(q), with q = pe as in Section 1. The vector space V = Fn+1 = (x =
( X 0 , x1 , . . . , xn):xi e F}, considered projectively, becomes the n-dimensional projective
space PG(n, F). Points of PG(n, F) (or of V) are one-dimensional subspaces of V. Let
Fd[X0, X 1 , . . . , Xn] denote the vector space of homogeneous polynomials of degree d in
F[X0 , X1,....,Xn], together with 0, and for f(X0,..., Xn) € Fd[X0,...,Xn], let Z(f)
denote the zero set of /, considered as a variety of degree d in PG(n, F). We use the
abbreviations X = (X0, X 1 , . . . , Xn), f(X) = f (x0 , . . . , Xn), F[X] = F[X0 ,..., Xn],
and Fd[X] = F d [ X 0 , . . . , Xn]. Note that we use lower case x € V for vectors, but upper
caseXforan (n+l)-tupleofindeterminates. Thehyperplanesof PG(n, F) are the varieties
of the form Z(l) such that 0 = l(X) e F,[X]. If H is a projective subspace of PG(n, F),
we shall write Z H ( f ) = H 0 Z ( f ) , considered as a variety in H.

A quadratic form on V is a polynomial G(X) 6 FztX]. The corresponding quadric is
Z(Q). The bilinear form associated to Q(X) is the polynomial (X, Y) := Q(X + Y) -
Q(X) - Q(Y) e F[X, Y]. For each subspace U < V, define UL = {v e V: (v, u) =
OVu 6 U}. A singular point is a point of the quadric Z(Q), i.e. a one-dimensional
subspace (x) of V such that Q(x) = 0. We shall only consider the case that Q(X) (or
-2(0) is nondegenerate; by definition, this means that V1 contains no singular points.
Equivalently, Vx = {0} (i.e. the bilinear form is nondegenerate) unless q and n are both
even; if q and n are both even, then V1 is a nonsingular point, called the radical point of
V. More details concerning quadrics may be found in [7].

If n and q are not both even, then the bilinear form (, ) is nondegenerate, and _L is a
polarity (orthogonal or symplectic according as q is odd or even), in which case we may
suppose moreover that Hi = Py1 for all i = 1, 2 , . . . , m, whence A is symmetric. But if
n and q are both even, then -L fails to be a polarity. In the latter case, however, Theorem
1.2(ii) holds, by the following.

Lemma 2.1 Suppose that n and q are both even. Then An is a point-hyperplane incidence
matrix of PG(n -1,q). Thus rank2A11= ne +1.

Proof: Let (x) = VL be the radical point of V = Fn+1. We show that A11 is a point-
hyperplane incidence matrix for V/(x). Points of V/(\) are the same as the lines (two-
dimensional subspaces) of V which pass through (x). Each such line is of the form Pi + (x),
1 < i < s. The hyperplanes of V/(x) are just the hyperplanes of V which pass through
(x), and these are just the tangent hyperplanes H1, H 2 , . . . , Hs to the quadric. Moreover,
Pi + (x) lies in Hj iff Pi e Hj, and A11 is the incidence matrix for this relation. Now
rank2A11 = ne + 1 by Theorem 1.1. D

For reference, we record here the well-known formula for the number of points on a
quadric; see Theorem 22.5.l(b) of [7] for details.

Lemma 2.2 The number of points of PG(n, q) on a nondegenerate quadric Z(Q), is
(qn - 1 ) / ( q - 1) + £9(n-1)/2, where e = s(Q) = +1, -1 or 0, according as Z(Q)
is hyperbolic or elliptic (n odd), or n is even. The number of nonsingular points is
qn - e9(n-1)/2.
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The standard basis of Fd[X0,...,Xn] is the set of (n+d) monomials X0X1• • • Xn such
that i0, i1, . . . , in > 0, i0 + i1 + . . .+- in = d. We use the abbreviations i := (i0, i1,...,in),
Xi := X0X1 • • • Xn. We define the degree of the (n + 1)-tuple i to be the degree of the
monomial which it represents, i.e. deg i = deg X1 = 0 + i1 + • • • + in Likewise for
y = (y0, • • •, yn) 6 Fn+1, define yi = y0y1 ...yn , using the convention 0° = 1. We shall
frequently use the abbreviation X' := (X1 , X2,..., Xn) for coordinates of the hyperplane
Z(X0).

Consider the qn+1 x qn11 matrix B = (11) with rows indexed by vectors x e F1l and
columns indexed by i such that 0 <i0,i1,...,in <q — 1.

Lemma 2.3 B is nonsingular.

Proof: If n = 0 then B is a Vandermonde matrix B0 of size q x q, and the result is well
known. In general, B = B0 8 B0 ® • • • ® B0, an (n + 1)-fold Kronecker product, and again
the result follows. D

Now define Fd[X] = Fd[X0 ,..., Xn] to be the subspace of Fd[X] spanned by all
monomials X' such that p does not divide

Note that Fd[X] = F d [ X ] if and only if d < p - 1.

Lemma 2.4 Let d = do + d\p + • • • + drpr be the p-ary expansion of d, with 0 <
do, d1 , . . . , dr < p - 1. Then the monomials x10+p11+... +prir for which i0,. . . , ir are (n +1)-
tuples of degree d0,... ,dr respectively, form a basis of Fd[X]. In particular, dim Fd[X] =

nj=0(n+d) and dimFq-1[X] = (p+n-1)e.

Proof: See, for example, [3] for the essence of a proof using Lucas' Theorem. D

Let V1 be F1[X], endowed with the natural representation of G = GL(n + 1, F)
with respect to the ordered basis X = (X0, X 1 , . . . , Xn); for T € G we write TX =
(TX0 , T X 1 , . . . , TXn). This action extends uniquely to a faithful action of G on the al-
gebra F[X], given by T f ( X ) = f(TX). It is well known that each homogeneous part
Vd = Fd[X] is invariant under this action of G. Here Vd is regarded as an FG-module,
isomorphic to the space of homogeneous symmetric tensors of order d on V1.

Consider the Frobenius automorphism a defined by x -> xp, so that Aut(F) = {1, a, a2,
... , a e - 1 } . Allow a to act naturally on G and on F[X] by applying a to each matrix entry
and to each polynomial coefficient. For each i = 0 ,1 , . . . , e — 1, a new FG-module Vd

is obtained by twisting Vd by the automorphism ai. That is, the elements of V(i) coincide
with those of Vd = Fd[X], but the new action of T e G is given by

We require the following.
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Lemma 2.5

(i) Fd[X] is invariant under G = GL(n + 1, F) for every d > 0. More generally, F^[\]
is invariant under the ring R of(n + 1 ) x ( n + 1) matrices over F.

