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Abstract. Dowling lattices and their generalizations introduced by Hanlon are interpreted as lattices of con-
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where u is the Mobius function of L, 0 and 1 are the bottom and top elements of L, and
r is a rank function on L. When L satisfies the chain condition, i.e., when all maximal
chains from 0 to x have the same length, then r(x) is usually defined to be this length, but
we shall also deal with lattices not satisfying the chain condition, and then there is some
arbitrariness in the choice of r.

This paper is based on the following two facts. First, a straightforward application of
Mobius inversion leads to formulas for the characteristic functions of the congruence lattices
of free algebras in various varieties of algebras. For two particularly simple varieties—sets
and vector spaces over a specified finite field—these computations are in [7], Chapter 3,
Exercises 44 and 45. (We review them here at the beginning of Section 4.) In fact, the same
method applies also to quasi-varieties of algebras and to somewhat more general classes.

Second, the generalized Dowling lattices introduced in [5] can be viewed in a natural way
as just such congruence lattices for certain quasi-varieties. This is a more conceptual view
of the generalized Dowling lattices, and it leads to a calculation of certain multi-variable
polynomials that specialize to the characteristic functions when variables are suitably iden-
tified. Thus, as a specialization, we recover the characteristic polynomials computed in [5]
by quite different methods.

In Section 2 we present the preliminary information that we need about quasi-varieties,
and in Section 3 we show how to identify generalized Dowling lattices and the closely
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1. Introduction

We shall compute the characteristic functions and some additional information for several
sorts of lattices by interpreting these lattices as lattices of congruence relations in some free
algebras. The characteristic function of a finite lattice L, introduced in [3], Chapter 16, is
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related lattices of K digraphs [5] with certain lattices of congruence relations. Sections 4
and 5 contain the calculations of the (generalized) characteristic polynomials for these
lattices as well as certain values of the Mobius functions. Section 6 contains the analo-
gous computation for a certain variety of monoid actions. Finally, in Section 7 we extend
the method beyond the context of quasi-varieties by applying it to a class of relational
structures.

It is reasonable to expect that the same method will provide tractable computations of
(generalized) characteristic functions for numerous other sorts of lattices. The specific
computations done here are intended as suggestive examples.

2. Quasi-varieties and congruences

We use standard terminology from universal algebra [2]. An algebra is a set A together
with an indexed family of operations An -> A on it, the indexing set and the specification
of the number n of argument places for each index being called the signature of the algebra.
A quasi-variety is a class of algebras, all of the same signature, closed under isomorphism,
subalgebras, and products. (In particular, the algebra having only one element is in every
quasi-variety, being the product of the empty family.) A variety is, in addition, closed under
homomorphic images. A congruence on an algebra is an equivalence relation respected
by the operations in the sense that equivalent inputs to the operations produce equivalent
outputs. Every homomorphism f of algebras induces a congruence, called the kernel of /,
on its domain, two elements being equivalent if and only if they have the same f-image.
The equivalence classes of any congruence on an algebra A form a quotient algebra of the
same signature.

If V is a quasi-variety, then a congruence on an algebra in V will be called a V-congruence
if the quotient algebra belongs to V. (Note that all congruences on V-algebras are V-
congruences if and only if V is a variety.) The intersection of two V-congruences x and y is
again a V-congruence, because the quotient algebra determined by x n y can be embedded
in the product of the quotient algebras determined by x and y. The same argument applies
to the intersection of any number (even infinite) of V-congruences, and it follows that
the V-congruences on any V-algebra form a complete lattice, in which meet is ordinary
intersection (but join is in general neither union, which need not even be an equivalence,
nor the equivalence relation generated by the union, which is a congruence but need not be
a V-congruence).

Quasi-varieties can be characterized logically as follows. A conditional identity or strict
universal Horn sentence is a sentence of the form

where the Ei and F are equations between terms built from the variables X j and operation
symbols appropriate for the signature. We allow n = 0, in which case (1) is simply an
identity, namely

For any set of conditional identities, the algebras in which all of them are true constitute a
quasi-variety, and every quasi-variety admits such a description by conditional identities.
Similarly, varieties are described by sets of identities of the form (2).



If V is a quasi-variety and S is any set, then there is a V-algebra Fy(S) freely generated
by 5. This means that there is a specified function n: S -> Fy(S) such that every function
from S to any A € V factors uniquely through n by a homomorphism Fv(S) -> A.
The existence of such free algebras follows immediately from the adjoint functor theorem
(see [6] Section 5.6). One can also explicitly construct Fv(S) by building terms out of the
operation symbols and the elements of S and then identifying two such terms if and only if
this identification is required by the conditional identities describing V.

We write Cn (V) for the lattice of V-congruences on the free V-algebra on n generators,
Fv({1, 2 , . . . ,n}). By remarks above, it is a complete lattice. One of the central ingredients
of this paper is the observation that the Dowling lattices [4] and their generalizations due
to Hanlon [5] are isomorphic to Cn(V) for rather natural quasi-varieties V, to be described
in Section 3.

We close this section with two simple examples. First, sets may be regarded as algebras
with no operations, and the class S of all sets is a variety. All equivalence relations are
S-congruences. The free set on n generators is simply an n-element set, so the lattice Cn (S)
is the partition lattice nn.

Second, if we fix a field k, then the vector spaces over k constitute a variety kV, the op-
erations in a vector space being addition and, for each scalar a 6 k, the unary operation of
multiplication by a. A congruence on a vector space can be specified by giving the equiv-
alence class containing 0, as the other equivalence classes are its translates. So the lattice
of congruences of a vector space is isomorphic to the lattice of subspaces. The free vector
space on n generators is the n-dimensional vector space kn. So Cn(kV) is the subspace
lattice of an n-dimensional vector space over k.

3. G, K-sets and generalized Dowling lattices

In this section, we introduce the quasi-varieties for which the congruence lattices Cn (V) are
(canonically isomorphic to) the lattices ln(G, K) and Dn(G, K) introduced by Hanlon [5].

As in [5], let G be a finite group, and let K be a family of subgroups of G satisfying the
following three conditions.

(1) K is closed under intersection.
(2) K is closed under conjugation in G.
(3) K contains the trivial subgroup {e} of G.

Among the intersections in (1), we allow the intersection of the empty family, so G e K.
It follows from (1) that K is a lattice and that, for every subset S c G, there is a smallest
group in K containing S. In the lattice K, meet is intersection and join is the smallest group
in K containing the union.

By a G-set, we mean a set A with a left action of G. G-sets are algebras with one unary
operation for each element of G, and they constitute a variety called GS. The free G-set
on a set S of generators is the disjoint union of |S| copies of the regular action of G, i.e., it
is G x S with the action g . (h, s) = (gh, s).

It is well known that every G-set is the disjoint union of orbits, which are (up to iso-
morphism) G-sets of the form G/H, where H is a subgroup of G and where G/H is the
set of left cosets gH with the G-action g . g'H = (gg')H. Two orbits G/H and G/H'
are isomorphic if and only if H and H' are conjugate in G, so we may assume that H
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ranges over a system of representatives, chosen once and for all, of the conjugacy classes
of subgroups of G. We index these representatives as Hi, and we use the notation

for a G-set consisting of n,- copies of G/Hi for all i.
The stabilizer of an element a in a G-set is the set of elements of G whose action leaves

a fixed. The stabilizers of the elements gH of G/H are exactly the conjugates g H g - 1 of
H in G.

We call a G-set a G, K-set if the stabilizers of all its elements are in K. Because of
requirement (1) on K, the G, K-sets constitute a quasi-variety G, KS.

(Requirements (2) and (3) are less important and amount to normalizations. If (2) failed,
then we could replace K with the subfamily of those groups whose conjugates all lie in K;
this would not alter G, KS because, if a group occurs as a stabilizer in a G-set, then so
do all its conjugates. If (3) failed, then the intersection of all the groups in K would be a
normal subgroup N of G, and G, AT-sets would be essentially the same as G/N, K'-sets,
where K' = (H/N | H e K}.)

The free G-sets have all stabilizers equal to {e}, which is in K, so they are G, Jf-sets,
and it is easy to check that they are the free G, K-sets. The congruence lattices Cn(G5)
and Cn(G, KS) differ, however, because the former contains all the congruences x on the
free G-set, while the latter contains only those x for which the quotient, which we denote
by x, is a G, K-set. Our next task is to relate these congruence lattices to the lattices of
digraphs in [5].

Recall that the free G-set Fn(GS) was described above as G x [n], where [n] =
{1,2 n} and G acts by left multiplication on the first component. To specify a congru-
ence x on this G-set, it suffices to tell, for each j e [n], which elements (g, i) are equivalent
to (e, j); indeed, as the action of the group respects the congruence x, we have that (g\, i)
is equivalent in x to (g2. j) if and only if (g2 g1,i) is equivalent to (e, j). Thus, x can
be specified by giving the function which, to each ordered pair (i, j) of elements of [n],
assigns the subset {g | (g, i ) x ( e , j ) } . Of course, not every function, assigning subsets of
G to pairs from [n], corresponds to a congruence in this fashion, but it is easy to compute
which ones do and also which ones correspond to G, KS-congruences, i.e., which ones
have x e G, KS.

A function assigning subsets of G to pairs from [n] can be viewed as an edge-labeled
digraph with vertex set [n]. The edges are the pairs to which a nonempty set is assigned,
and the labels are those nonempty sets. A routine computation shows that, for any such
labeled digraph, the corresponding relation x on G x [n], namely
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is a G, KS-congruence if and only if the labeled digraph is a AT-digraph as defined in
[5]. Furthermore, the inclusion relation on these congruences corresponds to the partial
ordering of K-digraphs by inclusion of labels on all edges. Thus, the lattice Cn(G, KS) is
canonically isomorphic to the lattice in(G, K) of Hanlon [5].

