On Distance-Regular Graphs with Height Two

MASATO TOMIYAMA

Graduate School of Mathematics, Kyushu University, Higashi-ku, Fukuoka 812, Japan

Received February 25, 1994; Revised January 6, 1995

Abstract. Let Γ be a distance-regular graph with diameter at least three and height h = 2, where $h = \max\{i : p_{di}^d \neq 0\}$. Suppose that for every α in Γ and β in $\Gamma_d(\alpha)$, the induced subgraph on $\Gamma_d(\alpha) \cap \Gamma_2(\beta)$ is a clique. Then Γ is isomorphic to the Johnson graph J(8, 3).

Keywords: distance-regular graph, strongly regular graph, height, clique, Johnson graph

1. Introduction

Let Γ be a connected undirected simple finite graph. We identify Γ with the set of vertices. For vertices u and v, let $\partial(u, v)$ denote the distance between u and v, i.e. the length of a shortest path from u to v in Γ . Let $d = d(\Gamma)$ denote the *diameter* of Γ , i.e. the maximal distance of two vertices in Γ . We set

$$\Gamma_i(u) = \{ x \in \Gamma : \partial(u, x) = i \} \qquad (0 \le i \le d).$$

 Γ is said to be *distance-regular* if the cardinality of the set $\Gamma_i(u) \cap \Gamma_j(v)$ depends only on the distance between u and v. In this case we write

$$p_{ii}^{l} = |\Gamma_{i}(u) \cap \Gamma_{j}(v)| \qquad (0 \le i, j, l \le d),$$

where $l = \partial(u, v)$. Let

$$k_i = p_{ii}^0 = |\Gamma_i(u)|$$
 $(0 \le i \le d).$

In particular $k = k_1$ is the valency of Γ . Let

$$c_i = p_{1\,i-1}^i, \quad a_i = p_{1i}^i, \quad b_i = p_{1\,i+1}^i \quad (0 \le i \le d).$$

They are called the *intersection numbers* of Γ , and

is called the *intersection array* of Γ .

The following are basic properties of intersection numbers, which we use implicitly in this paper.

(1) $c_i + a_i + b_i = k$ $(0 \le i \le d),$ (2) $1 = c_1 \le c_2 \le c_3 \le \cdots \le c_{d-1} \le c_d \le k,$ (3) $k = b_0 > b_1 \ge b_2 \ge \dots \ge b_{d-2} \ge b_{d-1} \ge 1$, (4) $k_i b_i = k_{i+1} c_{i+1}$ ($0 \le i \le d-1$), (5) $k_l p_{ij}^l = k_i p_{ij}^l = k_j p_{ii}^j$ ($0 \le i, j, l \le d$), (6) $p_{ij}^l \ne 0$ if l = i + j or l = |i - j|, (7) $c_i \le b_j$ if $i + j \le d$.

A graph is said to be strongly regular if it is distance-regular with diameter 2.

A graph is called a *clique* when any two of its vertices are adjacent. A *coclique* is a graph in which no two vertices are adjacent.

Information about the general theory of distance-regular graphs is given in [1], [3] and [5]. Let X be a finite set of cardinality v and $V = \{T \subset X : |T| = e\}$. The Johnson graph J(v, e) is a graph whose vertex set is V and two vertices x and y are adjacent if and only if $|x \cap y| = e - 1$. It is well known that J(v, e) is a distance-regular graph.

In this paper we identify a subset A of Γ with the induced subgraph on A and define the following terminology.

A subgraph A of Γ is called *geodetically closed* if for all vertices x and y in A with $\partial(x, y) = i, \Gamma_{i-1}(x) \cap \Gamma_1(y)$ is in A. For subsets A and B of Γ , let $\partial(A, B) = \min\{\partial(x, y) : x \in A, y \in B\}$. Let $h = \max\{i : p_{d_i}^d \neq 0\}$ be the *height* of Γ .

A distance-regular graph Γ is of height 0 if and only if Γ is an antipodal 2-cover, and is of height 1 if and only if $\Gamma_d(\alpha)$ is a clique for every α in Γ . So if the height of Γ is 1, Γ is the distance-2 graph of a generalized odd graph (see Proposition 4.2.10 of [5]). This paper is concerned with a distance-regular graph of height 2.

Theorem 1.1 Let Γ be a distance-regular graph with diameter d at least 3 and height h = 2. Suppose that for every α in Γ and β in $\Gamma_d(\alpha)$, $\Gamma_d(\alpha) \cap \Gamma_2(\beta)$ is a clique. Then d = 3 and Γ is isomorphic to J(8, 3).

In [8] and [9] H. Suzuki showed that $d(\Gamma)$ is bounded by a function depending only on k_d if $\Gamma_d(\alpha)$ is not isomorphic to a coclique. Hence if $\Gamma_d(\alpha)$ is isomorphic to a given strongly regular graph Δ , then there are only finitely many possibilities for Γ .

On the other hand if Γ is isomorphic to Hamming graphs H(2, q) $(q \ge 3)$, Johnson graphs J(v, 2) $(v \ge 6)$ or J(2d + 2, d) $(d \ge 2)$, then $\Gamma_d(\alpha)$ is isomorphic to a strongly regular graph.

Is it possible to characterize these distance-regular graphs by the antipodal structures $\Gamma_d(\alpha)$?

Let Δ be a graph with diameter 2. Suppose $\Gamma_d(\alpha)$ is isomorphic to Δ for every α in Γ . Then the height of Γ becomes 2. It is easy to see that in this situation Δ is distance-degree regular, i.e. $|\Delta_1(\beta)| = p_{d_1}^d$, $|\Delta_2(\beta)| = p_{d_2}^d$ do not depend on the choice of β in Δ .

Let Δ be a distance-degree regular graph with diameter 2 such that $\Delta_2(\beta)$ is a clique for every β in Δ . The theorem above shows that if there exists a distance-regular graph Γ of diameter d at least 3 such that $\Gamma_d(\alpha)$ is isomorphic to Δ for every α in Γ , then Γ is isomorphic to J(8, 3) and Δ is isomorphic to J(5, 2).

We note that there are many distance-degree regular graphs of diameter 2 such that $\Delta_2(\beta)$ is a clique for every β in Δ . The complete bipartite graphs $K_{s,s}$, the pentagon and the complements of strongly regular graphs with $a_1 = 0$ are in this class.