(ii) We have an isomorphism of FG-modules given by

Proof:
(i) A typical generator T of G is of the form TX0 = aX0 + B X 1 , a = 0 ; TXj = Xj for
j > 1. Then for a typical monomial X1 6 Fj[X], we have

The only monomials which appear on the right are those in Fj[X]; this follows directly
from the identity

and the hypothesis that Cj) is not divisible by p. Thus Fj[X] is invariant under G. If we
remove the above restriction that a ^ 0, then T ranges over generators of the multiplicative
monoid of R, and the above argument suffices to show that Fj[X] is invariant under R.
(Remark: Although Fj[X] is an FG-module, it is not an ^-module, since in general
f.((A + B)X) = f(AX) + /(BX) where A + B denotes addition in the ring R.)
(ii) By Lemma 2.4, we have a vector space isomorphism

determined by

where Xp1 = (Xpj, Xp j , . . . , Xp1). To see that this is in fact an isomorphism of FG-
modules, let T e G; then

i.e. pT = T<p as required. D
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Remark We shall require Lemma 2.5 only for d < q, in which case one may show that
Fd+[X] is the subspace of Fd[X] spanned by all l(X)d, l(X) e F1 [X]; see Corollary 3.2.

We may coordinatise the points and hyperplanes using one-dimensional subspaces span-
ned by row and column vectors of length n + 1, namely, Pi = (xi), Hj = (yj). As usual,
we have Pi, e Hj iff xi,yj = 0. Here we use the standard bilinear form xyT rather than
(x, y), since the latter form is sometimes degenerate. Thus the entries of A arc given by

Now let M = ((xyT)q-1) be the qn+1 x qn+1 matrix with rows and columns indexed by
the row vectors x, y e Fn+1. Assume that the first (q — 1)s + 1 rows of M are indexed
by those vectors x such that Q(x) = 0, and the remaining qn+1 - (q — 1)s — 1 columns
are indexed by the remaining vectors x e Fn+1. This induces on M a partition of the form
M = (M1M2) where M1 consists of the first (q — 1)s + 1 rows of M.

Lemma 2.6

(i) rankpM = rankp A — 1.
(ii) rankpM1 = rankpA1 — 1for n > 3.

(iii) For n = 2, we have rankpM1 = rankpA1 — q + 1.

Proof: Observe that x and Xx index identical rows of M whenever X e F\{0); similar
duplications occur among the columns. Deleting from M duplicates of rows, and of columns,
and deleting the zero row and column, gives the matrix

assuming (as we may) that vectors in Fn+1 and points of PG(n, F) have been ordered
consistently; here each J is a matrix of all 1's of the appropriate size. Thus rankpM =
rankp(J — A), and similarly, rank pM1 = rankp(J — A1).

Each row and column of A has qn zeroes and m — qn ones, where m = 1 mod p, which
gives Row(A) = (1) ® Row(J - A), where 1 = (1, 1 , . . . , 1) of length m, and 'Row'
denotes the row space over F. Together with the preceding remarks, this proves (i).

Conclusion (ii) follows by the same arguments as in the previous paragraph, if only we
can show that each column of A1 has 1 (mod p) ones and 0 (mod p) zeroes. A typical
column of A1 is indexed by a hyperplane H c PG(n, F). If Z H ( Q ) is a nondegenerate
quadric in H, then the number of points in Z H ( Q ) is 1 mod p by Lemma 2.2, since H has
projective dimension n - 1 > 2. Otherwise Z H ( Q ) is a cone over a radical point (x), and
the number of points on this degenerate quadric in H is 1 + qs' = 1 mod p, where ' 1'
counts the point (x), and s' is the number of points on the nondegenerate quadric induced
on H/(x). Thus (ii) holds as before.

Finally, suppose n = 2. Then A11 is an identity matrix of size q +1. Thus rank pA1 =
rank pA11 = q + 1. The column space Col(J - A11) is the set of all column vectors
( v 1 , . . . , vq+1)Tsuch that Ei vi = 0. For each passantoftheconicZ(Q),thecorresponding
column of M1 i s (1 ,11 , . . . ,1l ) T C o l ( J - A11), so that rankp M1 =q + 1. n
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Lemma 2.7 We have

Proof: For each vector a = (ay: y e Fn+1), define

Then a > fa(X) defines a linear map FFn+1 -> F+
q-1 [X], and it follows from Lemma 2.3

that this map is surjective. Also fa(X) vanishes on Z(Q) if and only if aT is in the right
null space of M1. Thus

dimF+
q-1[X] - dim{f(X) e F+

q-1[X]: f(X) vanishes on Z(Q)}

= qn+1 — dim(right null space of M1)

= rank pM1 .

Applying Lemmas 2.4 and 2.6(ii) gives the result. D

Note that f ( X ) p 1 = f1 (Xpt), where a is the Frobenius automorphism of F, extended
to F[X]. Observe from Lemma 2.5 that Fq-1

+ [X] is spanned by the products IIj=0
e-1 gj (X)p'

such that gj(X) e F P - 1 [ X ] . Define £Q,x to be the subspace of F +
q - 1 [ X ] spanned by all

polynomials of the form IIj=0
e-1 g j ( X ) p 1 such that Q(X) divides at least one of the factors

g j ( X ) e Fp_1[X]. By construction, £Q,x < Q(X)Fq_3[X] n F +
q - 1 [ X ] ; and we will see

(Lemma 2.14) that equality holds when n > 3. Note that £Q,x = 0 when q is even. The
following is immediate.

Lemma 2.8 Let (g1(X), . . . , g b ( X ) } be a basis for the subspace Q ( X ) F p - 3 [ X ] < F p - 1 [ X ] ,
and extend this to a basis ( g 1 ( X ) , . . . , gb(X)} for F p - 1 [ X ] , where b = ( p + n - 1 ) and
b' = (p+n-3

n). Then

(i) B = {IIj=0
e-1grj(X)pj: 1 < r0, r1 , , . . . , re_1, < b} is a basis for Fq-1

+[X], and

(ii) B' = {IIj=0
e-1grj(X)pj=e B: at least one rj < b1} is a basis for £Q x; in particular, dim

EQ,x = be-(b- b')e.

Lemma 2.9 Suppose that n = 3. Then £Q,X is the set of all f(X) e Fq-1
+, [X] vanishing on

Z(Q). Furthermore, any polynomial in Fq-1 [X] vanishing on Z(Q), is divisible by Q(X).

Proof of Lemma 2.9: Consider first the case that Z(Q) is an elliptic quadric of PG(3, q).
Then A11 is an s x s identity matrix where s = q2 + 1, so that rankpA1 = rankpA11 = s =
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q2 +1. Now by Lemmas 2.6, 2.7 and 2.8,

Hence equality holds throughout, and £Q,x = {f(X) e F+q-1[X]: f(X) vanishes on Z(Q)}.
Now by Lemma 2.4 and the above, we have

Consequently, Fq-1[X] = F+q-1[X] + {f(X) e Fq-1[X]: Q(X) | f(X)}. Suppose now that
f(X) e Fq-1[X] vanishes on z(Q). We may write f(X) = f+(X) + Q(X)g(X) for some
g(X) e Fq_3[X], where f+(X) € F+q_1[X] vanishes on Z(Q). We have seen that this
implies that g(X) | f+(X), and so Q(X) | f(X) as required.

The same proof works for a hyperbolic quadric Z(Q) in PG(3, q), if only we can show
that rank pA1 > q2 + 1, or equivalently, that rankp(J - A1) > q2. In this case Z(Q) is
a (q + 1) x (q + 1) grid. For each point (x) of Z(Q), let vx be the column of J - A1

indexed by the tangent plane x-1-; that is, vx, is the column vector of length (q + 1)2 with
entries indexed by the points of Z(Q), having entry 1 at each of the q2 points of Z(Q) not
perpendicular with (x), and 0 otherwise. Fix a point (u) of Z(Q), as in Fig. 1.
Let l1, l2 be the two lines of Z(Q) through (u), and denote the tangent plane H = u1 =
(l1+, l2). For any point (x) of Z(Q) not on H, let (x) be the unique point of li perpendicular

Figure J.
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to x; then vx — vX1 — vx2 + vu has value 1 at (x), and vanishes at all other points of Z(Q)
outside H. Thus rankp(J — A1) > dim(vx: (x) € Z(Q)) > q2 as required. D

The following lemma will be required in the Proof of Theorem 2.11.

Lemma 2.10 For any point (u) of PG(n, F), where n > 4, there are more than q
nondegenerate hyperplanes of PG(n, F) not passing through (u). Moreover if n =4,
there are more than q hyperbolic hyperplanes not passing through {u).

Proof: Suppose first that n is odd, n > 5. We may assume that Q(X) = aX20 + X0X1 +
X21 + X2X3 + X4X5 + • • • + X n - 1 X n . As usual, we denote the standard basis of V by
{e0, . . . , en}. By Witt's Theorem, there is no loss of generality in assuming that u e {e0 +
e2 + ae3, e0 + e2 + (a + 1)e3} if q is even; or if q is odd, u e {e0 + e2 - ae3,
e0 + e2 + (1 — a)e3, e0 + e2 + (e — a)e3}, where e e F is a fixed nonsquare. It is
straightforward to check that for A, e F, the hyperplanes Z(X0 + AX4) and Z(X0 + AX5)
are nondegenerate. Moreover, there are 2q — 1 > q hyperplanes of this form, none of which
contain (u), as required.

Now suppose that n is even, n > 4. We may assume that Q(X) = X20 + X1 X2 + X3X4 +
+ Xn-1 Xn, and that u e {e0, e0 + e1 — e2, e0 + e1 + (e — 1)e2} where e = 1 if q is even;
e is a fixed nonsquare if q is odd. For A, e F, we have 2q - 1 > q nondegenerate (and in
fact, hyperbolic) hyperplanes of the form Z(X0 + X X 3 ) and Z ( X 0 + AX4), none of which
contain (u). D

Theorem 2.11 Suppose that f(X) e Fd[X] vanishes at every point of a nondegenerate
quadric Z(Q) of PG(n, F).

(i) If n = 3 , d < q - 1 and Z(Q) is an elliptic quadric, then Q divides f.
(ii) If n = 3, d < q and Z(Q) is a hyperbolic quadric, then Q divides f.

(iii) If n > 4 and d < q then Q divides f.

Remarks For n = 2 there exist homogeneous polynomials of degree [.q/2] +1 vanishing
on a nondegenerate conic Z(Q) of PG(2, q), but not divisible by Q. An example of this is
IIi l i ( X 0 , X1, X2) where for 0 < i < [q/2] we choose li(X0, X1, X2) = a i X 0 + biX1 +
ciX2 € F 1 [ X 0 , X1, X2] such that the lines Z(li) are secants of the conic which together
cover the q + 1 points of the conic.

It is clear that the degree restriction d < q is necessary since PG(n, q) may be covered
by q +1 hyperplanes and hence there exist many homogeneous polynomials of degree q +1
vanishing at every point of PG(n, q). Furthermore an elliptic quadric in PG(3, q) may be
covered by q planes, which explains why the stronger hypothesis d < q — 1 is required
in (i).

Proof of Theorem 2.11: Conclusion (i) follows from Lemma 2.9. This is immediate for
d = q - 1, but also clear for d < q - 1 by applying Lemma 2.9 to f(X) = Xq - 1 - d 0f(X) e
Fq-1[X].

We proceed to prove (ii), assuming first that q is odd. There is no loss of generality in
assuming that Q(X) = X20 + X1X2 - X23 = X20 - Q1 (X') where Q1 (X') = X32 - X1X2 is a
nondegenerate quadratic form in the plane H = Z(Xo) with coordinates X' :=(X1, X2, X3).
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Suppose that f(X) e Fd[X] vanishes on Z(Q). Also we may assume that f(X) has degree
at most 1 in X0; otherwise subtract the appropriate multiple of Q(X) from f(X). Thus
f(X) = X0g(X') + h(X') for some g(X') e Fd-1 [X'] and h(X') e Fd[X']. We must show
that g(X') = h(X') = 0.

The exterior points with respect to the conic Z H ( Q 1 ) in H = Z(Xo) are those points
( ( x , y , z ) ) such that Q 1 ( x , y , z ) € F is a nonzero square (see Theorem 8.3.3 of [6]).
For such a point ((x, y, z)) with Q 1 (x , y, z) = w2 = 0, we find that ((w, x, y, z)) and
((-w, x, y, z)) both lie on the quadric Z(Q). By hypothesis, f(X) vanishes at these two
points, and we solve 0 = wg(x, y, z) + h(x, y, z) = -wg(x, y, z) + h(x, y, z) to obtain
g(x, y, z) = h(x, y, z) = 0. Similarly, for points ((0, x, y, z)) with Q 1 ( x , y, z) = 0, we
obtain h(x, y, z) = 0. Now let l0(X'), l 1 (X' ) , . . . , lq(X') e F1[X'] such that the lines Z( l i )
are the q + 1 tangents to the conic Z H ( Q 1 ) . Since h(X') vanishes at all q + 1 points
of ZH(li) and deg h(X') < q, we must have li(X') | h(X'). Since l0(X')l1(X') • • lq(X')
divides h(X), the degree restriction implies that h(X') = 0. Similarly, g(X') is of degree
at most q — 1 and vanishes at q points of every tangent (namely, the q exterior points on
such a tangent) and so g(X') = 0. Thus f(X) = 0 as required.

Next we prove (ii) supposing that q is even. There is no loss in assuming that Q(X) =
X20 + X0X1 + X2X3, f(X) = X0g(X') + A(X'), g(X') € Fd_1[X'], h(X') e Fd[X'], and
we must show that g(X') = h(X) = 0. The restriction of Q(X) to the plane H = Z(X0) is
degenerate. The q + 1 lines ZH(X2) and ,zH(aX1 + a2X2 + X3)for a e F form a dual conic
in H, and together with the nuclear line Z H ( X 1 ) these give a classical dual hyperoval. The
q + 1 points of ZH(aX1+a2X2+X3)\ZH(X1)are of the form((0, 1, y,a2y+a))for y e F.
For each such point we have two points ((ay, 1, y,a2y + a)), ((ay +1,1, a2y +a)) e
Z(Q) at which X0g(X') + h(X') must vanish. As before we obtain 0 = g (1 , y, a2y +
a) = h ( 1 , y , a2y + a). Since g(X') vanishes at q points of Z H ( a X 1 + a2X2 + X3), we
have (aX1, + a 2 X 2 + X3) | g(X') for all a e F. Since g(X') e F d - 1 [ X ' ] , this forces
g(X') = 0. Now the fact that f(X) vanishes at ((a, 0, 1, a2)) e Z(Q) implies similarly
that h(0, 1, a2) = 0. Thus h(X') vanishes at all q + 1 points of Z H ( a X 1 + a2X2 + X3)
and so (aX1 + a2X2 + X3) | h(X') for all a € F. Similarly X2 | h(X'), and so degree
considerations yield h(X') = 0 as required.