It will be useful to relate a K-digraph to the quotient G-set x determined by the associated
congruence x. Each generator i 6 [n] of Fn(G, KS) projects to an element i* e x, and the
label of an edge (i, j) is the set of elements g e G such that gi* = j*. In particular, i*



and j* belong to the same orbit in x if and only if i and j belong to the same connected
component of the digraph. Also, the stabilizer of i* is the label of the loop (i, i).

The generalized Dowling lattices Dn(G, K) of [5] consist of those K -digraphs for which
at most one connected component has (one of, hence all of) its edges labeled G. In terms
of the associated congruence relation x, this means that at most one orbit in the quotient x
has points stabilized by G, i.e., G has at most one fixed point in x.

The G, K-sets with at most one fixed point constitute a quasi-variety, which we call
G, K*S. The preceding remarks show that Hanlon's generalized Dowling lattices Dn(G, K)
are canonically isomorphic to the congruence lattices Cn(G, K*S).

4. Mobius identities for G, K-sets

In this section, we compute the characteristic polynomial and a more general several-
variable polynomial for the lattices Cn(G, KS). The idea of the computation is based on
a well-known computation [7] of the characteristic polynomials of partition lattices and
subspace lattices of finite vector spaces.

The characteristic polynomial XL(y) of a finite lattice L is defined in terms of the Mobius
function uL(x, y) of L (see for example [3, 7]) and an integer-valued rank function r on
Lby

where 0 and 1 are the bottom and top elements of L.
When L satisfies the chain condition, i.e., when all maximal chains from 0 to any fixed x

have the same length, then this length is the natural choice for r(x). But the lattices under
consideration here do not satisfy the chain condition except in very special cases, so there
is some arbitrariness in the choice of a rank function.

We describe for future reference a slight generalization of the way rank functions on
2n(G, K) are obtained in [5]. Begin with any weakly increasing, conjugacy-invariant,

integer-valued function rK on the lattice K. (In [5], there are some additional conditions on
rK, but they are never needed.) Now if x e Cn(G, KS), write the quotient x as a disjoint
union of orbits,
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where the Hi constitute a system of representatives of the conjugacy classes of subgroups
in K. (The notation v i (x ) for the number of copies of G/Hi in x will be used from
now on.) Then the rank r(x) of x in Cn(G, KS) is defined so that the corank plus 1 is
additive, i.e.,

Strictly speaking, this defines r only up to an additive constant, but this ambiguity clearly
does not affect characteristic functions. An easy calculation shows that Hanlon's definition
2.1.10 in [5] is the result of choosing this constant so that r(Q) = 0.



As preparation and motivation for our calculations concerning Cn(G, KS), we review
the analogous calculations in the two much simpler cases of Cn (S), the nth partition lattice,
and Cn (kV), the lattice of subspaces of an n-dimensional vector space over the field k of q
elements. (See [7], Chapter 3, Exercises 44 and 45.)

Since Cn (S) satisfies the chain condition, we use its natural rank function; the number of
equivalence classes of x, i.e., the cardinality of x, is the corank of x plus 1. Fix a positive
integer X, and define, for x e Cn(S),
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Cancelling A., we have the characteristic polynomial of the partition lattice,

Since both sides are polynomials, our proof for positive integers A, suffices to establish this
equation as a polynomial identity. Notice that by setting A. = 0 we obtain the well-known
formula u(0, 1) = (-l)n-1(n - 1)!.

As a second preparatory example, we apply the same technique with the variety S of
sets replaced by the variety kV of vector spaces over a field k. The free k-vsctoi space
on n generators is simply the n-dimensional vector space kn. We fix a positive integer m
and let f(*), resp. g(x), be the number of linear transformations (i.e., homomorphisms)
from kn to km with kernel at least, resp. exactly, x. (If, as at the end of Section 2, we
identify a congruence x with the subspace of points equivalent to 0, then kernels in the
sense of universal algebra are identified with kernels in the sense of linear algebra.) Then
f(*) = qmd where q is the cardinality of k and d is the dimension of the quotient Kn /x = x,
the corank of x in the subspace lattice. (This lattice satisfies the chain condition, so we use

and

where the notation (A)p means A (A— 1 ) • • • ( A - p + 1 ) . Clearly,

so by Mobius inversion

where u, is the Mobius function of the partition lattice. Thus,



holds as a polynomial identity in A because we have verified it when X is a power of q.
Again, we can set A = 0 to obtain a well-known formula: z(0, 1) = ( — 1 ) n q n ( n - 1 ) / 2 .

