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Commutative Association Schemes Whose
Symmetrizations Have Two Classes*

Abstract. If a symmetric association scheme of class two is realized as the symmetrization of a commutative
association scheme, then it either admits a unique symmetrizable fission scheme of class three or four, or admits
three fission schemes, two of which are class three and one is of class four. We investigate the classification
problem for symmetrizable (commutative) association schemes of two-class symmetric association schemes. In
particular, we give a classification of association schemes whose symmetnzations are obtained from completely
multipartite strongly regular graphs in the notion of wreath product of two schemes. Also the cyclotomic schemes
associated to Paley graphs and their symmetrizable fission schemes are discussed in terms of their character tables.
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1. Introduction and preliminary

Although every nonsymmetric commutative association scheme essentially has one sym-
metrization, there are many symmetric schemes that are realized as symmetrizations for
many commutative schemes while others that do not admit any symmetrizable fission
schemes at all. As a continuation of the work in [13] on classification of symmetrizable
commutative association schemes, in this paper we investigate four-class symmetrizable
fission schemes for two- or three-class symmetric schemes.

In this section, we give some terminology and the notion of the wreath product of two
schemes, and recall two basic lemmas related to fusions and fissions of association schemes.
In Section 2, we give a method for obtaining symmetrizable fission schemes for completely
multipartite strongly regular graphs and classify such schemes of class four. Finally in
Section 3 we discuss the four-class fission schemes of Paley graphs.

1.1. Character tables

Let X = (X, (R i } 0 < i < d ) be a commutative association scheme. Let A0 , A1 ,..., Ad be the
adjacency matrices of the scheme X and let E0, E1 ,..., Ed be the primitive idempotents of
the Bose-Mesner algebra 2 = (A0 , A1, . . . , Ad> = (E0, E1, ...,Ed} of X. The character
table P = ( p j ( i ) ) of X is the (d + 1) x (d + 1) matrix given by
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The (i, j')-entry pj(i) of P is characterized by the relation AjEi = pj(i)Ei. We have
p0(i) = 1 and pj(0) = kj = |{y e X | (x, y) e R j } | for all i, j in {0, 1 , . . . . d}. The rank
of Ei is called the multiplicity mi, i = 0, 1 , . . . , d .

We can calculate the character tables of fusion schemes using the following lemma, which
is due to Bannai [1], Johnson & Smith [10], and Muzichuk [12], if the fission tables are
known.

Lemma 1.2 Let X = (X, (R i }o<i<d) be a commutative scheme, and {^a}o<a<s be aparti-
tionof {0,1, ...,d] such that/\0 = {0}. Suppose for every a e { 0 , 1 , . . . , & } , UieAa Ri< =
UjeA , Rj for some a' e {0,1,..., S}. Then the partition gives rise to a fusion scheme

X = (X, {Ra}o<a<s) with Ra = Ui€Aa Ri, if and only if there exists a partition {Aa}0<a<S

of{0, 1, . . . , d} with hAQ = {0} such that each (AB , Aa)-block of the character table P of X
has a constant row sum. In this case, the constant row sum EjeAa Pj(i) for i E AB of the

block (AB , Aa) is the (B, a)-entry pa(B) of the fusion table P.

For a given symmetric scheme X, a nonsymmetric commutative fission scheme X of X
is called symmetrizable fission scheme of X if X can be obtained from X by fusing every
non-self-paired class with its conjugate counterpart. For the calculation of the character
tables for the symmetrizable fission schemes, the following lemma in [3, Theorem 2.3] is
useful.

Lemma 1.3 Let X = (X, {Rn}0<n<s) be a commutative association scheme with |X| = n.
Let X = (X, {R i} i e I) where I = {0, 12 . . . , S} U {d} be a (S + 1)-class commutative fission
scheme of X such that Rv and Eu of X split into pairs as Rv = Rv U Rd and Eu = Eu +
Ed in X. If R'v = Rd , then the character table P = ( p j ( i ) ) of X is determined from
P = (Pn(e)) as follows:

Lemma 1.3 will be used repeatedly whenever we need to calculate fission tables for
putative symmetrizable fission schemes for given symmetric association schemes. If a
fission table is realized as the character table of an association scheme, we want to describe
the scheme and classify it if it is possible. We now recall the notion of wreath product and
some examples of association schemes that will be used in our discussion.