We now prove (iii) of Theorem 2.11 assuming that q is odd. By Lemma 2.5(i), we may
assume that Q(X) = X20, + Q(X') where Q'(X') is a nondegenerate quadratic form in
X' = (X1, X2,..., Xn). By adding to f(X) a multiple of Q(X) if necessary, we may
assume that f(X) = X0g(X') + h(X') where g(X') e Fd_1[X'] and h(X') e Fd[X'].
Every hyperplane of PG(n, F) which does not pass through ( (1 ,0 ,0 , . . . , 0)) is of the
form Z ( X 0 — l(X')) for some l(X') e l[X'], and such a hyperplane is nondegenerate
if and only if Ql(X') = Q(l(X'), X 1 , . . . , Xn) defines a nondegenerate quadratic form in
X'. Suppose that Q1(X') is nondegenerate; and if n = 4, assume in addition that Ql(X')
is of hyperbolic type. Observe that -l(X') satisfies the same requirements as l(X'). If
Q, vanishes at x = (x1 xn), then Q(l(x), x) = Q(-l(x), x) = 0, so by hypothesis,
±l(x)g(x) + h(x) = 0, which implies that l(x)g(x) = h(x) = 0. By induction, Q,(X') =
Q-,(X) divides both l(X')g(X') and h(X'). Now let N be the number of functions l(X')
satisfying the above hypotheses; then g(X') and h(X') are each divisible by at least (N+1 )/2
distinct quadratic factors Q1(X') = Q-1(X'), including Q0(X')- (It is easy to check that two
such polynomials Q 1 (X ' ) and Q1(X') have no nontrivial common factor unless l*(X') e
{l(X'), —l(X')}.) However, N > q by Lemma 2.10, and g and h have degree at most q, so
g = h = 0 as required.
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For the remainder of the proof of (iii), q is even. By Lemma 2.5(i), we may assume that
Q(X) = X2

0 + X 0 X 1 + Q'(X2,. •., Xn) where Q' is a nondegenerate quadratic form in
(X2 , . . . , Xn). As before we may assume that f(X) = X0g(X') + h(X'),g(X') e Fd-1[X],
h(X') € F d [ X ] where X' = (X, , . . . . Xn), and we must show that g = h = 0. Every
hyperplane of PG(n, F) which does not pass through {(1,0,0, . . . , 0)) is of the form
Z(X0 + l(X')) for some l(X') e l [ X ' ] , and such a hyperplane is nondegenerate if and
only if Q 1 ( X ) = Q(l(X'), X 1 , . . , , Xn) defines a nondegenerate quadratic form in X'.
Suppose that Q1(X') is nondegenerate; and if n = 4, assume in addition that Q1(X') is
of hyperbolic type. Notice that X1 + l(X') satisfies the same requirements as l(X')- If Qi
vanishes at x = ( x 1 , . . . , xn), then Q(l(x), x) = Q(x1 + l(x), x) = 0, so by hypothesis,
l(x)g(x) + h(x) = (x1 + l(x))g(x) + h(x) = 0, which implies that x 1 g(x) = 0. By
induction, Q,(X') = QX 1 + 1(X') divides both X 1 g ( X ' ) and l(X')g(X') + h(X'). Now let N
be the number of functions l(X') satisfying the above hypotheses; then g(X') is divisible
by at least N/2 distinct quadratic factors Q 1 (X ' ) = Qx1+1(X'). (Again, it is easy to check
that two such polynomials Q 1 (X ' ) and Q1(X') have no nontrivial common factor, unless
l*(X1) e {l(X'), X1 + l(X')}.) By Lemma 2.10, we have N > q, which forces g(X') = 0.
Thus h(X') is also divisible by at least N/2 > q/2 quadratic factors, so h(X') = 0, which
completes the Proof of Theorem 2.11. D

For convenience, we shall henceforth assume the following.

Assumption 2.12 Q(X) is a nondegenerate quadratic form in which the coefficient of X2
0

is 1.

We choose bases B and B' for F+
q-1 [X] and £Q,x in accordance with Lemma 2.8, starting

with a basis of Fp_1[X]. Namely, let {g1 (X),. . . , g b ( X ) } = {Q(X)X':iisan(n+l)-tuple of
degree p-3}and {g b + 1 (X ) , ...,gb(X)} = {X':iisan(n+l)-tuple of degree p-l,0 < i0 <
1} where b = (p+n-1

n), b = (p+n-3
 n). Thus B = ( I I e - 1

j = 0 gr J (X )p j :1 < r 0 , r 1 . . . , re_1 < b]

is a basis of F+
q-1[X] containing a basis B' = (IIj=0

e-1grj (X)pj e B: at least one rj < b'}

of eQ,x Each IIj grj(X)pt € B, when expanded into monomials in X, contains a unique
monomial X' of highest degree in X0. This defines a bijection 0 : B - > {X1: i is an (n + 1)-
tuple of degree q - 1 such that p(q-1

1)} between two bases of F+
q-1 [X]. Furthermore, 0(B')

is the set of all monomials X1 = Xi0
0X

i
1 • • • X

i
n of degree q - 1 with p H ( q - 1

i ) , such that the
p-ary expansion i0 = i0,0 + i0,1P + • • • + i0 , e - 1pe - 1 contains at least one digit satisfying
i0,k > 2; for by definition, i0,j > 2 if and only if Q(X) | grt(X), if and only if rj, < b'.

Lemma 2.13 Let n > 3, and let Q(X) be as in Assumption 2.12. Define £Q,x as above.
Then the following three statements are equivalent.

(i) rank pA1, = [(p+n-1
n) - (p+

n
n-3)e + 1.

(ii) EQ,X = F+
q_1[X]n(Q(X)Fq-3[X].

(iii) If f(X) e F+
q-1[X]containsnomonomials in e(B'),and Q(X) | f(X),then f(X) = 0.

Before proving Lemma 2.13, we observe that rankpA1 depends only on n and (possibly)
on e (Q), in the notation of Lemma 2.2. Hence Lemma 2.13 implies that the validity of (ii),
or of (iii), likewise only depends on n and (possibly) on s(Q).
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Proof of Lemma 2.13: Combining Theorem 2.11 and Lemmas 2.6(ii) and 2.7, we have

and equality holds iff £Q,x = F+q-1[X] n (Q(X)Fq-3[X]. Thus (i) & (ii).
Assume that (ii) holds, and suppose f(X) e F+q-1 [X] contains no monomials in Q(B'), and

Q(X) | f(X). If f(X) = 0, then expressing f(X) as a linear combination of polynomials
in B', we may choose IIj grj(X)pj € B' appearing in f(X) with maximal degree in x0.
By our choice of IIj grj, (X)pi e B', no other elements of the basis B' appearing in f(X)
contribute the same monomial 0IIj grj, (X)pj ), and so f(X) contains a monomial in 0(B'),
contrary to hypothesis. Thus (ii) => (iii).

Conversely, assume (iii) holds, and suppose that f(X) e F+q-1[X] is divisible by Q(X). It
is easy to see that there exists h(X) € £Q,x such that none of the monomials in 0(B') appear
in f(X) — h(X). For suppose that f(X) contains monomials of the form X1 = d(g(X)),
g(X) e B', and among all such monomials, choose X1 = X0i0Xi11 • • • Xinn = 0(g(X))
appearing in f(X) for which i0 is maximal. Let c\ be the coefficient of X1 in f(X); then
f(X) - c1g(X) e F+q-1[X] has one fewer monomial of degree i0 in X0, than does f(X).
Repeat this process with f(X) — c1g(X) in place of f(X). After a finite number of iterations,
we obtain f(X) - h(X) e F+q-1[X] having no monomials in 0(B'), where h(X) e £Q,X-
Then by assumption, f(X) — h((X) = 0, and so (iii) => (ii). D

Proof of Theorem 1.2: Theorem 1.2(ii) follows from Lemma 2.1. Theorem 1.2(i) holds
for n = 2 by Lemma 2.6(iii), and for n > 3 by the following. D

Lemma 2.14 The equivalent conditions of Lemma 2.13 hold whenever n > 3.

Proof: For n = 3, this follows from Lemma 2.9. Hence assume that n > 4, and proceed
by induction on n. Suppose f(X) e F+q-1[X] contains no monomials in 0(B'), and Q(X) |
f(X). We must show that f(X) = 0.

First consider the case that n is even (q even or odd). We may assume that Q(X) =
X 0 ( X 0 + X1) + X1X2 + X 3 X 4 + + X n - 1 X n , in accordance with Assumption 2.12.
Let l(X) = Xn — a X 2 , where 0= a e F, so that the hyperplane Z(l) is nondegenerate.
Then Q 1 (X 0 , •• •, X n - 1 ) := Q(X0,..., X n - 1 , aX2) is a nondegenerate quadratic form in
(X 0 , . . . , Xn - 1) , and Q1, divides f1,(X0 Xn - 1 ) := f(X0 X n - 1 , aX2). Observe that
Q1 satisfies Assumption 2.12 for n — 1 in place of n. Every monomial appearing in f(X)
is of the form X1 = Xi00 • • • Xinn such that each of the digits in the p-ary expansion i0 =
Ee-1k=0i0,kPk satisfies 0 < i0,k < 1 • Hence every monomial appearing in // (X) is of the form

X 0 X 1 X 2 X 3 • • • X'n-1 where i0 is as before. Also fl(X0, • • •, Xn-1) e F + q - 1 [X 0 *Xn-1]
by Lemma 2.5(i). By induction, we have f 1 , ( X 0 , . . . , Xn_1) = 0, i.e. l(X) | f(X). Thus
f(X) is divisible by IIa=0(Xn - aX2) = Xq-1n - X2q-1. Similarly, f(X) is divisible by
Xn-1 -X2q-1,sothat f(X) = 0.



308 BLOKHUIS AND MOORHOUSE

Now suppose that n is odd, n > 5. We may suppose that Q(X.) = X20 + X 0 X 1 + aX21 +
X2.X3,+ + Xn-1 Xn, where the choice of a e F depends on whether Z( Q) is hyperbolic
or elliptic. Let l(X) = Xn — aX1 — b X n - 1 , where a, b e F are chosen such that the
hyperplane Z(l) is nondegenerate. This means that a2 = (4a — 1)b, and since 4a= 1
(otherwise Q(X) would be degenerate), there are q(q — 1) such choices for l(X). As
before, we obtain l(X) | f(X). This gives q(q — 1) > q — 1 linear factors for f(X), and
so f(X) = 0. n

3. Representations of the orthogonal group

Let G = G L (n +1, F), and let H be the isometry group of the quadratic form Q, otherwise
known as the orthogonal group. That is, H is the set of all T e G such that Q(TX) = Q(X).
Our goal is to determine, as far as possible, the row and column spaces of A1 and A11 as
FH-modules. We begin, however, with some general remarks.

Let Perm(r) denote the group of r x r permutation matrices. Let B be any k x l matrix
over F, and let T be any group. An action of F on B is a homomorphism P -»• Perm(k) x
Perm(l), g -»• (L(g), R(g)) such that L(g)rBR(g) = B for all g e P. In the special
case that B is square and invertible, then L and R are equivalent linear representations
(although not necessarily equivalent permutation representations) of degree k = l. We
may generalize this well-known fact by saying that the column and row spaces of B are
isomorphic FF-modules. Here, the column space of B means the F-span of the columns
of B; this is invariant under left-multiplication by every L(g)T, and so forms an FF-
submodule of Fk = {k x 1 vectors over F}. The row space of B is described dually. We
loosely refer to either the row space or column space of B as the code of B, since these are
isomorphic Ff-modules, even though they are not isomorphic as codes, in the usual sense
of code isomorphism; indeed in general, they have different lengths.

Now we see that the code of A is a natural FG-module of dimension (p + n - 1 n)e + 1.
Likewise, the code of A1 (or of A11) is an FH-module of dimension given by Theorem 1.2.
We proceed to investigate these modules.

Theorem 3.1 The code of A is an FG-module isomorphic to (1) e F+q-1[X] = (1) 0

(®j=0 Vp-1) where (1) is the (one-dimensional) trivial FG-module.

Proof: Let T -»- (L(T), R(T)) denote the action of G on A, as above. The column
space of A satisfies Col(A) = (1) ® Col(J — A) as a direct sum of FG-modules, where
1 = (1, 1,.... 1)T of length m, which is fixed by G.

Choose coordinates P, = ( ( X i 0 , X i 1 , . . . , xin)) for the points of PG (n, F), i = 1, 2 , . . . , m
For each f(X) € F+q-1[X], the value of f(Pi) e F is well-defined since Lq-1 = 1 for all
nonzero A. e F. The map P: F+q-1[X] -> Fm, f(X) --> (f(P1), f(P2) f(Pm))T is
F-linear, and for all T e G,

Thus <j> is an FG-homomorphism. Every hyperplane of PG(n, F) is of the form Hj, = Z ( l j )
for some lj € F1 [X], and the j'-th column of J-A is 0(lj(X)q-1). So 0(U) = Col(J-A)
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where U < F+q-1[X]is the subspace spanned by all polynomials l(X)q-1 such that l e F1[X],

Comparing dimensions by Theorem 1.1 and Lemma 2.4, we see that in fact U = F+q-1[X]

and 0 is an FG-isomorphism from F*q-1 [X] to Col(J - A). D

The following is evident from the Proof of Theorem 3.1.

Corollary 3.2 F+q-1 [X] is spanned by the polynomials l(X)q-1 for which /(X) e F1 [X].

Suppose now that n and q are both even, and let (x) = V-1, the radical point of V = Fn+1.
Recall, from Lemma 2.1, that A11 is the incidence matrix of points and hyperplanes of
V/(x). Furthermore, (X, Y) induces a nondegenerate H-invariant symplectic form on
V/(x), so that H acts on A11 as Sp(n,q) (see Theorem 11.9 of [13]). This yields the
following.

Theorem 3.3 Suppose that n = 2m and q = 2e. Then the code of A11 is an FH-module
of dimension ne + 1. This is the usual permutation module for Sp(2m, q) acting on the
points (or hyperplanes) of PG(2m — 1 ,q) .

For n = 2, we have H = SL(2, q) or {-1) x SL(2, q) according as q is even or odd,
and it is clear that the code of A\ is the usual permutation module for H of degree q + 1.
Therefore in what follows, we shall consider only the case n > 3, in which case we have
seen (Lemma 2.14) that eQ,x = Q(X)Fq-3[X] n F+q-1 [X].