We now apply the same technique, systematically replacing sets and vector spaces with
G, K-sets. This example is more complicated than the previous ones because, while a finite
set can be completely specified by a single integer (its cardinality) and a finite-dimensional
k-vector space can also be specified by a single integer (its dimension), a finite G, K-set
requires for its specification as many integers as there are conjugacy classes in K, for the
specification must tell how many orbits of each of the possible types G/Hi are in the set.
This circumstance, though it complicates the calculations, is also the reason why we obtain
not only the characteristic function but a multi-variable generalization of it.

We proceed in analogy with the preceding sample calculations, using the quasi-variety
G, KS in place of S and kV. Thus, x is now an element of Cn(G, KS), and [A] and km are
replaced by a G, AT-set, say
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the customary notion of rank.) g(0), the number of one-to-one homomorphisms from kn to
km, is well known to be

So Mobius inversion gives us

where n, and x refer, of course, to the lattice Cn (kV) isomorphic to the lattice of subspaces
of an n-dimensional vector space over k. Therefore,

We define f(x), resp. g(x) to be the number of homomorphisms (i.e., maps preserving the
G-action) from the free G, K-set Fn(G, KS) = G x [n] to A that have kernel including,
resp. equal to x. Notice that, since A is a G, K-set, the kernel of any homomorphism to A
is a G, K S-congruence. So we have again

and by Mobius inversion

where now x and y range over Cn(G, KS) and n, is the Mobius function of this lattice.
To continue, we need formulas for f ( x ) and g(0). Assume, for convenience, that the rep-

resentatives Hi of the conjugacy classes in K have been indexed in order of non-decreasing
size. In particular, the trivial subgroup [e] is H1, so A1 is the number of orbits in A where
the stabilizers are trivial. The homomorphisms counted by g(0) are just the one-to-one



homomorphisms from G x [n] into A. For such a homomorphism, each of the n genera-
tors (e, i) of G x [n] must map to a point with trivial stabilizer (otherwise distinct points
(e, i) and (h, i) with h in the stabilizer, would map to the same point in A), and distinct
generators must map into distinct components of A. Any map of the generators satisfying
these requirements extends to a one-to-one homomorphism. So to compute g(0), we need
only observe that we have A1 |G| possible images for the first generator, that once such an
image is chosen we have (A1 — 1) | G | possible images for the second generator, and so forth.
Therefore,
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In particular, since we have indexed the Hi in order of non-decreasing size, Mij = 0 when
j < i, i.e., M = (Mij) is a triangular matrix. Its diagonal entries are the indices of the Hi
in their normalizers, hence are non-zero. So M is non-singular.

Summarizing the preceding computation, we have

where x ranges over Cn(G, KS). As before, this equation must hold as a polynomial identity
in the variables A, because it holds for all non-negative integer values of these variables.

To evaluate f(x), we first observe that it is the number of homomorphisms from

into A. Since such a homomorphism can be defined independently on each of the orbits in
x, we have

Now a homomorphism from an orbit G/Hi into A must map into a single orbit in A.
Therefore,

Here Mij is the number of homomorphisms from G/Hi to G/Hj, also known as the mark
of Hi in G/Hj (see [1], Section 180). Since such a homomorphism is determined by where
it sends one element, say eHi, of G/Hi, and since that image can be any element of G/Hj
with stabilizer 2 Hi, the mark Mij is also the number of Hi-fixed points in G/Hj. As the
stabilizer of any gHj e G/Hj is gH;g-1, it follows that



We can simplify our result a bit by using the fact that M is non-singular. Because of the
non-singularity, we can regard the linear combinations of the X, that occur on the right side
of (1) as independent variables,

where now x ranges over C1(G, KS). But this lattice is isomorphic to K, because a con-
gruence on G x [1] = G is specified by saying what the stabilizer of 1* in the quotient
shall be. Furthermore, if x is the congruence corresponding to the subgroup H e K, then
the v i ( x ) are all zero except for one which equals 1, namely the one for which Hi and H
are conjugate. If we write eH to mean ei for this i, then we have
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then the A1 on the left side is to be regarded as a linear combination of these new variables,

Now (1) reads

We can get a more useful expression for X1 if we notice that the relation between the Ai
and the fj depends only on G and K, not on x or n. In particular, we can put n = 1 in (2)
to get

Equation (2) with AI defined by (3) is our generalization of the characteristic polynomial
of Cn(G, KS). We show next that it specializes to Hanlon's computation, in Theorem
2.1.14 of [5], of the characteristic polynomial.

Let rank functions rg on K and r on Cn(G, KS) be as described earlier. Specialize the
variables f, to the following functions of a single variable £:

Then (3) becomes

and so the left side of (2) becomes

On the right side of (2), the product becomes



which agrees with Theorem 2.1.14 in [5]. After canceling £ ' against the f in the p = 0
factor, we can set £ = 0 and recover Hanlon's evaluation, [5] Theorem 2.1.12, of ju.(0, 1).

In the preceding calculations, we used Mobius inversion to express only g(0) in terms
of /, because we were interested in the characteristic function, in which u(0, x) oc-
curs. But Mobius inversion also expresses g(a) for a = 0. Thus, we have, for any
a e Cn(G, KS),

where now the Ai are regarded as functions of f.
Some information about the Mobius function u can be easily extracted from this equation

by considering the constant terms on both sides. On the left, the constant term is simply
u(a, 1) provided rK(G) > rK(Hi) for all Hi = G (so that only 1 has corank 0). On the
right, we notice that every Ai is divisible by f (because it is a linear combination of the £j,
which are all divisible by f), so if two or more of the v,-(a) are non-zero then the product
on the right will be divisible by £2 and the right side will not have a constant term. This
proves that, if two orbits in a are not isomorphic, then u(a, 1) =0.

Therefore,

Here, as in the previous calculation, the A., are to be regarded as linear functions of the
ji. As before, we obtain a one-variable result, describing the characteristic polynomial
of the part of Cn(G, KS) above a, by specializing ft to £rk(G)-rk(Hi>+1 and dividing
by e.

To use this equation, we express f ( x ) in terms of the variables £,- as before, and we compute
another expression for g(a) as follows. The homomorphisms with kernel exactly a that are
counted by g(a) amount to one-to-one homomorphisms from the quotient a to A. Such a
homomorphism must send each of the vi(a) orbits of type G/Hi in a bijectively to an orbit
of the same type in A. (This is because every homomorphism of G-sets sends every orbit
onto an orbit.) Furthermore, distinct orbits in a must map to distinct orbits in A. Finally,
the number of G-homomorphisms from one orbit of type G/Hi onto another is the mark
Mii. Combining these observations, we find that

and so the whole right side of (2) becomes £ x (f ), where x is the characteristic polynomial
of Cn(G, KS). Equating these specializations of the two sides of (2), we find
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where XK.I means the characteristic function of the part of the lattice K lying above hi.
Formulas (5) and (6) express the characteristic function of the part of Cn(G, KS) above a
in terms of that of the part of K above H,>. Specifically, we have

5. Mobius identities for generalized Dowling lattices

In this section, we compute the characteristic polynomials of Hanlon's generalized Dowling
lattices, Dn(G, K). We saw in Section 3 that Dn(G, K)isisomorphictoCn(G, K*S), where
G, K*S is the quasi-variety of G, K-sets with at most one fixed point. We apply to this
quasi-variety the same technique that we used for G, KS in Section 4, and for this purpose
we retain notations like x and vi(x) from there.

Let c be the number of conjugacy classes of groups in K. By our convention that the
conjugacy class representatives Hi are listed in order of non-decreasing size, Hc = G.
Thus, if x is a G, K*S-congruence on the free algebra G x [n], then vc(x) < 1.

Exactly the same reasoning as in Section 4 shows that, for any A € G, K*S,
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Let us now consider the case that all the orbits in a are isomorphic, say of type G/Hi
(so i is now fixed), and let us write simply v for the number vi (a) of these orbits. Now (4)
simplifies to

As before, we can obtain a useful formula for Ai by considering (5) in the very special case
that n = v = 1 and a = G/Hi. We find

so

By considering the constant terms on both sides (i.e., by setting £ = 0) and assuming as
before that only G has corank 0 in K, we find

where now x ranges over G, K *S-congruences, and where the Ai are no longer quite
arbitrary non-negative integers since Ac, the number of fixed points in A, is at most 1. As in
Section 4, we introduce the f, as new variables. Of course, the constraint that Ac = 0 or 1



in agreement with Theorem 2.2.4 of [5].
As in Section 4, we can extend the preceding results by replacing 0 by an arbitrary

a e Cn(G, K*S). To do so, we must compute g(a), the number of homomorphisms from
the free algebra to A with kernel exactly a, or, equivalently, the number of one-to-one
homomorphisms from a to A. Under such a homomorphism, for each i, each of the vi(a)
copies of G / H i in a maps to one of the Ai copies of G/Hi in A. There are (Ai)v,(a) ways
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The right side of (2) becomes simply the characteristic polynomial of Cn(G, K*S) (again
without the previously present factor £), and so we have

(without the factor £ that was present in Section 4), so the left side of (2) becomes

Notice that, since Hc = G, we have ft = 1, so (2) is valid for this specialization.
The specialization gives in (3)

When the additive constant is chosen to make r(0) = 0, this agrees with Definition 2.2.2
of [5].

To match this notion of rank, we specialize our ft to functions of one variable f by setting

Formulas (2) and (3) constitute our generalization of the characteristic polynomial of the
Dowling lattice.

To specialize from c — 1 variables down to one variable and obtain the ordinary character-
istic polynomial, we must proceed slightly differently than in Section 4. This is because the
definition of rank in Dowling lattices Dn(G,K) is slightly different from that in £n(G, K).
Given a weakly increasing, conjugacy-invariant, integer-valued function rK on K, as before,
use it to define (up to an irrelevant additive constant) a notion of rank on Cn(G, K*S) by
making the corank (not the corank plus one as in Section 4) additive:

as a polynomial identity in the variables ft for i = c, where tc is 0 or 1. Here, as before,

now becomes a constraint on the fi, which is easily seen to be simply that fc = 0 or 1. (The
reason is that the marks Mcj are 0 for j = c while Mcc = 1, so ft = Xc.) Thus, we have



(It may be reassuring to note that, since M is triangular and Mii divides Mki for all i and k,
each product ( M - 1 ) i c M i i is an integer, and therefore so is the right side of (5).)

6. A monoid example

In this section, we apply the same method to another variety, the variety of sets with an
idempotent self-map. This is the simplest case of a variety of G-sets where G is not a
group but a monoid, i.e., a set with an associative, binary operation with unit e (but without
inverses in general). An action of a monoid G on a set A is defined just as for groups: a
map G x A -> A: (g, a) -> ga with g(g'a) = (gg')a and ea = a,

For our example, we take for G the smallest monoid that is not a group, namely {0, 1}
with the operation of multiplication. An action of this monoid on a set A is specified by
telling how 0 acts (since 1 must act as the identity map), and the action of 0 on A is a function
0: A -> A satisfying O2 = 0. That is, 0 fixes all points in its range. A G-set A can be
specified by giving a set A of points, a partition P of A, and a choice of one special element
from each block of P; the action of 0 on A takes each element to the special element in the
same block.

For each non-negative integer j, we write j+ for the G-set consisting of one block of size
j + 1 (so the label j indicates the number of non-special elements), i.e., the G-set of size
j + 1 with 0 acting as a constant map. Any finite G-set is a disjoint union of copies of
such j+s, and we write E jnj • j+ to indicate such a disjoint union with n; copies of each
j+; here the nj are non-negative integers, and all but finitely many of them are zero. In
this notation, the free G-set on n generators is n • 1+, the generators being the n non-special
elements.

A congruence on this free algebra can be regarded as consisting of the following data.
First, there is an equivalence relation R on [n] indicating which of the n copies of 1+ are
to be in the same blocks in the quotient; this also determines which of the special elements
have equal images in the quotient. Second, there is an equivalence relation E indicating
which of the non-special elements are identified with each other in the quotient. As an

If we specialize by setting f, = £corank(Ht) as before, and thus regard the Ai as polynomials
in £, then the left side of (4) becomes the characteristic function of the part of Cn (G, K*S)
above a.

Let us compare the constant terms here, assuming as before that r K ( H ) = rK(G) only
when H = G. Then £conuik<x> = 1 only when all orbits of x have stabilizer G; but as
x e Cn(G, K*S) there can only be one such orbit, so x = 1. Thus, the constant term on
the left side is simply u,(a, 1). On the right, since Ai = Ej(M -1)ij£j and since we have
just seen that setting f = 0 annihilates all the £j except fc which becomes 1, we find that
the constant term in Ai is (M-1) i c . Inserting this into the right side of (4), we obtain

to choose these copies, since they must be distinct, and, once the copies are chosen, there
are Mii ways to choose the mapping in each copy. Therefore,
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identification between two non-special elements forces the identification of their special
images under the action of 0, we must have E c R. Finally, within each R-equivalence
class, one E-equivalence class may be singled out, to indicate that the non-special elements
in the latter have been identified not only with each other but also with the special elements
of the former. Thus, a congruence of the free G-set on n generators can be regarded as a
triple (E, R, M) where E c R are equivalence relations on [n] and M is a set of E-classes
containing at most one E-class in each R-class.

The covers of (E, R, M) in the lattice Cn(GS) of congruences of the free algebra are
obtained from (E, R, M) in the following three ways.

(1) Enlarge E by merging into a single equivalence class two E-classes within the same
R-class. Leave R and M unchanged.

(2) Enlarge R by merging two of its equivalence classes into one. If both contained members
of M then these two members of M are to be merged, the result being in the new M.
Apart from this, E and M are unchanged.

(3) Add to M an E-class (in an R-class that doesn't already contain a member of M).
Leave E and R unchanged.