1.4. Wreath products

Let A0 , A1, ..., Ad be the adjacency matrices of an association scheme X. The matrix
R(X) = Ed

 i=1 iAi is called the relation table of X. The wreath product of two association
schemes is defined in terms of the relation tables of the two schemes as follows. Let
X = (X, [Ri}o<i<d) with |X| = n, 2) = (Y, { S j } 0 < j < e ) with \Y\ = m be two association
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schemes. Let W be the (d + e)-class association scheme on X x Y whose relation table is
given by

where Il and jl denote the l x l identity matrix and the all-1 matrix, respectively, and
A ® B = ( a i j B ) , the tensor product of A = (a]) and B. The scheme W is called the
wreath product of X with 2), and denoted by W = X f 2). (The notion of wreath product
is due to [14, pp. 45-47].)

1.5. X ( K n )

The complete graph on n vertices is denoted by Kn and the (trivial) association scheme
given by the relation table Jn — In is denoted by X(Kn). The character table of the scheme

x(Kn) is given by P(X(Kn)) = (1 n-1 )m0=1

1.6. Group schemes X(G)

For a given finite group G with its conjugacy classes C0 = {1}, C1 , . . . , Cd, the scheme
defined by (a, b) e Ri iff ba - l e C i , i = 0, 1 , . . . , d, is called the group scheme of G
and denoted by X(G) = (G, {Ri}0<i<d). Suppose f0 = 1, f1, f2,..., fd are degrees,of
distinct irreducible characters of G. Then the multiplicities mi of X(G) are given by fi

2

and ki = |Ci|,i = 0, 1 , . . . , d. In this case, the character table P(X(G)) is given by
F-1 • T • K, where T is the group character table of G, F-1 = diag[l, f1

-1,..., fd
-1 ], and

k = diag[l, k l , . . . , k d ] .

1.7. Cyclotomic schemes X(d, G F(q))

Let q be a prime power number, and d be a positive integer that divides q — 1. Let a be
a generator of the multiplicative group GF(q)*, and H be the cyclic subgroup generated
by ad. Thus [GF(q)* : H] = d, and its cosets are {Hai | i = 0, 1 , . . . , d - 1}. Define
R0 = {(x,x) |x € GF(q)}, and Ri = {(x, y) | x - y e Hai-1}, for i = l , 2 , . . . , d .
Then x(d, GF(q)) = (GF(q), {R}0<i<d) forms an association scheme and is called the
cyclotomic scheme of class d over GF(q).

The character table of X ( d , GF(q)) can be derived from the group character table for
the elementary abelian group GF(q) by a fusion. Let T be the character table of the group
GF(q) whose rows are indexed by the set of additive characters and the columns are indexed
by the elements of GF(q). Take the coset decomposition by the subgroup H = (ad) as
a partition of GF(q) — {0}. From the table T, first we combine (add) the corresponding
columns in each part according to the partition {{0}, H, H a , . . . , H a d - l } , and then from
the resulting q x (d + 1) table, delete all the duplicated rows leaving d + 1 distinct rows.
(There are exactly d + 1 distinct rows!) The character table P of X ( d , GF(q)) is the
(d + 1) x (d + 1) fusion table of T. The rows of P can be rearranged in such a way that
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where k = q-1,P 0 = Ei-1 pi C
iwith

for a fixed nontrivial additive character x • Finally, we note that the cyclotomic scheme
X(d, GF(q))is symmetric if and only if q-1 is even or q is a power of 2.

1.8. Strongly regular graphs

Let T = (V, E) be a strongly regular graph (with vertex set V and edge set E) having
the parameters (n, k, t, u). Let X ( T ) = (V, {Ro, R1, R2}) be the symmetric association
scheme on V where relations are defined by R0 = { ( x , x ) | x e V}, R1 = { ( x , y ) | ( x , y ) e
E}, and R2 = {(x, y) e V x V | x = y, ( x , y ) e E}. Then T = P11,u = p11,k = k1 =
|{y| (x, y) € R1}|, and the character table P of x(T) is given by

where r = 1/2(T — u + sqD) , s = 1/2(T — u — sqD), t = —r — 1, u = —s — 1, and
m = 1/2[n-l-{2/k + (n-l)(T-u)}.D-1/2]with D = (T-u)2 + 4(k-u). Conversely, for
any given two-class symmetric association scheme x = (X, {Ro, R1, R2}), the associated
relation graphs T(x) = (X, R1) and T (X) = (X, R2) are strongly regular graphs having
parameters ( | X | , k 1 , p11, p11) and (|X|, k2, p22, p22) respectively.