There are two obvious FH-submodules of F+q-1 [X] of interest. One is £Q,X- The other,

which we denote £Q,x is the subspace of F+q-1[X] spanned by all polynomials l(X)q-1

where l(X) e F1 [X] such that Z(l) is a tangent hyperplane to the quadric Z(Q), i.e. one of
the hyperplanes P1,..., P s - . Equivalently, £Q,x is the span of the polynomials (X, x)q-1

such that (x) is a point of the quadric Z(Q).

Theorem 3.4 Suppose that n > 3. Then the code of A\ is an FH-module isomorphic to
(1) ® (F+q-1 [X]/£Q,x). Moreover, the latter is isomorphic to (1) ® £Q,X if q and n are not
both even.

Proof: As in the Proof of Theorem 3.1, we have Col(A1) - (l)eCol(J -A1) where the
s x 1 vector 1 spans a trivial module. Imitating the Proof of Theorem 3.1, we truncate the map
0 to obtain an FH-homomorphism y: F+q-19[X] -> Fs, f(X) --> ((f(P1) , . . . , f(Ps))T.

The jth column of A1 is y ( l j ( X ) q - 1 ) , so by Corollary 3.2, y(F+q-1[X]) = Col(J - A1).
Also, y(f(X)) = 0 if and only if f(X) vanishes on Z(Q), so by Theorem 2.11 and Lemma
2.14, ker y = £Q,x It follows that Col(J - A1) = F+q-1[X]/EQ,X.

Now suppose that q and n are not both even, so that _L is a polarity (orthogonal or
symplectic, according as q is odd or even). We may assume that A is symmetric, so that
AT1 = (A21), whose code is isomorphic to that of A\. Now if Hj = Z ( l j ) is a tangent
hyperplane to the quadric (1 < j < s), then 0(lj(X)q-1) is the jth column of J - AT1,
where p and lj (X) are as in the Proof of Theorem 3.1. So the restriction of p to £Q,x is an
isomorphism LQ,X —»• Col(J — AT1). d

By considering the restriction of y (as above) to £g,x. we also obtain
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Theorem 3.5 Suppose that n > 3. Then the code of A11 is an FH-module isomorphic to
(1) ®Col(J -A11), where

However, we have not determined the dimension of the latter module in general.

4. Bounds for caps and ovoids

We proceed to define terms and to prove Results 1.3 through 1.9.
Let S be a cap on a nondegenerate quadric Z(Q) in PG(n, F). As in Section 1, we may

suppose that S = { P1 , P2 , . . . , Pk}, Z( Q) = { P1 , . . . , Pk,. • •, Ps,} and that the hyperplanes
H1, H2,. •., Hm of PG(n, F) are ordered such that Hi, = pi- for 1 < i < s. By definition
of a cap, for 1 < i, j < k we have Pi, e Pj- if and only if i = j. Thus the upper-left k x k
submatrix of A11 is a k x k identity matrix. It follows that rankpA1[ > rankpA11 > k, and
so Theorem 1.3 follows from Theorem 1.2.

If n = 2m then by the general theory (see [7], [14]), |5| < qm + 1, and equality occurs
if and only if 5 is an ovoid. If n = 2m - 1 then \S\ < qm-1 + 1 or |S| < qm + 1 according
as Z(Q) is hyperbolic or elliptic; again, equality occurs if and only if 5 is an ovoid. Thus
Corollary 1.4 follows from Theorem 1.3, and Corollary 1.5 follows easily. Actually, we see
that the inequality in Corollary 1.4 may be improved slightly when n = 2m — 1 and Z(Q)
is elliptic; however this case does not concern us greatly since it is known [14] that elliptic
quadrics in PG(2m — 1, q) do not have ovoids for m > 3.

The simplicity of our bounds for ovoids, Corollaries 1.3 and 1.7, is a consequence
of a seeming coincidence, for which we have no satisfying explanation: namely, the
p-ranks given by Theorems 1.1 and 1.2 are both of the form (integer)e + 1, and it is
also true that the size of an ovoid in any finite classical polar space is an integer of this
form.

Now let ± be a symplectic or unitary polarity of PG(n,q), where n is odd in the
symplectic case, and q is a square in the unitary case. The set of all projective subspaces U
of PG(n, q) such that U c U1, together with the natural incidence relation of inclusion,
is a polar space of symplectic or unitary type, according to ±.

Finite orthogonal polar spaces can be defined similarly using an orthogonal polarity, in
the case of odd characteristic. But to allow arbitrary finite characteristic, we instead define
a finite orthogonal polar space as the set of projective subspaces of PG(n, q) which lie on
a nondegenerate quadric Z(Q), again with inclusion as the incidence relation. We denote
by UL the orthogonal 'perp' of U with respect to the bilinear form associated to Q. Recall
that if q is even, then -L is a symplectic polarity when n is odd, and not a polarity at all
when n is even.

Let P be a finite classical polar space, i.e. a finite polar space of orthogonal, symplectic
or unitary type as defined above, naturally embedded in PG(n, q). A cap in P is a set S
consisting of points of P, such that X e yx whenever X = Y are in S. An ovoid of P is a
cap O such that every generator (i.e. maximal member) of P contains a (unique) point of O.
Let A be the point-hyperplane incidence matrix of PG(n, q), with respect to some ordering
of points as P1 , P 2 , . . . , Pm and hyperplanes as H1, H2, • • •, Hm. Just as in Section 1, we
may suppose that P 1 , . . . , Ps are the points of P, and that Hi, = Pi for 1 <i < s. Again,
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this gives a matrix partition

where A11 is s x s, A12 is s x (m — s), etc. (In the symplectic case, every point is absolute,
so s = m and A11 = A.) Except in the case of orthogonal polar spaces in PG(2m, 2e),
we may suppose moreover that Hi = Pi

1 for 1 < i < m and A is symmetric. Clearly,
Theorem 1.6 is a consequence of the following, together with Theorem 1.1.

Proposition 4.1 Let P be a finite classical polar space naturally embedded in P G (n, q).

(i) If S is a cap in P, then |S| < rankpA11.
(ii) If P is not of orthogonal type in PG(2m,2e), then 2rankp(A11 A12) - rankpA <

rankpA11 < rankp(A11 A12) < rankpA.

Proof: Let S = [ P 1 , P2, ..., Pk} be a cap in P. Then the upper-left k x k submatrix of
A11 is a k x k identity matrix, which proves (i).

Suppose that P is not of orthogonal type in PG(2m, 2e). By the remarks above, we
may suppose that A is symmetric. Let U be the space consisting of all row vectors u
of length m — s such that u(A21 A22) is in the row space of (A11 A12); then dim U =
m — s — rankpA + rankp(A11 A12). Similarly, let U' be the space of all row vectors u of
length m-s such that uA21 is in the row space of A11; then dim U' = m-s -rankp(A21) +

rankpA11. Clearly U < U'. Also rankp(A11 A12) = rankp(A21) by duality. Together this
gives 2rankp(A11 A12) — rankpA < rankpA11, and the remaining inequalities in (ii) are
trivial. O

Further insight into the above bounds for the p-rank of A11 is provided by the following,
which follows directly from Theorems 3.1, 3.4 and 3.5, and Lemma 2.8.

Corollary 4.2 Suppose that P is an orthogonal polar space arising from a nondegenerate
quadric in PG(n,q), q = pe, where n and q are not both even. Then in the notation of
Section 3, we have rankpA11 = [(p+n-1

n) - (p+n-3
n)e +1 - r, where

The upper bound for rankpA11 occurs if and only if £Q,X n £Q,x = 0, if and only if
£Q ,x+£Q,X = F+

q-1 [X]; it is not known how often this occurs. An explicit determination of
rankpA 11 may yield a slight improvement to our bounds for caps and ovoids, but not enough
to eliminate all orthogonal ovoids in O+

10(q), in light of the lower bound for rankpA11.
For a unitary polar space embedded naturally in PG(2m — 1, q2), an ovoid is equivalent

[7] to a cap of size q2m-1 +1, and so Corollary 1.7 follows from Corollary 1.6; also Corollary
1.8 follows.

Finally, we prove Theorem 1.9, which highlights a very interesting parallel between
orthogonal ovoids in 07(3

e) and O+
8(2e), and ordinary ovoids of PG(3,2e).
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Only two families of ovoids in 07(q) are known, and both occur in characteristic 3:
the unitary ovoids in 07(3

e) for all e > 1, so-called because they admit PSU3(3e) as an
automorphism group; and the Ree-Tits ovoids for e odd, which admit 2G2(3e). (These two
constructions coincide for 07(3).) No argument currently exists to show that these are the
only ovoids in O7(q), although Corollary 1.5 excludes characteristic 2. Observe that for a
nondegenerate quadric in PG(6, 3e), we have rank3A1 = [(8) - (6)]e + 1 = 27e + 1 =
q3 + 1, which is exactly the size of an ovoid. This means that for any ovoid O in 07(3

e),
the rows of A1 indexed by points P e O, form a basis for the row space of A1 . The dual of
this statement verifies Theorem 1.9(ii) in the case of 07(3

e).
Exactly the same situation arises for ovoids in O8

+(2e), where rank2A1 = [(8) — (6)]e +1
1 = 8e +1 = q3 + 1 = |O|, which completes the Proof of Theorem 1.9(ii). In this case just
two infinite families of ovoids and one sporadic example are known [8]: the Desarguesian
ovoids in O8

+(2e) for all e > 1; the unitary ovoids for e odd, and Dye's ovoid in 0+
8(2

3).
Recall [4] that an ovoid of PG(3, q) is a set of q2 + 1 points, no three of which are

collinear. For q odd, such ovoids are necessarily elliptic quadrics; however for q even, no
classification is known. The known ovoids in PG(3,2e) are the elliptic quadrics (for all
e > 1) and the Suzuki-Tits ovoids (for e odd). By Theorem 1.1, the point-plane incidence
matrix A of P G (3, 2e) has 2-rank equal to (4)e + 1 = q2 + 1, exactly the number of points
in an ovoid. This proves Theorem 1.9(i). Considerably more effort has been expended in
attempts to classify ovoids in PG(3,2e) than in the orthogonal spaces 07(3e) and 0+

8(2
e),

but our observations suggest that a greater use of coding theory may be helpful in each of
these problems.

5. Codes of projective planes

It is well known that the code of PG(2, p) spanned by the lines, in the natural characteristic
p, has dimension 1 / 2 p ( p + 1) +1. Since a nondegenerate conic has 1/2p(p + 1) secants and
1 / 2 p ( P +1) +1 nonsecants, it is tempting to use these to form explicit bases for the code, and
with this motivation we prove the more general Theorem 1.10. (See [10] for a construction
of other such explicit bases.) Curiously, this is accomplished by our study in Section 2 of
quadrics in PG(3, q), beginning with the following, in odd characteristic.

Lemma 5.1 Let f(X) e Fd[X], d < q - 1 where q = |F| is odd, X = (X0, X1, X2),
and define Q(X) = X2

0 - X 1 X 2 .

(i) z(Q) is a nondegenerate conic in PG (2, F). Foreachxe F3\{0}, the corresponding
point (x) is absolute, exterior or interior with respect to this conic, according as Q (x)
is zero, a nonzero square or a nonsquare.

(ii) If f(x) = 0 whenever Q(x) e F is a nonzero square, then f = 0.
(iii) If f(x) = 0 whenever Q(X) e F is zero or a nonsquare, then f = 0.

Proof:
(i) See Theorem 8.3.3 of [6].
(ii) Define Q(X0, X1, X2, X3) = X 2

0 - X 1 X 2 - X2
3. Then Z(Q) is a hyperbolic quadric in

PG(3, F). Given f(X) satisfying the hypotheses, define f(X0, X1, X2, X3) = X3f(X0,
X1, X2) € F d + 1 [X 0 , X1, X2, X3]. For any point ( X 0 , x 1 , X 2 , x3) on the quadric Z(Q), we
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have Q(x0, x 1 , x 2 ) = x23. Then either x3 = 0 so f ( x 0 , x 1 , x 2 ) = 0 by hypothesis and
f ( x 0 , x 1 , X 2 , x3) = 0, or x3 = 0 and again f ( x 0 , x 1 , x 2 , x 3 ) = 0. Thus / vanishes on
Z(Q). By Theorem 2.11, f = 0 and so / = 0.
(iii) Let e e F be a given nonsquare, and define Q(X0, X1, X2, X3) = X20 - X 1 X 2 - eX23.
Then Z(Q) is an elliptic quadric in PG(3, F). Given f(X) satisfying the hypotheses, define
f(X0, X1, X2, X3)_= f(X0, X1, X2) € Fd[X0, X1, X2, X3]. For any point (x0, x1 ,x2 , x3)
on the quadric Z(Q), we have Q(x0, x 1 , x 2 ) = ex23, which is either zero or a nonsquare.
Thus f ( x o , x 1 , x 2 , x 3 ) = f ( x 0 , x 1 , x 2 ) = 0 by hypothesis. Again f = 0 by Theorem 2.11,
and so / = 0. a

Let Z(Q) be an irreducible conic in PG(2,q), where q = pe is odd. Let A be the
point-line incidence matrix of PG(2, q), partitioned as

where Aext consists of the first 1/2q(q + 1) rows of A, indexed by the exterior points with
respect to the conic Z(Q), and Anonext consists of the remaining rows, indexed by the
1/2q(q — 1) interior points and the q + 1 absolute points of the conic. We may suppose that
Q(X) = X20 - X1 X2 where X = (X0, X1, X2). As in Section 2, let M = ((xyT)q-1), which
is a q3 x q3 matrix with rows and columns indexed by the row vectors x, y € F3. We may
assume that

where Msq consists of the first 1/2q(q2 — 1) rows of M, indexed by those vectors x such that
Q(x) e F is a nonzero square, and Mn0nsq consists of the remaining 1/2q(q2 + 1) rows of
M, indexed by those x such that (Q(x) is zero or a nonsquare. Clearly, in the case q is odd,
Theorem 1.10 is a consequence of (the dual of) the following, in which each J denotes an
all-l's matrix of the appropriate size.

Lemma 5.2 For q odd,

(i) rankpAext = rankp(J - Aext) = rankpMsq = (p+1)e

(ii) rankpAnonext = rankp(J - Anonext) + 1 = rankpMnonsq + 1 = (p+1)e + 1.

Proof: As in the Proof of Lemma 2.6, permuting as necessary the rows and columns of
Msq (respectively, Mnonsq), and deleting duplicate rows and columns as well as all-zero rows
and columns, yields J - Aext (respectively, J - Anonext)- Thus rankpMsq = rankp(J - Aext)
and rankpMnonsq = rankp(J - Anonext)-

To show that Aext and J — Aext have the same column space, and hence the same p-rank,
it suffices to show that the column vector 1T = ( 1 , 1 , . . . , 1)T of length 1/2q(q + 1) lies
in the column space of both matrices. But the sum of the columns of Aext over F is 1T.
And adding together those columns of J - Aext indexed by tangent lines, gives —1T, which
suffices.

Now let 1T = (1, 1 , . . . , 1)T of length 1/2q(q + 1) + 1, the sum of the columns of
Anonent. and let VT be the column vector of length 1/2q(q + 1) + 1 having entries '2' and
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1 in those positions indexed by interior points and absolute points of Z(Q), respectively.
Using the fact that each secant line has (q — l)/2 interior points, and each passant has
(q + l)/2 interior points, we have v(j — Anonext) — 0. whereas vlT = 1. This shows that
Col(7 - Anonext) = Col(Anonext) n (vT)-1 d Col(Anonext) where 'Co/' denotes column space.
Thus rankp(J - Anonext) = rankpAnonext - 1.

Combining the technique of Proof of Lemma 2.7 with the results of Lemmas 2.4 and 5.1,
we have

and similarly for Mnonsq.

Henceforth q is even, and it remains to prove Theorem 1.10 in this case. Define S =
{x2 + x:x e F] c F. Then S is closed under addition, |S| = q/2 and S will play a role
analogous to that of the squares in the case of odd characteristic. (It is well known, although
not important here, that 5 consists of all elements of F which have trace zero over the prime
field.) An analogue of Lemma 5.1 is the following.

Lemma 5.3 Let f ( X ) e F d [ X ] , d < q- 1 where X = (X0, X\, X2)and q = \F\iseven,
and define Q(X) = X2, + X i X 2 .

(i) Z(Q) is a nondegenerate conic in PG(n, F) with nucleus {(1,0,0)). For each
(B, y) = (0,0), the line Z(BX 1 + yX2) is a tangent; the line Z(X0 + fiX1 + yX2)
is a secant or passant, according as By e S or By e F\S.

(ii) If f ( 1 , B , Y) = 0 whenever By e S, then f = 0.
(iii) If f(a,B ,Y) = 0 whenever a = 0, and f(I, B , y ) = 0 whenever By e F\S, then

/ = o.

Proof:
(i) Each line of the form Z ( X O + PX1) contains two points ((0, 0, 1)>, { ( P , 1, P 2 ) ) of the
conic .Z(g). Ify jtOandfty e S,say Py = x2+x, then Z ( X 0 + P X 1 + y X 2 ) contains two
points ((yx, y2,x2)), ((y(x + 1), y2, x1 + 1)> of the conic. We have produced q(q+1l)/2
lines of the form Z(X0 + ftX1 + y X 2 ) , each of which we have shown to be a secant;
hence these constitute all the q(q + 1)/2 secants. The remaining assertions are left as an
exercise.
(ii) Define Q(X0, X1, X2, X3) = X% + X1X2 + X0X3. Then Z(Q) is a hyperbolic
quadric in PG(3, F). Given /(X) satisfying the hypotheses, define /(Xo, X1, X2, X$) =
X i f ( X i , X 2 , X1) e F,i+\[Xo, X1, X2, X-j]. Let (xo,X1,x2,xi) beany point on the quadric
Z(Q). If x-} = 0 then f(x0, X 1 , x 2 , *3) = 0. Otherwise x^ ^ 0 and



SOMEp-RANKS RELATED TO ORTHOGONAL SPACES 315

so that f(1, x2, x3) = 0 by hypothesis, whence f ( x 0 , x1, x2, x3) = x3f(x3, x2, x1) = 0.
Thus f vanishes on Z(Q). By Theorem 2.11, f = 0 and so / = 0.
(iii) Fix e g F\S, and define Q(X0, X 1 , X 2 , X3) = X20 + X 1 X 2 + X0X3 + eX23. Then
Z(Q) is an elliptic quadric in PG(3, F). Given /(X) satisfying the hypotheses, define
f ( X 0 , X1, X2, X3) = f(X3, X2, X1) e F d [ X 0 , X 1 , X2, X3]. Let ( X 0 , X 1 , X 2 , X 3 ) be any
point on the quadric Z(Q). If x3 =0 then f(x0, x1, x2, x3) = f(0, x 2 ,x 1 ) = 0 by
hypothesis. Otherwise X3, = 0 and

since S is closed under addition. Thus f(l, x2, x3) = 0 by hypothesis, whence f(x0, x1,x2, x3) =

f ( x 3 , x2, x1) = 0. Again f = 0 by Theorem 2.11, and so f = 0. D

To complete the Proof of Theorem 1.10 in the case of even characteristic, duality does
not apply. Let Z(Q) be an irreducible conic in PG(2, q) where q = 2e. Let A be the
point-line incidence matrix of the plane, partitioned as

where Asec consists of the first 1/2q(q + 1) columns of A, indexed by the secant lines with
respect to Z(Q), and Anonsec consists of the remaining columns, indexed by the 1/2q(q — 1)
passants and the q + 1 tangents. We may suppose that Q(X) = X2 + X 1 X 2 where X =
(X0, X1, X2). Let M = ( ( x y T ) q - 1 ) be as before, and we may assume that

where MS consists of the first 1/2q(q2 — 1) columns of M, indexed by those row vectors y
such that y0 = 0, y 1y2 /y2 e S, and MF / S consists of the remaining 1/2q(q2 + 1) columns of
M. The Proof of Theorem 1.10 is completed by the following lemma.

Lemma 5.4 For q even,

(i) rank2Asec = rank2(J + Asec) = rank2Ms = 3e.
(ii) rank2Anonsec = rank2(J + Anonsec) + 1 = rank2MF/s + 1 = 3e + 1.

Proof: As in the Proof of Lemma 5.2, we have rank2 MS = rank2(J+Asec) and rank2MF\s

= rank2(J + Anoasec).
The sum of the rows of A sec over F is the row vector 1 = ( 1 , 1 , . . . . 1) of length 1/2q(q + l).

Also 1 is the row of J + Asec indexed by the nucleus. Since 1 lies in the row space of both
Asec and J + Asec, these two matrices have the same row space, and hence the same 2-rank.

Now let 1 = (1, 1 , . . . , 1) of length }1/2q(q +1) + 1, the sum of the columns of Anonsec,
and let v be the row vector of length 1/2q{q + 1) + 1 having entries '1' and '0' in those
positions indexed by tangent lines and passants, respectively. Then v(J + Anonsec) = 0,
whereas vlT = 1. This shows that Row(J + Anonsec) = Row(Anonsec) n v-1 Q Row(Anonsec).
Thus rank2(y + Anonsec) = rank2Anonsec - 1.
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Imitating the Proof of Lemma 2.7, together with the results of Lemmas 2.4 and 5.3, we
have

and similarly for MF\S.
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