It follows easily from this description of the covering relation that the lattice Cn (GS) satisfies
the chain condition. So we have a natural rank function, assigning to each congruence x
the rank 2n — |x|, so that the corank of x plus 1 is the cardinality |x| of the quotient. We
shall calculate the characteristic function of Cn (GS) with this rank function; in fact, we
shall obtain a bit more information. Let us write K(X) for the number of blocks in x (i.e.,
the number of points in the range of the action of 0) and p (x) for the number of points in x
moved by the action of 0. Thus, K + p — 1 is the corank of x under the natural rank function
described above. We shall evaluate the two-variable characteristic polynomial that keeps
track of these two parts of the corank separately, namely,
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Then the ordinary characteristic polynomial

is obtained from (4) by setting A = £ and dividing by £.
To begin the computation of (4), temporarily fix two non-negative integers A and q,

and let A = A • q+. We shall, as in previous calculations, use Mobius inversion to relate
the number of one-to-one homomorphisms of G-sets n • 1+ -> A and the numbers of
homomorphisms n • 1+ —» A whose kernels include specific congruences x.

For a one-to-one homomorphism n • 1+ -> A, each of the n generators (non-special
elements) a of n • 1 must map to a non-special element of A, for otherwise a would map
to the same image as Oa. Furthermore, distinct generators a and b must map into distinct
blocks in A, for otherwise the distinct elements Oa and Ob would have the same image.
Therefore, if we specify images for the generators of n • 1+ one at a time, we have Xq
possibilities for the first (any non-special element of A), (A — 1)q for the second (any
non-special element not in the same block as the image of the first generator), etc. Thus,
the number of one-to-one homomorphisms n • 1+ -> A is (A)na".



To obtain the two-variable characteristic function (4), we substitute £ — 1 for q, obtaining
(y)n(£ — 1)n. As indicated earlier, the one-variable characteristic function is obtained by
setting A = £ and dividing by £, so it is (£ — l)n_1 (£ — 1)n.

In Sections 4 and 5, we obtained generalized characteristic functions of many variables,
the number of variables (c or c — 1) being the number of arbitrary non-negative integer
parameters needed to specify a finite algebra in the quasi-variety. In the present context,
since infinitely many integer parameters ny (albeit almost all zero) are needed to specify a
finite G-set £j nj • j + , we might expect to obtain more than the two-variable characteristic
functions calculated above. It is indeed possible in principle to obtain more general results,
by using a A whose components are not all the same size. Unfortunately, for general A,
the computation of g(0) appears intractable.

7. A non-algebraic example

Although we have presented calculations of characteristic functions in the context of alge-
braic structures, i.e., sets with operations, the technique is also applicable to more general
structures of the sort studied in first-order logic, namely sets with both operations and
relations.

The basic concepts used when studying algebras extend naturally to these first-order
structures. A substructure of a structure is determined by any subset closed under the
specified operations; both the operations and the relations are then simply restricted to
that subset. The product of a family of structures (of the same signature) is the product
of the sets, with operations and relations defined componentwise; for relations this means

By Mobius inversion, we obtain

But Ej v j (x ) is just the number of blocks in x, which we called K(X), and Ej jvj (x) is
the number of non-special points in x, which we called p(x). So the product simplifies to

A homomorphism j+ -> A must map into a single block of A, and there are A blocks to
choose from. Once one of them is specified, the special point in j+ must map to the special
point in this block, and each of the j other points in j+ can map to any of the q + 1 points
in this block. Thus, the product above becomes

The number of homomorphisms n . 1+ -> A whose kernels include a specific congruence
x is the number of homomorphisms x -> A. We write Vj (x) for the number of j+ blocks
in x. Since homomorphisms x -> A can be specified independently on each block, the
number of such homomorphisms is
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that a tuple of elements of the product satisfies a relation if and only if all the tuples of
corresponding components satisfy the relation in the factor structures. A homomorphism
is a function from one structure to another that commutes with the operations and preserves
the relations; preservation means that, if a relation holds of certain elements in the domain
structure, then the corresponding relation holds of their images in the target structure, but
not necessarily conversely.

This "not necessarily conversely" implies that the target of a surjective homomorphism
is in general not determined by the domain and the kernel congruence. For example, if a
structure is modified by enlarging some of its relations (without changing the operations),
then the identity function is a homomorphism from the original structure to the modified
one. (It is not an isomorphism, as its inverse is not a homomorphism.) Because of this,
it is natural to replace the congruence lattices considered in universal algebra with lattices
of "generalized congruences" which describe not only which elements of a structure are
to be identified in a quotient but also what the relations on the quotient structure are. A
simple way to make this precise is to define a generalized congruence on a structure A to
be a congruence x together with relations on the quotient A/x = x making the canonical
projection A -> x a homomorphism. The generalized congruences on A form a lattice if we
define x < y to mean that the canonical projection from A to y factors (by a homomorphism,
of course) through the one to x.

The role of conditional equations in universal algebra is played in the present context by
strict universal Horn sentences, i.e., sentences of the form
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where the £< are now either equations (as before) or atomic assertions about the relations,
i.e., assertions to the effect that a particular relation holds of certain terms. For any collection
of such sentences (1), the class V of structures satisfying them is closed under isomorphisms,
substructures and products, and conversely all classes with these closure properties can be
axiomatized by strict universal Horn sentences, just as in the algebraic situation. (The main
difference is terminological; "quasi-variety" is traditionally used only in the algebraic case,
while for general structures one refers to "strict universal Horn classes.")

For a structure A in a strict universal Horn class V, we call a generalized congruence x on
A a V-congruence if the quotient structure x is in V. Because V is closed under substructures
and products, the meet of any family of V-congruences on A is again a V-congruence. So
the V-congruences on A form a complete lattice.

For any strict universal Horn class V and any set S, there is a free V-structure Fv(S) on
the set S of generators. Its members are given by terms built from elements of 5 by means
of the operations of V, two terms being identified if and only if this is required by the strict
universal Horn sentences axiomatizing V, and relations holding of tuples of (equivalence
classes of) terms if and only if this is required by those same axioms. We write Cn(V) for
the lattice of V-congruences of the free V-structure on n generators. This is the analog in
the present context of the congruence lattices associated to quasi-varieties in the preceding
sections.

The rest of this section is devoted to one example, in which a familiar set of strict universal
Horn axioms defines a class V for which the associated generalized congruence lattices have
a pleasant combinatorial interpretation, related to but slightly more natural than the con-
gruence lattices obtained from actions of the two-element monoid in the preceding section.



The axioms for our example are simply the definition of an equivalence relation. That is,
V is the class of structures that consist of a set A together with an equivalence relation on it.
The conditions of reflexivity, symmetry, and transitivity that define the notion of equivalence
relation are of the form (1) (with n = 0,1, and 2, respectively), so the preceding discussion
applies to V. The free V-structure on n generators is simply an n-element set [n] with the
equality relation. (Recall that a relation holds between elements of a free structure only
when this is required by the axioms, so the relation here is as small as possible. The same
set with a larger equivalence relation would be a proper quotient of the free algebra.) A
generalized congruence x on any structure in V amounts to specifying, first, which elements
of the given structure are to become equal in the quotient x (a congruence) and, second,
which elements are to become equivalent in the (equivalence relation that is part of the)
quotient. In particular, if the structure we began with is the free one on n generators, then an
element x of Cn(V) amounts to a pair (E, R) of equivalence relations on [n] with E c R.
The lattice structure on Cn(V) is given by ordering these pairs componentwise.

As in previous sections, we intend to use Mobius inversion to compute a generalized
characteristic polynomial. The lattice Cn (V) satisfies the chain condition, so we use the
standard rank function, which can be written as

and

Then we have
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where e(x) and p(x) are the numbers of elements and of equivalence classes, respectively,
in x. Thus, if x = (E, R), then they are the numbers of equivalence classes of E and R,
respectively. We shall obtain a generalized characteristic polynomial in which the partial
coranks e and p are treated separately.

Let A be the V-structure consisting of a set of size A£ with an equivalence relation
dividing it into A equivalence classes of size £. For x e Cn(V), let (by analogy with
previous computations)

and therefore by Mobius inversion

where u is the Mobius function of Cn(V).



References

1. W. Burnside, Theory of Groups of Finite Order, Cambridge Univ. Press, Cambridge, England, 1911.
2. S. Burns and H. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York, Heidelberg,

Berlin, 1981.
3. H. Crapo and G.C. Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries, (prelim-

inary edition), M.I.T. Press, Cambridge, MA, 1970.
4. T.A. Dowling, "A class of geometric lattices based on finite groups," J. Comb. Theory, Ser. B 14 (1973),

61-86.
5. P. Hanlon, "The generalized Dowling lattices," Trans. Amer. Math. Soc. 325 (1991), 1-37.
6. S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New York, Heidelberg, Berlin,

1971.
7. R.P. Stanley, Enumerate Combinatorics, I, Wadsworth & Brooks/Cole, Monterey, CA, 1986.

294 BLASS

For any x e Cn(V) and any positive integer i, let v((x) be the number of equivalence
classes of size i in x. Thus,

Furthermore, f(x), the number of homomorphisms x —> A, can be expressed in terms of
the v, as follows. To specify such a homomorphism, one must specify, for each i and each
of the Vi(x) equivalence classes P of size i in x, one equivalence class in A for P to map
into (A. possible choices) and where in this class each of the i members of P is to be mapped
(£i possible choices). Therefore,

We obtain

To obtain the ordinary characteristic polynomial, we set £ = A and divide by A2, since the
corank of x is

by (3).
g(0) is the number of functions h: [n] -» A for which all the values h(k) are inequivalent.

Thus, thereareA£ choices for h(1),(A1)£ choices for h(2),etc. Therefore, g(0) = (A)ne n .
Inserting the formulas for f ( x ) and g(0) into (2), we obtain our generalized characteristic
polynomial for Cn(V),