It is not hard to construct graphs in this class which are not strongly regular. For example, a clique extension Δ of a graph Λ in this class is also in it. By a clique extension we mean

the following. Let $K^{u}(u \in \Lambda)$ be finite disjoint sets of the same size. Δ is a graph whose vertex set is $\bigcup_{u \in \Lambda} K^u$ and two distinct vertices $x \in K^u$ and $y \in K^v$ are adjacent if and only if u = v or u and v are adjacent in Λ .

Corollary 1.2 Let Γ be a distance-regular graph with diameter d at least 3, and Δ a strongly regular graph such that $\Delta_2(\beta)$ is a disjoint union of cliques for every β in Δ . If $\Gamma_d(\alpha)$ is isomorphic to Δ for every α in Γ , then d = 3 and Γ is isomorphic to *J*(8, 3).

Proof: Suppose $\Delta_2(\beta)$ is not a clique. Then it follows from Lemma 3.1 of [6] that Δ is a complete multipartite graph $K_{\tau \times s}$. Then by an unpublished work of A. Hiraki and H. Suzuki (see Appendix), we get $d \leq 2$. So we may assume that $\Delta_2(\beta)$ is a clique. Now the assertion follows from Theorem 1.1.

Intersection diagram 2.

In this section we shall introduce the intersection diagrams of rank d which we use as our main tool.

Let $\alpha, \beta \in \Gamma$ with $\partial(\alpha, \beta) = d$. Set

$$D_j^i = D_j^i(\alpha, \beta) = \Gamma_i(\alpha) \cap \Gamma_j(\beta) \qquad (0 \le i, j \le d).$$

It is easy to see the following.

- (1) $D_{i}^{i} = \phi$ if d > i + j,
- (2) $D_{d-i}^{j} \neq \phi$ if $0 \le i \le d$, (3) There is no edge between D_{j}^{i} and D_{g}^{f} if |i f| > 1 or |j g| > 1.

An intersection diagram of rank d with respect to (α, β) is the collection $\{D_i^i\}_{i,j}$ with lines between D_i^i 's and D_g^f 's. We draw a line

$$D_j^i - D_g^f$$

if there is possibility of existence of edges between D_i^i and D_g^f , and we erase the line when we know there is no edge between D_i^i and D_g^j .

In the following e(A, B) denotes the number of edges between subsets A and B of Γ , and $e(\{\gamma\}, A) = e(\gamma, A)$. We write $\alpha \sim \beta$, when β is in $\Gamma_1(\alpha)$, and $\alpha \not\sim \beta$, otherwise.

The following are straightforward and useful for determining the form of the intersection diagram.

For each $\gamma \in D_i^i$, we have the following.

$$\begin{aligned} (4) \ c_i &= e(\gamma, D_{j+1}^{i-1}) + e(\gamma, D_j^{i-1}) + e(\gamma, D_{j-1}^{i-1}), \\ c_j &= e(\gamma, D_{j+1}^{i-1}) + e(\gamma, D_{j-1}^{i}) + e(\gamma, D_{j-1}^{i-1}), \\ (5) \ a_i &= e(\gamma, D_{j+1}^{i}) + e(\gamma, D_j^{i}) + e(\gamma, D_{j-1}^{i}), \\ a_j &= e(\gamma, D_{j+1}^{i+1}) + e(\gamma, D_j^{i}) + e(\gamma, D_{j-1}^{i-1}), \\ (6) \ b_i &= e(\gamma, D_{j+1}^{i+1}) + e(\gamma, D_{j+1}^{i+1}) + e(\gamma, D_{j-1}^{i-1}), \\ b_j &= e(\gamma, D_{j+1}^{i+1}) + e(\gamma, D_{j+1}^{i}) + e(\gamma, D_{j+1}^{i-1}). \end{aligned}$$

Figure 1.

Figure 1 is an example of the intersection diagram of rank $d = d(\Gamma)$ with d = 4. For the properties and applications of intersection diagrams, see for example [2] and [4].

3. Preliminaries

In this section we determine the shape of the intersection diagram under the hypothesis of Theorem 1.1, and prove some basic lemmas.

Suppose there is a vertex $x \in D_j^i$, for some i, j with $i \ge 3, j \ge 3, i + j \ge d + 3$. Then there is a vertex $y \in \Gamma_d(\alpha) \cap \Gamma_{d-i}(x)$. Since $\beta, y \in \Gamma_d(\alpha)$ and the height h = 2,

$$\partial(\beta, y) \leq 2.$$

On the other hand,

$$\partial(\beta, y) \ge |\partial(\beta, x) - \partial(x, y)| = |(i+j) - d| \ge 3,$$

which is impossible. So

$$D_i^i = \emptyset$$
 for $i \ge 3$, $j \ge 3$, $i + j \ge d + 3$.

Therefore the intersection diagram becomes as in Fig. 2.

Figure 2.

Take any $\gamma \in D_d^2$, then

$$\Gamma_i(\alpha) \cap \Gamma_{i-2}(\gamma) \subseteq D^i_{d-i+2} \quad \text{for } 2 \le i \le d.$$

Since $p_{i,i-2}^2 \neq 0$, we get

$$D_{d-i+2}^i \neq \phi$$
, i.e. $p_{i\,d-i+2}^d \neq 0$ for $2 \le i \le d$.

Since $k_i p_{d d-i+2}^i = k_d p_{i d-i+2}^d \neq 0$, we have

$$p_{d\,d-i+2}^i \neq 0 \quad \text{for } 2 \le i \le d.$$

Let $\kappa_1 = p_{d_1}^d = a_d$ and $\kappa_2 = p_{d_2}^d$. Then $k_d = 1 + \kappa_1 + \kappa_2$. Since D_2^d is a clique, for any $\delta \in D_2^d$, $e(\delta, D_2^d) = \kappa_2 - 1$.

Lemma 3.1 For every α in Γ and every β , γ , δ in $\Gamma_d(\alpha)$, $\partial(\beta, \gamma) + \partial(\gamma, \delta) + \partial(\delta, \beta) \le 5$.

Proof: Suppose there are vertices β , γ , $\delta \in \Gamma_d(\alpha)$ such that $\partial(\beta, \gamma) + \partial(\gamma, \delta) + \partial(\delta, \beta) \ge 6$. Since the height h = 2,

$$\partial(\beta, \gamma) = \partial(\gamma, \delta) = \partial(\delta, \beta) = 2.$$

So $\gamma, \delta \in D_2^d$. This contradicts that D_2^d is a clique.

Lemma 3.2 $\partial(D_{d-2}^2, D_2^d) \ge d-1.$

Proof: Suppose there are vertices $u \in D_{d-2}^2$ and $v \in D_2^d$ such that $\partial(u, v) \leq d - 2$ (see Fig. 3).

We can take $w \in \Gamma_d(\alpha) \cap \Gamma_d(u)$ because $p_{dd}^2 \neq 0$. Since β , $v, w \in \Gamma_d(\alpha)$ with $\partial(\beta, v) = 2$, by Lemma 3.1, we have $\partial(w, \beta) = 1$ or $\partial(w, v) = 1$. Since $\partial(u, \beta) = d - 2$ and $\partial(u, v) \leq d - 2$, we get $\partial(u, w) \leq d - 1$. This contradicts $w \in \Gamma_d(u)$.

Lemma 3.3 $e(D_{d-i-1}^{i+1}, D_{d-i}^{i+2}) = 0$ for $0 \le i \le d-2$.

Figure 3.

Figure 4.

Proof: Suppose not. Then there is an edge $x \sim y$ such that $x \in D_{d-i-1}^{i+1}$, $y \in D_{d-i}^{i+2}$. If $i \geq 1$, we can take $u \in D_{d-2}^2$ with $\partial(u, x) = i - 1$ and $v \in D_2^d$ with $\partial(y, v) = d - i - 2$ (see Fig. 3). We get $\partial(u, v) = d - 2$, which contradicts Lemma 3.2. Since $e(D_1^{d-1}, D_2^d) = 0$, we get $e(D_{d-1}^1, D_d^2) = 0$ by symmetry.

By Lemma 3.3, the intersection diagram becomes as in Fig. 4.

Lemma 3.4 The following hold.

Γ_d(α) is geodetically closed for every α in Γ,
 κ₁ ≥ 2,
 c₂ = κ₁ - κ₂ + 1.

Proof:

(1) Let $\beta, \gamma \in \Gamma_d(\alpha)$ with $\partial(\beta, \gamma) = i$. Since the height h = 2, we only consider the case i = 2. Then $\gamma \in D_2^d$. Since $e(D_1^{d-1}, D_2^d) = 0$,

$$\Gamma_1(\beta) \cap \Gamma_1(\gamma) \subseteq D_1^d \subseteq \Gamma_d(\alpha).$$

(2) For any $\gamma \in D_2^d$, there is $\delta \in D_1^d$ such that $\gamma \sim \delta \sim \beta$. So

$$\kappa_1 = p_{d_1}^d = |\Gamma_d(\alpha) \cap \Gamma_1(\delta)| \ge 2.$$

(3) Take $\gamma \in D_2^d$, then $\kappa_1 = a_d = e(\gamma, D_2^d) + e(\gamma, D_1^d) = \kappa_2 - 1 + e(\gamma, D_1^d)$. From Lemma 3.3, we get

$$c_2 = e(\gamma, D_1^d) = \kappa_1 - \kappa_2 + 1. \qquad \Box$$

Lemma 3.5 $c_3 \neq 1$.

Proof: Suppose $c_3 = 1$. Then for any $x \in D_3^{d-1}$,

$$b_{d-1} = e(x, D_2^d) \le e(x, D_2^d) + e(x, D_2^{d-1}) = c_3 = 1.$$

Hence we have

 $b_{d-1} = 1.$

Figure 5.

For any $y \in D_1^{d-1}$,

$$1 = b_{d-1} = e(y, D_1^d) + e(y, D_0^d) = e(y, D_1^d) + 1.$$

So we get $e(y, D_1^d) = 0$. Hence we have

$$e\left(D_1^{d-1},\,D_1^d\right)=0.$$

Therefore the intersection diagram becomes as in Fig. 5.

For any $\gamma \in D_2^d$ and any $\delta \in D_1^d$, we get

$$e(\gamma, D_1^d) = c_2, \ e(\delta, D_1^d) = a_1.$$

So for any two vertices $u, v \in \Gamma_d(\alpha)$, the number of vertices which are adjacent to u and v in $\Gamma_d(\alpha)$ is c_2 if $u \not\sim v$ and a_1 if $u \sim v$. Hence $\Gamma_d(\alpha)$ becomes strongly regular.

We use bar to distinguish the parameters of $\Delta = \Gamma_d(\alpha)$ from those of Γ . Then $\bar{k} = \kappa_1$, $\bar{k_2} = \kappa_2$.

Since $c_3 = c_2 = 1$, Lemma 3.4(3) implies that $\kappa_1 = \kappa_2$. Hence the intersection array of Δ becomes

$$\iota(\Delta) = \left\{ \begin{array}{rrr} * & 1 & 1 \\ 0 & \kappa_1 - 2 & \kappa_1 - 1 \\ \kappa_1 & 1 & * \end{array} \right\}.$$

Since $\bar{b_1} = \bar{c_2} = 1$, we get $\bar{a_1} = 0$ (see Proposition 5.5.1 of [5]). So we have $\kappa_1 = 2$ and

$$kp_{dd}^{1} = k_{d}p_{d1}^{d} = 10$$

$$k_{2}p_{dd}^{2} = k_{d}p_{d2}^{d} = 10$$

As $k < k_2$ (see Lemma 5.1.2 of [5]),

$$k = 5, \quad k_2 = 10.$$

So we have

$$b_1 = 2, \quad a_1 = 2.$$

Hence Γ is locally pentagon and we know Γ is isomorphic to the icosahedron (see Proposition 1.1.4 of [5]). This contradicts $k_2 = 10$.

4. The case $d \ge 4$

In this section we discuss the case $d \ge 4$ and prove this case does not occur.

Lemma 4.1 Suppose $d \ge 4$. Then the following hold.

(1) $b_2 \ge c_{d-1}$, (2) $b_{d-2} \ge c_3$.

Proof:

(1) Take $\gamma \in D_2^d$, then

$$b_2 = e(\gamma, D_3^{d-1}) \le e(\gamma, D_3^{d-1}) + e(\gamma, D_2^{d-1}) = c_d.$$

Suppose $b_2 = c_d$, then $b_2 = c_d \ge c_{d-1}$. So we may assume $b_2 < c_d$. Then $e(\gamma, D_2^{d-1}) \neq 0$, so there is $\delta \in D_2^{d-1}$ such that $\gamma \sim \delta$ (see Fig. 6).

Claim $e(\delta, D_2^{d-2}) = 0.$

Suppose for some $x \in D_2^{d-2}$ such that $x \sim \delta$. Since there is $y \in D_{d-2}^2$ such that $\partial(y, x) = d - 4$, we get $\partial(y, \gamma) = d - 2$. This contradicts Lemma 3.2. Hence we get $e(\delta, D_2^{d-2}) = 0.$ By Claim, we get

$$b_2 = e(\delta, D_3^{d-2}) + e(\delta, D_3^{d-1}) \ge e(\delta, D_3^{d-2}) = c_{d-1}.$$

(2) Take $u \in D_{d-2}^4$ and argue similarly as in (1).

Lemma 4.2 Suppose $d \ge 4$. Then for every x in D^2_{d-2} , there are γ and δ in $\Gamma_d(x)$ such that γ in D_2^d and δ in D_4^{d-2} .

Proof: Since $p_{dd}^2 \neq 0$, take $\gamma \in \Gamma_d(\alpha) \cap \Gamma_d(x)$. Then $\partial(\beta, \gamma) \ge \partial(x, \gamma) - \partial(x, \beta) = 2$. $\beta, \gamma \in \Gamma_d(\alpha)$ and the height h = 2, so $\partial(\beta, \gamma) = 2$. Hence we get

 $\gamma \in D_2^d$.

Figure 6.

64

Figure 7.

Since $p_{d\,4}^{d-2} \neq 0$, take $\delta \in \Gamma_d(x) \cap \Gamma_4(\beta)$. Then $\partial(\alpha, \delta) \geq \partial(x, \delta) - \partial(\alpha, x) = d - 2$. Since $D_4^i = \phi$ for $i \geq d - 1$, we get

$$\delta \in D_A^{d-2}.$$

Lemma 4.3 Suppose $d \ge 4$. Then $\partial(D_{d-2}^2, D_{d-1}^3) \ge 3$.

Proof: Suppose there are $x \in D_{d-2}^2$, $y \in D_{d-1}^3$ such that $\partial(x, y) = 2$. Then there is $z \in \Gamma_d(x) \cap \Gamma_d(y)$. By Lemma 4.2, there are $\gamma, \delta \in \Gamma_d(x)$ such that $\gamma \in D_2^d$, $\delta \in D_4^{d-2}$ (see Fig. 7). Since $\gamma, \delta, z \in \Gamma_d(x)$ with $\partial(\gamma, \delta) = 2$, Lemma 3.1 implies that $\partial(z, \gamma) \leq 1$ or $\partial(z, \delta) \leq 1$.

Case 1. $\partial(z, \gamma) \leq 1$.

Since there is $u \in D_2^d$ such that $\partial(y, u) = d - 3$ and D_2^d is a clique, $\partial(y, \gamma) \le d - 2$. So we get $\partial(y, z) \le d - 1$, which contradicts $z \in \Gamma_d(y)$.

Case 2. $\partial(z, \delta) \leq 1$.

There is $v \in D_d^2$ such that $\partial(\delta, v) = d - 4$ and there is $w \in D_d^2$ such that $\partial(y, w) = 1$. As D_d^2 is a clique, $\partial(y, z) \le d - 1$. This is a contradiction.

Lemma 4.4 d = 3.

Proof: Suppose $d \ge 4$. Take $x \in D_{d-2}^2$. If $b_{d-2} > c_2$, then we can take an edge $x \sim z$ such that $z \in D_{d-1}^2$. By Lemma 4.1(1) $b_2 \ge c_{d-1}$. So

$$e(z, D_{d-1}^3) + e(z, D_{d-2}^3) \ge e(z, D_{d-2}^3) + e(z, D_{d-2}^2),$$
$$e(z, D_{d-1}^3) \ge e(z, D_{d-2}^2) \ge e(z, x) = 1.$$

Hence we can take an edge $z \sim y$ such that $y \in D_{d-1}^3$. So $\partial(x, y) = 2$, which contradicts Lemma 4.3. We may assume $b_{d-2} = c_2$. By Lemma 4.1 (2), $c_2 = b_{d-2} \ge c_3$. Therefore from Theorem 5.4.1 of [5] we get $c_3 = 1$. This contradicts Lemma 3.5.

Figure 8.

5. Proof of Theorem 1.1

In the following we may assume d = 3. The intersection diagram becomes as in Fig. 8.

Lemma 5.1 For every γ in D_1^2 , $\Gamma_3(\alpha) \cap \Gamma_3(\gamma) \subseteq D_2^3$. In particular $p_{33}^2 \leq p_{32}^3$, and the equality holds if and only if $b_2 = c_3$.

Proof: Take $\gamma \in D_1^2$. Since $\gamma \sim \beta$ and $D_1^3 \subseteq \Gamma_1(\beta)$, we get

$$\Gamma_3(\alpha) \cap \Gamma_3(\gamma) \subseteq D_2^3.$$

Therefore

$$p_{33}^2 = |\Gamma_3(\alpha) \cap \Gamma_3(\gamma)| \le |D_2^3| = p_{32}^3.$$

Since $\frac{p_{32}^3}{p_{33}^2} = \frac{k_2}{k_3} = \frac{c_3}{b_2}$,

$$p_{33}^2 = p_{32}^3$$
 if and only if $b_2 = c_3$.

Lemma 5.2 For every x in D_3^2 , $\Gamma_3(\alpha) \cap \Gamma_1(x) = D_2^3$. In particular $b_2 = \kappa_2$.

Proof: For any $x \in D_3^2$,

$$\Gamma_3(\alpha) \cap \Gamma_1(x) \subseteq D_2^3$$

By way of contradiction, suppose there is $y \in D_2^3$ such that $x \not\sim y$ (see Fig. 9).

Since D_2^3 is a clique,

$$\Gamma_3(\alpha) \cap \Gamma_1(x) \subseteq \Gamma_1(y).$$

So we know

$$\partial(x, y) = 2.$$

Take $z \in \Gamma_3(x) \cap \Gamma_3(y)$. Since the height $h = 2, z \notin \Gamma_3(\alpha) \cup \Gamma_3(\beta)$. So $\partial(\alpha, z) = 2$ or $\partial(\beta, z) = 2$. We may assume

$$\partial(\alpha, z) = 2.$$

Figure 9.

From Lemma 3.4(1), $\Gamma_3(z)$ is geodetically closed. Since $x, y \in \Gamma_3(z)$ with $\partial(x, y) = 2$ and D_2^3 is a clique,

$$\Gamma_{3}(z) \supseteq (\Gamma_{1}(x) \cap \Gamma_{1}(y)) \cup \{y\} \cup \{x\}$$
$$\supseteq (\Gamma_{3}(\alpha) \cap \Gamma_{1}(x)) \cup \{y\}.$$

So

$$\Gamma_3(\alpha) \cap \Gamma_3(z) \supseteq (\Gamma_3(\alpha) \cap \Gamma_1(x)) \cup \{y\}.$$

Claim 1 $b_2 = c_3$.

Suppose there is some $\gamma \in D_2^3$ such that $\gamma \notin \Gamma_3(\alpha) \cap \Gamma_3(z)$. Then $\partial(z, \gamma) = 2$ because D_2^3 is a clique and $\partial(z, \gamma) = 3$. So

$$\Gamma_3(z) \cap \Gamma_1(\gamma) \supseteq ((\Gamma_3(\alpha) \cap \Gamma_1(x)) \cup \{y\}) \cap \Gamma_1(\gamma)$$

= $(\Gamma_3(\alpha) \cap \Gamma_1(x)) \cup \{y\}.$

In this case

$$b_2 \ge b_2 + 1$$
,

which is impossible. Hence we get

$$\Gamma_3(\alpha) \cap \Gamma_3(z) \supseteq D_2^3$$
 i.e. $p_{33}^2 \ge p_{32}^3$.

From Lemma 5.1, we get

$$b_2 = c_3$$
.

By Claim 1, for any $\delta \in D_3^2$,

$$e(\delta, D_2^3) = b_2 = c_3 = e(\delta, D_2^3) + e(\delta, D_2^2).$$

So we get $e(\delta, D_2^2) = 0$. Hence we have

$$e(D_3^2, D_2^2) = 0.$$

Figure 10.

Therefore the intersection diagram becomes as in Fig. 10.

Claim 2 $D_2^2 \neq \emptyset$.

Suppose $D_2^2 = \emptyset$. Then for any $u \in D_2^1$,

$$b_1 = e(u, D_1^2) = c_2.$$

By Claim 1, $c_3 = b_2 \le b_1 = c_2$. Hence, by Theorem 5.4.1 of [5], we get $c_3 = 1$. This contradicts Lemma 3.5.

By Claim 2, take $\epsilon \in D_2^2$, then

$$c_3 = b_2 = e(\epsilon, D_1^3) \le e(\epsilon, D_1^3) + e(\epsilon, D_1^2) = c_2.$$

Hence by Theorem 5.4.1 of [5], we get

$$c_3 = 1.$$

This contradicts Lemma 3.5. Therefore we get

$$\Gamma_3(\alpha) \cap \Gamma_1(x) = D_2^3.$$

Lemma 5.3 $2p_{33}^1 = \kappa_1 + p_{33}^2 + 1.$

Proof: Take any $x \in D_3^2$. Then by Lemma 5.2,

$$\Gamma_3(\alpha) \cap \Gamma_1(x) = D_2^3.$$

Take any $y \in D_3^1$ such that $x \sim y$ (see Fig. 11). Then

$$\Gamma_2(\mathbf{y}) \supseteq D_2^3$$
.

Claim 1 $\Gamma_3(x) \subseteq D_2^1 \cup D_1^2 \cup D_0^3 \cup D_0^3, \ \Gamma_3(y) \subseteq D_2^2 \cup D_1^2 \cup D_1^3 \cup D_0^3.$

Since $\Gamma_1(x) \supseteq D_2^3$ and the height h = 2, we get

$$\Gamma_3(x) \subseteq D_2^1 \cup D_2^2 \cup D_1^2 \cup D_1^3 \cup D_0^3$$

Figure 11.

So we know

$$\Gamma_3(x) \cap \Gamma_2(\beta) = \Gamma_3(x) \cap \left(D_2^1 \cup D_2^2\right),$$

$$\Gamma_3(x) \cap \Gamma_1(\alpha) = \Gamma_3(x) \cap D_2^1.$$

Since $\partial(x, \alpha) = 2$, by Lemma 5.2,

$$\kappa_2 = b_2 = |\Gamma_3(x) \cap \Gamma_1(\alpha)| = \left| \Gamma_3(x) \cap D_2^1 \right|.$$

Since $\kappa_2 = |\Gamma_3(x) \cap \Gamma_2(\beta)| = |\Gamma_3(x) \cap (D_2^1 \cup D_2^2)|$, we get
 $\Gamma_3(x) \cap D_2^2 = \phi.$

Therefore

$$\Gamma_3(x) \subseteq D_2^1 \cup D_1^2 \cup D_1^3 \cup D_0^3.$$

 $\Gamma_2(y) \supseteq D_2^3$ and $y \sim \alpha$, hence we get

$$\Gamma_{3}(y) \subseteq D_{2}^{2} \cup D_{1}^{2} \cup D_{1}^{3} \cup D_{0}^{3}.$$

Claim 2 $\Gamma_3(y) \cap D_1^2 \subseteq \Gamma_3(y) \cap \Gamma_3(x).$

Let $\gamma \in \Gamma_3(y) \cap D_1^2$. By Lemma 5.1, there is $\delta \in \Gamma_3(\alpha) \cap \Gamma_3(\gamma)$ such that $\delta \in D_2^3$. Then $x \sim \delta$. From Lemma 3.4(1), $\Gamma_3(\gamma)$ is geodetically closed. Since $y, \delta \in \Gamma_3(\gamma)$ with $\partial(y, \delta) = 2$ and $y \sim x \sim \delta$, we get $x \in \Gamma_3(\gamma)$. Hence $\gamma \in \Gamma_3(y) \cap \Gamma_3(x)$.

Claim 3 $\Gamma_3(\alpha) \cap \Gamma_3(x) \subseteq \Gamma_3(y)$.

Take any $\epsilon \in \Gamma_3(\alpha) \cap \Gamma_3(x)$. Since $\alpha, x \in \Gamma_3(\epsilon)$ with $\partial(\alpha, x) = 2$, $\alpha \sim y \sim x$ and $\Gamma_3(\epsilon)$ is geodetically closed, we get $y \in \Gamma_3(\epsilon)$. Hence $\epsilon \in \Gamma_3(y)$.

Claim 4 $\Gamma_3(y) \cap (D_1^2 \cup D_1^3 \cup D_0^3) = \Gamma_3(y) \cap (\Gamma_3(\alpha) \cup \Gamma_3(x)).$

By Claim 2, $\Gamma_3(y) \cap D_1^2 \subseteq \Gamma_3(y) \cap \Gamma_3(x)$. Since $D_1^3 \cup D_0^3 \subseteq \Gamma_3(\alpha)$, $\Gamma_3(y) \cap (D_1^3 \cup D_0^3) \subseteq \Gamma_3(y) \cap \Gamma_3(\alpha)$. Hence

$$\Gamma_3(y) \cap \left(D_1^2 \cup D_1^3 \cup D_0^3\right) \subseteq \Gamma_3(y) \cap (\Gamma_3(\alpha) \cup \Gamma_3(x)).$$

On the other hand, take any $u \in \Gamma_3(y) \cap (\Gamma_3(\alpha) \cup \Gamma_3(x))$. If $u \in \Gamma_3(y) \cap \Gamma_3(\alpha)$, then by Claim 1, $u \in \Gamma_3(y) \cap (D_1^3 \cup D_0^3)$. If $u \in \Gamma_3(y) \cap \Gamma_3(x)$, then $u \in \Gamma_3(y) \cap (D_1^2 \cup D_1^3 \cup D_0^3)$. Therefore we get the claim.

Since $\alpha \sim y \sim x$ and $\partial(\alpha, x) = 2$, by Claim 3,

$$\begin{aligned} |\Gamma_3(y) \cap (\Gamma_3(\alpha) \cup \Gamma_3(x))| \\ &= |\Gamma_3(y) \cap \Gamma_3(\alpha)| + |\Gamma_3(y) \cap \Gamma_3(x)| - |\Gamma_3(\alpha) \cap \Gamma_3(x)| \\ &= 2p_{33}^1 - p_{33}^2. \end{aligned}$$

Since $\partial(y, \beta) = 3$,

$$\begin{aligned} \kappa_1 &= |\Gamma_3(y) \cap \Gamma_1(\beta)| \\ &= \left| \Gamma_3(y) \cap \left(D_1^2 \cup D_1^3 \right) \right| \\ &= \left| \Gamma_3(y) \cap \left(D_1^2 \cup D_1^3 \cup D_0^3 \right) - \{\beta\} \right|. \end{aligned}$$

Hence by Claim 4, we get

$$\kappa_1 = 2p_{33}^1 - p_{33}^2 - 1.$$

Lemma 5.4 $p_{33}^2 = 1$.

Proof: By way of contradiction, suppose $p_{33}^2 \ge 2$. Take $x \in D_3^2$. Since $\beta \in \Gamma_3(\alpha) \cap \Gamma_3(x)$, there is $\gamma \in \Gamma_3(\alpha) \cap \Gamma_3(x) - \{\beta\}$. From Lemma 5.2, $\Gamma_1(x) \supseteq D_2^3$. Hence $\gamma \in D_1^3$ and $e(\gamma, D_2^3) = 0$.

Claim 1 $\kappa_1 \ge 2\kappa_2 - 1$.

Since $b_1 = e(\gamma, D_2^2)$, there is $\delta \in D_2^2$ such that $\gamma \sim \delta$. Suppose there is $y \in D_2^3$ such that $\delta \sim \gamma$. As $e(\gamma, D_2^3) = 0$, $\partial(\gamma, \gamma) = 2$. Since $\gamma, \gamma \in \Gamma_3(\alpha)$ and $\Gamma_3(\alpha)$ is geodetically closed, we get $\delta \in \Gamma_3(\alpha)$. But this contradicts $\delta \in D_2^2$. So

$$e(\delta, D_2^3) = 0.$$

Hence

$$b_2 = e(\delta, D_1^3) \le e(\delta, D_1^3) + e(\delta, D_1^2) = c_2.$$

From Lemma 3.4(3) and 5.2,

$$\kappa_2 = b_2 \le c_2 = \kappa_1 - \kappa_2 + 1.$$

Since $e(\gamma, D_2^3) = 0$, we can take $\epsilon \in D_2^3$ such that $\partial(\epsilon, \gamma) = 2$ (see Fig. 12).

Claim 2 $\Gamma_3(\gamma) \subseteq D_3^0 \cup D_3^1 \cup D_3^2 \cup D_2^2 \cup D_2^1, \Gamma_3(\epsilon) \subseteq D_3^0 \cup D_3^1 \cup D_2^1 \cup D_1^2.$

By an argument similar to that in the Proof of Lemma 5.3, we have the claim.

Claim 3 $\Gamma_3(\gamma) \cap \Gamma_3(\epsilon) \cap D_2^1 = \emptyset$.

Figure 12.

Suppose there is $u \in \Gamma_3(\gamma) \cap \Gamma_3(\epsilon) \cap D_2^1$. Since $\gamma, \epsilon \in \Gamma_3(\alpha) \cap \Gamma_3(u)$ with $\partial(\epsilon, \gamma) = 2$ and $\Gamma_3(\alpha) \cap \Gamma_3(u)$ is geodetically closed,

$$(\Gamma_1(\gamma) \cap \Gamma_1(\epsilon)) \cup \{\gamma\} \cup \{\epsilon\} \subseteq \Gamma_3(\alpha) \cap \Gamma_3(u).$$

Since $e(\gamma, D_2^3) = 0$,

$$(\Gamma_1(\gamma) \cap \Gamma_1(\epsilon)) \cup \{\gamma\} \subseteq \Gamma_3(u) \cap D_1^3 \subseteq \Gamma_3(u) \cap \Gamma_1(\beta).$$

As $\partial(\gamma, \epsilon) = \partial(u, \beta) = 2$, we get

$$c_2+1\leq b_2.$$

From Lemma 3.4(3) and 5.2,

$$\kappa_1-\kappa_2+2\leq\kappa_2.$$

This contradicts Claim 1.

Claim 4 $p_{33}^2 + c_2 + 1 \le p_{33}^1$.

From Claim 2 and 3,

$$\Gamma_3(\gamma) \cap \Gamma_3(\epsilon) \subseteq \Gamma_3(\beta) \cap \Gamma_3(\gamma).$$

Since $\alpha, x \in \Gamma_3(\beta) \cap \Gamma_3(\gamma)$ with $\partial(\alpha, x) = 2$ and $\Gamma_3(\beta) \cap \Gamma_3(\gamma)$ is geodetically closed,

 $(\Gamma_1(\alpha) \cap \Gamma_1(x)) \cup \{x\} \cup \{\alpha\} \subseteq \Gamma_3(\beta) \cap \Gamma_3(\gamma).$

As $\alpha \in \Gamma_3(\gamma) \cap \Gamma_3(\epsilon)$,

```
(\Gamma_3(\gamma) \cap \Gamma_3(\epsilon)) \cup ((\Gamma_1(\alpha) \cap \Gamma_1(x)) \cup \{x\}) \subseteq \Gamma_3(\beta) \cap \Gamma_3(\gamma).
```

By Lemma 5.2, $x \sim \epsilon$. So

 $\Gamma_3(\epsilon) \cap ((\Gamma_1(\alpha) \cap \Gamma_1(x)) \cup \{x\}) = \emptyset.$

So we get

```
(\Gamma_3(\gamma) \cap \Gamma_3(\epsilon)) \cap ((\Gamma_1(\alpha) \cap \Gamma_1(x)) \cup \{x\}) = \emptyset.
```

Therefore as $\partial(\gamma, \epsilon) = \partial(\alpha, x) = 2$ and $\beta \sim \gamma$,

$$|(\Gamma_3(\gamma) \cap \Gamma_3(\epsilon)) \cup ((\Gamma_1(\alpha) \cap \Gamma_1(x)) \cup \{x\})| \le |\Gamma_3(\beta) \cap \Gamma_3(\gamma)|,$$
$$p_{33}^2 + c_2 + 1 \le p_{33}^1.$$

From Claim 4 and Lemma 5.3,

$$2(p_{33}^2 + c_2 + 1) \le \kappa_1 + p_{33}^2 + 1,$$

$$2(p_{33}^2 + \kappa_1 - \kappa_2 + 2) \le \kappa_1 + p_{33}^2 + 1,$$

$$p_{33}^2 \le -\kappa_1 + 2\kappa_2 - 3.$$

From Claim 1, we get

$$p_{33}^2 \leq -2$$

This is impossible. Hence we get

$$p_{33}^2 = 1.$$

Lemma 5.5 The following hold. (1) $2p_{33}^1 = \kappa_1 + 2$, (2) $p_{33}^1(\kappa_2^2 + \kappa_1) = \kappa_1(1 + \kappa_1 + \kappa_2)$.

Proof:

(1) It is clear from Lemma 5.3 and 5.4.

(2) It follows from Lemma 5.4 that

$$k_2 = p_{33}^2 k_2 = p_{32}^3 k_3 = \kappa_2 (1 + \kappa_1 + \kappa_2).$$

Since $c_3(1 + \kappa_1 + \kappa_2) = c_3 k_3 = b_2 k_2 = \kappa_2^2 (1 + \kappa_1 + \kappa_2),$

$$c_3=\kappa_2^2.$$

Hence

$$k=c_3+a_3=\kappa_2^2+\kappa_1.$$

Since $p_{33}^1 k = p_{31}^3 k_3$, we get

$$p_{33}^1(\kappa_2^2 + \kappa_1) = \kappa_1(1 + \kappa_1 + \kappa_2).$$

Proof of Theorem 1.1. From Lemma 5.5,

$$(\kappa_1 + 2)(\kappa_2^2 + \kappa_1) = 2\kappa_1(1 + \kappa_1 + \kappa_2).$$

$$(\kappa_1 + 2)\kappa_2^2 - 2\kappa_1\kappa_2 - \kappa_1^2 = 0.$$

Hence we get

$$\kappa_2 = \frac{\kappa_1 + \kappa_1 \sqrt{\kappa_1 + 3}}{\kappa_1 + 2}.$$

Since κ_2 is a positive integer, by Lemma 3.4(2), $\sqrt{\kappa_1 + 3}$ is a positive integer at least 3. Let $n = \sqrt{\kappa_1 + 3}$. Then

$$\kappa_2 = \frac{(n^2 - 3)(n+1)}{n^2 - 1} = n + 1 - \frac{2}{n-1}.$$

Hence we get n = 3 and

$$\kappa_1 = 6, \quad \kappa_2 = 3.$$

Therefore we know all the intersection numbers of Γ and they are the same as those of J(8, 3). By the uniqueness (see [7] and [10]), we get

$$\Gamma \simeq J(8,3).$$

Appendix

The next theorem was proved by A. Hiraki and H. Suzuki.

Theorem Let Δ be a complete multipartite graph $K_{\tau \times s}$ with $\tau \geq 2$, $s \geq 2$. Then there is no distance-regular graph Γ with diameter $d \geq 3$ such that $\Gamma_d(\alpha) \simeq \Delta$ for every vertex α in Γ .

Proof: The intersection array of Δ is as follows.

$$\iota(\Delta) = \left\{ \begin{array}{rrr} * & 1 & (\tau - 1)s \\ 0 & (\tau - 2)s & 0 \\ (\tau - 1)s & s - 1 & * \end{array} \right\}.$$

Suppose there exists a graph Γ satisfying the hypothesis. Take any $\alpha, \beta \in \Gamma$ with $\partial(\alpha, \beta) =$ d. Then $p_{d1}^d = |\Delta_1(\beta)| = (\tau - 1)s$, $p_{d2}^d = |\Delta_2(\beta)| = s - 1$ and $k_d = |\Delta| = \tau s$. By an argument similar to that in Section 3, the intersection diagram becomes as in Fig. 13. Since $\Delta_2(\beta)$ is a coclique, D_2^d is a coclique. For any $x \in D_1^d$ and $y \in D_2^d$, we know $e(x, D_1^d) = (\tau - 2)s$ and $e(y, D_1^d) = (\tau - 1)s$.

Claim 1 For every $\alpha, \gamma \in \Gamma$ with $\partial(\alpha, \gamma) = d - 1$, $\Gamma_d(\alpha) \cap \Gamma_1(\gamma)$ is a coclique.

Figure 13.

Figure 14.

Since $p_{d_3}^{d-1} \neq 0$, we can take $\beta \in \Gamma_d(\alpha) \cap \Gamma_3(\gamma)$. Then $\gamma \in D_3^{d-1}$. As $\Gamma_d(\alpha) \cap \Gamma_1(\gamma) \subseteq D_2^d$ and D_2^d is a coclique, we get the claim.

Claim 2 $e(D_1^{d-1}, D_1^d) = 0, a_1 = (\tau - 2)s.$

Suppose there is an edge $\gamma \sim \delta$ such that $\gamma \in D_1^{d-1}$, $\delta \in D_1^d$. Then $\Gamma_d(\alpha) \cap \Gamma_1(\gamma)$ contains an edge $\beta \sim \delta$, which contradicts Claim 1.

For any $x \in D_1^d$,

$$a_1=e(x, D_1^d)=(\tau-2)s.$$

Claim 3 For every edge $\alpha \sim \gamma$, $\Gamma_d(\alpha) \cap \Gamma_d(\gamma)$ is a clique. $p_{dd}^1 = \tau$, $k = (\tau - 1)s^2$.

Take $\beta, \delta \in \Gamma_d(\alpha) \cap \Gamma_d(\gamma)$. Then $\gamma \in D_d^1$. For any $u \in D_2^d$, there is $v \in D_d^2$ such that $\partial(u, v) = d - 2$ (see Fig. 14). Since $\gamma \sim v$, $\partial(\gamma, u) = d - 1$. So $\delta \in D_1^d$. Hence

 $\beta \sim \delta$.

Therefore $\Gamma_d(\alpha) \cap \Gamma_d(\gamma)$ is a clique. Since the size of the maximal cliques of $\Gamma_d(\alpha) \simeq \Delta$ is τ ,

$$p_{dd}^1 \leq \tau$$
.

Suppose $p_{dd}^1 \leq \tau - 1$, then

$$k = \frac{k_d p_{d1}^d}{p_{dd}^1} \ge \tau s^2 > \tau s(s-1).$$

Since $p_{dd}^2 \ge 1$,

$$k_2 = \frac{k_d p_{d2}^d}{p_{dd}^2} \le \tau s(s-1).$$

So $k > k_2$, which is impossible (see Lemma 5.1.2 of [5]). Hence we get $p_{dd}^1 = \tau$.

Claim 4 For every $\alpha \in \Gamma$ and every edge $\beta \sim \gamma$ in $\Gamma_d(\alpha)$, $\Gamma_1(\beta) \cap \Gamma_1(\gamma) \subseteq \Gamma_d(\alpha)$.

Since $\gamma \in D_1^d$, the claim follows from Claim 2.

Claim 5
$$\tau = 2, p_{dd}^1 = 2, a_1 = 0, k = s^2, b_1 = s^2 - 1, k_2 \le 2s(s - 1).$$

Since
$$\tau \ge 2$$
, there is an edge $\beta \sim \delta$ in $\Gamma_d(\alpha) \cap \Gamma_d(\gamma)$ for $\alpha \sim \gamma$. From Claim 4,

 $(\Gamma_1(\beta) \cap \Gamma_1(\delta)) \cup \{\beta\} \cup \{\delta\} \subseteq \Gamma_d(\alpha) \cap \Gamma_d(\gamma).$

In this case

$$a_1 + 2 \le p_{dd}^1$$

$$(\tau - 2)s + 2 \le \tau.$$

Since $\tau \ge 2$ and $s \ge 2$, we have

$$\tau = 2$$
.

So we get the claim.

Claim 6 d = 3.

Since $kb_1 = k_2c_2$, Claim 5 implies that

$$\frac{s^2(s^2-1)}{c_2} = k_2 \le 2s(s-1).$$

So

$$k = s^2 < s(s+1) \le 2c_2.$$

Since $b_2 \le b_2 + a_2 = k - c_2 < c_2$, we get d = 3. By Claim 6, the intersection diagram is as in Fig. 15.

By counting $e(D_2^3, D_1^2)$,

$$|D_1^2|(b_2 - 1) = |D_2^3|(c_2 - s),$$

$$(s^2 - s)(b_2 - 1) = (s - 1)(c_2 - s),$$

$$sb_2 = c_2.$$

Since $kb_1b_2 = k_3c_3c_2$,

$$s^{2}(s^{2}-1)b_{2} = 2s(s^{2}-s)c_{2},$$

 $(s+1)b_{2} = 2c_{2}.$

Figure 15.

Hence we get

$$(s+1)b_2 = 2sb_2$$

Since $s \ge 2$, this is impossible. Therefore we get the assertion.

Acknowledgment

I would like to thank Prof. H. Suzuki for his advice on this paper. Some of the proofs in this paper were shortened thorough the discussions with him.

References

- 1. E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin-Cummings, California, 1984.
- E. Bannai and T. Ito, "Current researches on algebraic combinatorics," Graphs and Combin. 2 (1986), 287– 308.
- 3. N.L. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1974.
- 4. A. Boshier and K. Nomura, "A remark on the intersection arrays of distance regular graphs," J. Combin. Theory Ser. B. 44 (1988), 147-153.
- 5. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer, Berlin-Heidelberg, 1989.
- A.D Gardiner, C.D. Godsil, A.D. Hensel, and Gordon F. Royle, "Second neighbourhoods of strongly regular graphs," Discrete Math. 103 (1992), 161-170.
- 7. A. Neumaier, "Characterization of a class of distance-regular graphs," J. Reine Angew. Math. 357 (1985), 182-192.
- 8. H. Suzuki, "Bounding the diameter of a distance regular graph by a function of k_d ," Graphs and Combin. 7 (1991), 363–375.
- 9. H. Suzuki, "Bounding the diameter of a distance regular graph by a function of k_d , II," J. Algebra 169 (1994), 713-750.
- 10. P. Terwilliger, "The Johnson graph J(d, r) is unique if $(d, r) \neq (2, 8)$," Discrete Math. 58 (1986), 175–189.