ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Delaunay Transformations of a Delaunay Polytope

Monique Laurent
LIENS, Ecole Normale Supérieure 45 rue d'Ulm 75230 Paris Cedex 05 France

DOI: 10.1023/A:1022436313513

Abstract

Let P be a Delaunay polytope in T( P ) {\mathcal{T}}\left( P \right) denote the set of affine bijections f of T( P ) {\mathcal{T}}\left( P \right) . We show that the dimension (in the topological sense) of the quotient set T( P ) \mathord
/ \vphantom T( P ) ~ ~ {{{\mathcal{T}}\left( P \right)} \mathord{\left/ {\vphantom {{{\mathcal{T}}\left( P \right)} \sim }} \right. \kern-\nulldelimiterspace} \sim } coincides with another parameter of P, namely, with its rank.
Let V denote the set of vertices of P and let d P denote the distance on V defined by dp( u, u ) = || u - u || 2 dp\left( {u,υ} \right) = \left\| {u - υ} \right\|^2 for u, v H | V |: = { d | å u, n e V b u b n d( u, n ) \leqslant 0 {\mathcal{H}}_{\left| V \right|: = } \left\{ {\left. d \right|\sum\nolimits_{u,νεV} {b_u b_νd\left( {u,ν} \right)} \leqslant 0} \right. for b å u e V b u = 1 } \left. {\sum\nolimits_{uεV} {b_u = 1} } \right\} . Then, the rank of P is defined as the dimension of the smallest face of the cone H | V | {\mathcal{H}}_{\left| V \right|} that contains d P.

Pages: 37–46

Keywords: Delaunay polytope; affine transformation; lattice; dimension; hypermetric

Full Text: PDF

References

1. P. Assouad, "Sur les inegalites valides dans Ll" European Journal of Combinatorics 5 (1984), 99-112.
2. M. Deza, V.P. Grishukhin, and M. Laurent, "Hypermetrics in geometry of numbers," in W. Cook, L. Lovasz and P. Seymour (Eds.), Combinatorial Optimization, volume 20 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 1-109, American Mathematical Society, 1995.
3. M. Deza, V.P. Grishukhin, and M. Laurent, "Extreme hypermetrics and L-polytopes," in Sets, Graphs and Numbers, Budapest, 1991, volume 60 of Colloquia Mathematica Societatis Jdnos Bolyai, pp. 157-209,1992. LAURENT
4. M. Deza, V.P. Grishukhin, and M. Laurent, "The hypermetric cone is polyhedral," Combinatorica 13(4) (1993), 1-15.
5. W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, 1948.
6. G.F. Voronoi, "Nouvelles applications des parametres continus a la theorie des formes quadratiques, Deuxieme memoire," Journal Reine Angewandte Mathematik, 134 (1908), 198-287.
7. G.F. Voronoi, "Nouvelles applications des parametres continus a la theorie des formes quadratiques, Deuxieme memoire," Journal Reine Angewandte Mathematik 136 (1909), 67-181.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition