
is called the intersection array of F.
The following are basic properties of intersection numbers, which we use implicitly in

this paper.

They are called the intersection numbers of F, and

In particular k = k1 is the valency of F. Let

where l = d(u, v). Let

F is said to be distance-regular if the cardinality of the set F i (u ) 0 FJ (v) depends only on
the distance between « and v. In this case we write
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Abstract Let r be a distance-regular graph with diameter at least three and height h = 2, where A — max{i : PJ.
= 0}. Suppose that for every or in r and B in rD(a), the induced subgraph on rD(a) n T2(B) is a clique. Then P
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1. Introduction

Let F be a connected undirected simple finite graph. We identify F with the set of vertices.
For vertices u and v, let 3(U, v) denote the distance between u and v, i.e. the length of a
shortest path from u to v in F. Let d = d(T) denote the diameter of F, i.e. the maximal
distance of two vertices in F. We set
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A graph is said to be strongly regular if it is distance-regular with diameter 2.
A graph is called a clique when any two of its vertices are adjacent. A coclique is a graph

in which no two vertices are adjacent.
Information about the general theory of distance-regular graphs is given in [ 1 ], [3] and [5].
Let X be a finite set of cardinality v and V = {T c X : \T\ = e}. The Johnson graph

J(v, e) is a graph whose vertex set is V and two vertices x and v are adjacent if and only
if \x n y| = e — 1. It is well known that J(v, e) is a distance-regular graph.

In this paper we identify a subset A of T with the induced subgraph on A and define the
following terminology.

A subgraph A of F is called geodetically closed if for all vertices x and y in A with
d ( x , y ) = i ,ri-1(x)nri(y)is in A. For subsets A and B of F, let d ( A , B) =min{a(x, y) :
x e A, y e B}. Let h = max{i : pd

di = 0} be the height of F.
A distance-regular graph F is of height 0 if and only if F is an antipodal 2-cover, and is

of height 1 if and only if F^a) is a clique for every a in F. So if the height of F is 1, F is
the distance-2 graph of a generalized odd graph (see Proposition 4.2.10 of [5]). This paper
is concerned with a distance-regular graph of height 2.

Theorem 1.1 Let F be a distance-regular graph with diameter d at least 3 and height
h = 2. Suppose that for every a in F and B in rd(a), Fd(a) Pi T2(B) is a clique. Then
d = 3 and F is isomorphic to 7(8, 3).

In [8] and [9] H. Suzuki showed that d(T) is bounded by a function depending only on kd

if Fd(a) is not isomorphic to a coclique. Hence if Td(a) is isomorphic to a given strongly
regular graph A, then there are only finitely many possibilities for F.

On the other hand if F is isomorphic to Hamming graphs H(2, q) (q > 3), Johnson
graphs J(v, 2) (u > 6) or J(2d + 2, d) (d > 2), then T d ( a ) is isomorphic to a strongly
regular graph.

Is it possible to characterize these distance-regular graphs by the antipodal structures
Fd(a)?

Let A be a graph with diameter 2. Suppose Fd(a) is isomorphic to A for every a in F.
Then the height of F becomes 2. It is easy to see that in this situation A is distance-degree
regular, i.e. \A1(B)\ = p$}, |A2(B)| = pd

d2 do not depend on the choice of B in A.
Let A be a distance-degree regular graph with diameter 2 such that A2(/3) is a clique

for every ft in A. The theorem above shows that if there exists a distance-regular graph
F of diameter d at least 3 such that F d ( a ) is isomorphic to A for every a in F, then F is
isomorphic to 7(8, 3) and A is isomorphic to J(5, 2).

We note that there are many distance-degree regular graphs of diameter 2 such that
A2(B) is a clique for every ft in A. The complete bipartite graphs KSiS, the pentagon and
the complements of strongly regular graphs with a\ = 0 are in this class.

It is not hard to construct graphs in this class which are not strongly regular. For example,
a clique extension A of a graph A in this class is also in it. By a clique extension we mean



if there is possibility of existence of edges between D'j and Df, and we erase the line when

we know there is no edge between D'j and Df.
In the following e(A, B) denotes the number of edges between subsets A and B of P,

and e ( { y ] , A) = e(y, A). We write a ~ /3, when ft is in T1 (a), and a ~ B, otherwise.
The following are straightforward and useful for determining the form of the intersection

diagram.
For each y E Di, we have the following.

An intersection diagram of rank d with respect to (a, B) is the collection {Di}i,j with

lines between Dj's and Df's. We draw a line

It is easy to see the following.

the following. Let Ku(u e A) be finite disjoint sets of the same size. A is a graph whose
vertex set is Uue^K" and two distinct vertices x e Ku and y e Kv are adjacent if and only
if u = v or u and v are adjacent in A.

Corollary 1.2 Let T be a distance-regular graph with diameter d at least 3, and A
a strongly regular graph such that A2(B) is a disjoint union of cliques for every ft in
A. I f T d ( a ) is isomorphic to A for every a in P, then d = 3 and P is isomorphic to
J(8,3).

Proof: Suppose A2(B) is not a clique. Then it follows from Lemma 3.1 of [6] that A
is a complete multipartite graph Krxs. Then by an unpublished work of A. Hiraki and H.
Suzuki (see Appendix), we get d < 2. So we may assume that A 2 ( B ) is a clique. Now the
assertion follows from Theorem 1.1. D

2. Intersection diagram

In this section we shall introduce the intersection diagrams of rank d which we use as our
main tool.

Let a, B E P with d(a, B) = d. Set

59ON DISTANCE-REGULAR GRAPHS WITH HEIGHT TWO



60 TOMIYAMA

figure 1.

Figure 1 is an example of the intersection diagram of rank d = d ( T ) with d = 4.
For the properties and applications of intersection diagrams, see for example [2] and [4].

3. Preliminaries

In this section we determine the shape of the intersection diagram under the hypothesis of
Theorem 1.1, and prove some basic lemmas.

Suppose there is a vertex x e Dj, for some i, j with i > 3, j > 3, i + j > d + 3. Then
there is a vertex y € Td(a) D d - i (x) . Since B, y e rd(a) and the height h = 2,

On the other hand,

which is impossible. So

Therefore the intersection diagram becomes as in Fig. 2.

Figure 2.



Figure 3.

Lemma 3.3 e(Di
d
+_]_t, Offi = 0 for 0 < i < d - 2.

So y, 5 e D2. This contradicts that D2 is a clique. D

Lemma 3.2 3(D2_2, D2) > d - 1.

Proof: Suppose there are vertices u e D2_2 and v e D2 such that 3(u, v) < d — 2
(see Fig. 3).

We can take w e Fd(a) n Fd(u) because p2
dd = 0. Since B, v, w e Fd(a) with

a(b,v) = 2, by Lemma 3.1, we have d(w, B) = 1 or d(w, v) = 1. Since 3(a, b) =d-2
and 3(u, v) < d - 2, we get a(u, w) < d - 1. This contradicts w e T d ( u ) . D

Let K1 = pd
dl = ad and K2 = p$2- Then kd = 1 + K1 + k2. Since D2 is a clique, for any

i € D ^ , « ( * , Z ) ^ ) = K 2 - l .

Lemma 3.1 For every a in F and every B, y,8 in rd(a), 9(B, y) + d ( y , S) + d(8, B) < 5.

Proof: Suppose there are vertices B, y, S e Fd (a) such that
d ( B , y) + d ( y , S) + d(S, B) > 6. Since the height h = 2,

Since kip'd d_i+2 = kdp^d_i+2 + 0, we have

Since />,2,_2 ^ 0, we get

Take any y e Dj, then
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Figure 4.

Proof: Suppose not. Then there is an edge x ~ y such that x e £>£!•_[, y e D^. If
i > 1, we can take u e D2_2 with 9(u, x) = i — 1 and v e D2 with d(y, v) = d — i — 2
(see Fig. 3). We get 3(u, v) = d-2, which contradicts Lemma 3.2. Sincee(Dd~1, D2) = 0,
we get e(D]_,, D^) = 0 by symmetry. D

By Lemma 3.3, the intersection diagram becomes as in Fig. 4.

Lemma 3.4 The following hold.

Proof:

(1) Let B, y e Td(a) with 3(B, y) = i. Since the height h = 2, we only consider the case
i = 2. Then y E D2. Since e(Dd-1, D2) = 0,

(2) For any y e D2, there is S E D1 such that y ~ 5 ~ B. So

(3) Take y e D|, then K1 = ad = e(y, Dd) + e(y, D1) = K2 - 1 + e(y, £>f). From
Lemma 3.3, we get

Lemma 3.5 03 ̂  1.

Proof: Suppose 03 = 1. Then for any * € D3~ l ,

Hence we have



Hence F is locally pentagon and we know F is isomorphic to the icosahedron (see
Proposition 1.1.4 of [5]). This contradicts k2 = 10. D

So we have

As k < ki (see Lemma 5.1.2 of [5]),

Since b1 = c2 = 1, we get a1 = 0 (see Proposition 5.5.1 of [5]). So we have K1 = 2 and

So for any two vertices u, v € Fd(a), the number of vertices which are adjacent to u and v
in Fd(a) is c2 if u ~ v and a1 if u ~ v. Hence Fd(a) becomes strongly regular.

We use bar to distinguish the parameters of A = Fd(a) from those of F. Then k = K1 ,
k2 = K2.

Since C3, = c2 = 1, Lemma 3.4(3) implies that K1 = K2. Hence the intersection array of
A becomes

Therefore the intersection diagram becomes as in Fig. 5.
For any y € D2 and any S € Dd, we get

So we get e(y, Dd) = 0. Hence we have

For any y e D1~',

Figure 5.
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4. The case d > 4

In this section we discuss the case d > 4 and prove this case does not occur.

Lemma 4.1 Suppose d > 4. Then the following hold.

Proof:

(1) Take y e D2, then

Suppose b2 = cd, then b2 = cd > Cd-1. So we may assume b2 < Cd. Then
e(G, Dd-1

2) = 0, so there is D E Dd-1
2 such that G ~ D (see Fig. 6).

Claim e(D, Dd-2
2) = 0.

Suppose for some x e Dd-2
2 such that x ~ D. Since there is y e D2d-2 such that

D(y x) = d — 4, we get D(y, G) = d — 2. This contradicts Lemma 3.2. Hence we get
e(D, Dd-2

2) = 0.
By Claim, we get

(2) Take u e D4
d-2 and argue similarly as in (1). D

Lemma 4.2 Suppose d > 4. Then for every x in D2d-2, there are G and D in F d ( x ) such
that G in Dd

2 and D in Dd-2
4.

Proof: Since p2
dd = 0, take G e F d ( a ) n F d ( x ) . Then D(B, G) > D(x, G) - d(x, B) = 2.

B, G e Fd(a) and the height h = 2, so D(B, G) = 2. Hence we get

Figure 6.



Hence we can take an edge z ~ y such that y e D3
d-1. So D(x,y) = 2, which contradicts

Lemma 4.3. We may assume bd-2 = c2. By Lemma 4.1 (2), C2 = bd-2 > C3. Therefore
from Theorem 5.4.1 of [5] we get C3 = 1. This contradicts Lemma 3.5. D

Lemma 4.3 Suppose d>4. Then D(D 2
d - 2 , D3

d-1) > 3.

Proof: Suppose there are x e D2
d-2, y e D3

d-1 such that d(x, y) = 2. Then there is
z e F d ( x ) n F d ( y ) . By Lemma 4.2, there are y, D e F d ( x ) such that G e Dd

2, D e Dd-2
4

(see Fig. 7). Since G, D, z e F d ( x ) with D(G, D) = 2, Lemma 3.1 implies that D(z, G) < 1
or D(z,D) < 1.

Case 1. D(z, G) < 1.

Since there is u e Dd
2 such that D(y, u) = d - 3 and Dd

2 is a clique, D(y, G) < d - 2. So
we get d ( y , z) < d — 1, which contradicts z e Fd(y).

Case 2. d(z,d) < 1.

There is v e D2
d such that D(D, v) = d — 4 and there is w e D2

d such that D(y, w) = 1. As
D2

d is a clique, D(y, z) < d — 1. This is a contradiction. D

Lemma 4.4 d = 3.

Proof: Suppose d > 4. Take x e D2
d-2. If bd-2 > C2. then we can take an edge x ~ z

such that z e D2
d-1. By Lemma 4.1(1) b2 >Cd-1. So

Since pd-2
d4 = 0, take D e F d ( x ) n F4(B). Then D(A, D) > d(x, D) - d(a, x) = d - 2.

Since Di
4 = P for i > d — 1, we get

Figure 7.
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Figure 8.

5. Proof of Theorem 1.1

In the following we may assume d = 3. The intersection diagram becomes as in Fig. 8.

Lemma 5.1 For every G in D2
1, F3(a) n F3(G) c D3

2. In particular p2
33 < p3

32, and the
equality holds if and only if b2 = C3.

Proof: Take G e D2
1. Since G ~ B and D3

1 c F 1 (B) , we get

Therefore

Lemma 5.2 For every x in D2
3, F3(a) n F1 (x) = D3

2. In particular b2 = K2.

Proof: For any x e D2
3,

By way of contradiction, suppose there is G e D3
2 such that x ~ y (see Fig. 9).

Since D3
2 is a clique,

So we know

Take z e F3(x) n F3(y). Since the height h = 2, z e F3 (a) U F3(B). So D(a, z) = 2 or
D(B, z) = 2. We may assume



So we get e(D, D2
2) = 0. Hence we have

By Claim 1, for any D e D2
3,

From Lemma 5.1, we get

which is impossible. Hence we get

In this case

Claim 1 b2 = C3.

Suppose there is some G e D3
2 such that G e F3(a) n F3(z). Then D(z, G) = 2 because

D3
2 is a clique and d(z, y) = 3. So

So

Figure 9.