2. Fission schemes of completely multipartite strongly regular graphs

2.1. Completely multipartite strongly regular graphs

We now consider a special class of strongly regular graphs each of which has the parameters
(n,k,2k — n,k) for some n and k with n < 2k. For such graphs r = 0, s = k—n, and m =
n(n — k — 1)(n — k ) - l . Moreover, such a graph T is a completely multipartite graph
with the size of each part / = n — k, and its complement T is the union of g = n-k
copies of the complete graph K f . .Thus, the graph T is also described by the parameters
(fg, f(g - 1), f(g - 2), f(g - 1)), and in the notion of wreath product in 1.4, x(T) =
X(Kf)f X(Kg).

Here the number pi
, s are known as Gaussian periods and given by
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2.2. Three-class fission schemes of x(T)

In [13, Lemma 5.3], it is shown that if x(T) for the strongly regular graph T of (fg, f(g —
1), f(g - 2), f(g — 1)), f, g > 2 is realized as the symmetrization of a three-class
association scheme X then the character table of X must be one of the following three:

where p = 1/2{-(g - 1)/(f - 1)}1/2, a = 1 / 2 f { - 1 + (-g)1/2} and r = 1/2{-1 + (-f)1/2}.
Furthermore, it is shown that each of the above tables becomes feasible if and only if

(i) f and g are even and g — 1 is divisible by f— 1, for Pp;
(ii) either / is even and g is odd, or f is odd and g = 3 (mod 4), for Pa;

( i i i ) f=3(mod4)forP r .

As an easy consequence of this, we have the following observation:

Lemma 2.3 Let T be a strongly regular graph having the parameters ( f g , f ( g - 1 ) , f ( g —
2), f(g — 1))• Suppose X(T) has two distinct symmetrizable fission schemes of class 3.
Then

(1) Both f and g are congruent to 3 modulo 4.
(2) The character tables of the two three-class fission schemes must be of type Pa and PT

in 2.2.
(3) x(T) admits a symmetrizable fission scheme of class 4 having the character table

Proof: It follows directly from 2.2. Notice that neither Pp and Pa, nor Pp and PT com-
bination can occur together. n
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In the above lemma, if x(T) has a symmetrizable fission scheme of class 4, then each
of the associated strongly regular graphs T and T of x(T) is decomposed into two regular
subdigraphs in such a way that two sets of the directed edges form a paired relations in the
resulting fission scheme. An important key observation is that such a fission scheme exists
only if both X(Kf) and X(Kg) are fissionable into pairs of nonsymmetric two-class schemes
simultaneously. When both f and g are prime power integers that are congruent to 3 modulo
4, we have desired fission schemes X(2, GF ( f)) and X(2, GF(g)) for X(Kf) and X(Kg),
respectively. Thus we now have the following theorem.

Theorem 2.4 Let x(T) be the symmetric association scheme which comes from the
strongly regular graph having the parameters (fg,f(g — 1 ) , f ( g — 2 ) , f ( g — 1 ) ) f o r f , g >
3. Then we have the following:

(1) If f = 3 (mod 4) and f is a prime power, then Pr is realized as the character table of
WT = X ( 2 , G F ( f ) ) f X(Kg).

(2) If g = 3(mod 4) and g is a prime power, then Pn is realized as the character table of
Wa=X(Kf)f X(2,GF(g)).

(3) If f and g both are prime powers and congruent to 3 modulo 4, then P in (3) of Lemma
2.3 is realized as the character table of W = X(2, GF(f)) f X(2, GF(g)).

Proof: It suffices to show that the character tables of the schemes Wr, Wa and W are
Pr, Pa, and P, respectively, for given f and g. We note that the adjacency matrices of the
wreath product of two schemes, over the sets of cardinalities / and g with their adjacency
matrices F's and G's, respectively, are the matrices Ig <8> F's and G ® Jf

,s. It is shown
that the eigenvalues of Ig <8> F are the same as those of F but the multiplicities of the
eigenvalues for Ig <8> F are g times those of the same eigenvalues for F. Also the spectrum
of G ® Jf consists of 0 with multiplicity g(f — 1) and / times the eigenvalues of G with
the same multiplicities. Therefore, it is straightforward to construct the character tables of
Wr, Wf, and W by computing the spectra of their adjacency matrices directly from those
of X(Kf), X(Kg), X(2, GF(f)), and X(2, GF(g)). Q

2.5. Parameters

The parameters of the schemes Wr, Wa, and W can be obtained by a straightforward
computation. For instance, the intersection matrices of the scheme W = x(2, GF(f))
f X(2, GF(g)) are given by B1 and B3 below.
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Example 2.6 Let T and P be the strongly regular graphs having the parameters (21, 14,
7, 14) with f = 7, g = 3 and (21, 18,15, 18) with / = 3, g = 7, respectively. Then the
fission schemes of x(T) and x(P) are described by

W(T) = X(2, GF(7))fx(Z3)

W(P) = X ( Z 3 ) f X ( 2 , GF(7)), respectively.

Their relation tables are

where J'n = 7n - In,

Also x(T) has two intermediate 3-class fission schemes x(2, G F ( 7 ) ) f X ( K 3 ) and
x(K7) f x(Z3), and x(P) has two fission schemes x(Z3) f x(K7) and x(K3)f
x(2, G F ( 7 ) ) as well. These are fusion schemes of W(T) and W(P), respectively. (See
also (5.6) of [13] where one intermediate 3-class fission scheme from each of x(T) and
x(P) are described in detail.)

3. Symmetrizable fission schemes of Paley graphs

The relation graphs of cyclotomic schemes x(2, GF(q)) for q = 1( mod 4) are known as
Paley graphs, the strongly regular graphs having the parameters (q, 1/2(q — 1), 1 /4 (q— 5), 1/4(q —
1)). In [13, (7.1)] we have shown that all strongly regular graphs having the parameters
(n, 1/2(n — 1), 1/4(n — 5), 1/4(n — 1)) for any n > 5 are not realized as the symmetrization of
any three-class schemes. However, for each prime power q = 5( mod 8), it is easy to see
that x(2, GF(q)) is the symmetrization of four-class nonsymmetric scheme X(4, GF(q)).

3.1. Four-class symmetrizable fission tables

Let X be the symmetric scheme of class two associated with the strongly regular graph
T having the parameters (n, k, T, u). (Then the character table P of X is given by 1.8.)
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Suppose % admits a four-class symmetrizable fission scheme X. Then a feasible fission
table P for X may be described, up to a permutation of rows and columns, by

where either the pair p and w or the pair r and a are nonreal. The reason is that when
both of the nontrivial relations of X split into paired relations, each of the two primitive
idempotents must split into a pair of paired idempotents. From the orthogonality relations
of the character table, we have a set of equations on p, r, a, and w in terms of n, k, r, and s,
although these are not enough to determine p, r, a, and w explicitly. For the case when
X = X(2, GF(q)), we have one free parameter to determine due to the pseudocyclic
property of cyclotomic schemes.

3.2. Pseudocyclic fission tables

A commutative scheme is said to be pseudocyclic if its multiplicities coincide with each
other. Notice that in a pseudocyclic scheme all the valencies are also the same. In particular
if X is pseudocyclic two-class symmetric scheme, then in the notations used in 1.8, its
character table P will be given by k = m = 1/2(n — 1) and s = —r — 1 = 1/2(—1 — sqn) while
r = 1/2(—1 + sqn). Furthermore, if X is a four-class symmetrizable fission scheme of X, then
the character table of X will be given by P in 3.1 with the identities k = m = 1/2(n — 1), w =
p,a = T, p + p = 1/2(— 1 + sqn), r + r = 1/2(— 1 — sqn) , and pp + rr = 1/8(3n + 1). Thus,
in particular, we have the following.

Lemma 3.3 Suppose P is the character table of any four-class symmetrizable fission
scheme ofX = X(2, GF(q))for q = 5(mod 8). Then P is given by

Proof: Straightforward.
The following particular solution (1) or (2) for the system (*) yields the character tables

of X(4, G F (q)) depending on the quadratic residue of given q:
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Remark 3.4 In the notion of 1.7 with d = 4, this implies that the Gaussian periods
Pi, i = 0, 1, 2, 3, can be expressed by p and r as follows:

where the pair p and r are given by either the formula (1) or (2) depending on the given q.
For instance, the character table of x(4, GF(5)) is given by (1) while that of x(4, GF(13))
is given by (2).

We close this section with the following two questions:
Question 1. Is there any other solution for the above system (*) that yields a feasible

fission table P for given P, perhaps, for a large prime power q = 5(mod 8)?
For a given association scheme X, if all the (nontrivial) relation graphs (X, Ri) of X are

connected, then we say that x is primitive. The cyclotomic schemes associated to Paley
graphs are examples of primitive schemes.

Question 2. Are there any other two-class primitive schemes (strongly regular graphs)
that admit symmetrizable fission schemes besides x(2, GF(q)) (Paley graphs) for q =
5(mod 8)?