From Lemma 3.4(1), F3(z) is geodetically closed. Since x, y e F3(z) with d(x, y) = 2
and D3

2 is a clique,
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Claim 1 F3(x) c D1
2 U D2

1 U D3
1 U D3

0, F3(y) c D2
2 U D2

1 U D3
1 U D3

0.

Since F 1 ( x ) D3
2 and the height h = 2, we get

Take any y e D1
3 such that x ~ y (see Fig. 11). Then

Lemma 5.3 2p1
33 = K1 + p2

33 + 1.

Proof: Take any x e D2
3. Then by Lemma 5.2,

This contradicts Lemma 3.5. Therefore we get

Hence by Theorem 5.4.1 of [5], we get

By Claim 1, C3 = b2 < b1 = C2. Hence, by Theorem 5.4.1 of [5], we get C3 = 1. This
contradicts Lemma 3.5.

By Claim 2, take e e D2
2, then

Figure 10.

Therefore the intersection diagram becomes as in Fig. 10.

Claim 2 D2
2 = 0.

Suppose D2
2 = 0. Then for any u e D1

2,
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Figure 11.

So we know

Since d(x, a) = 2, by Lemma 5.2,

Therefore

Claim 2 F3(y) n D2
1 c F3(y) n F 3 ( x ) .

Let G e F3(y) n D2
1. By Lemma 5.1, there is D e F3(a) n F3(G) such that D e D3

2.
Then x ~ D. From Lemma 3.4(1), F3(G) is geodetically closed. Since y, D e F3(G) with
D(y,D) = 2 and y ~ x ~ D, we get x e F3(G). Hence G e F3(y) n F3(x).

Claim 3 F3(a) n G3(x) c G3(y).

Take any e e F3(a) n F3(x). Since a, x e F3(e) with D(a,x) = 2, a ~ y ~ x and
F3(e) is geodetically closed, we get y e F3(e). Hence e E F3(y).

Claim 4 F3(y) n (D2
1 U D3

1 U D3
0) = F3(y) n (F3(a) U F3(x)).

By Claim 2, F3(y) n D2
1 c F3(y) n F3(x). Since D3

1 U D3
0 c F3(a),

F3(y) n (D3
1 U D3

0) c F3(y) n F3(a). Hence



Since e(G, D3
2) = 0, we can take e E D3

2 such that d(e, G) = 2 (see Fig. 12).

Claim 2 F3(G) c D0
3 U D1

3 U D2
3 U D2

2 U D1
2, F3(e) c D0

3 U D1
3 U D1

2 U D2
1.

By an argument similar to that in the Proof of Lemma 5.3, we have the claim.

Claim 3 F3(G) n F3(e) n D1
2 = 0.

From Lemma 3.4(3) and 5.2,

Hence

Lemma 5.4 p2
33 = 1.

Proof: By way of contradiction, suppose p2
33 > 2. Take x e D2

3. Since B e F3(a) n
F3(x), there is G e F3(a) n F3(x) - { B } . From Lemma 5.2, F1 (x) D D3

2. Hence G e D3
1

and e(G, D3
2) = 0.

Claim 1 K1 >2K 2 - 1.

Since b1 = e(G, D2
2), there is D E D2

2 such that G ~ D. Suppose there is y e D3
2 such

that D ~ y. As e(G, D3
2) = 0, 3(G, y) = 2. Since G, y E F3(a) and F3(a) is geodetically

closed, we get D E F3(a). But this contradicts D E D2
2. So

Hence by Claim 4, we get

Since D(y, B) = 3,

On the other hand, take any u e F3(y) n (F3(a) U F3(x)). If u e F3(y) n F3(a), then by
Claim l, u e F3(y) n (D3

1 u D3
0). If u e F3(y) n F3(x), then u e F3(y) n (D2

1 U D3
1 U D3

0).
Therefore we get the claim.

Since a ~ y ~ x and D(a, x) = 2, by Claim 3,
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Figure 12,

Suppose there is u E F3(x) n F3(e) H D1
2. Since G, E e F3(a) n F3(u) with D(e, G) = 2

and F3(a) n F3(u) is geodetically closed,

Since e(G, D3
2) = 0,

As D(G, e) = D(u, B) = 2, we get

From Lemma 3.4(3) and 5.2,

This contradicts Claim 1.

Claim 4 p2
33 + C2+ 1 < p1

33.

From Claim 2 and 3,

Since a, x e F3(B) n F3(G) with D(a, x) = 2 and F3(B) n F3(G) is geodetically closed,

As a e F3(G) n F3(e),

By Lemma 5.2, x ~ e. So

So we get



Hence we get

Proof of Theorem 1.1. From Lemma 5.5,

Since p1
33k = p3

31k3, we get

Hence

Lemma 5.5 The following hold.
(1) 2ph1

33 = K1 + 2,
(2) p1

33(K2
2 + K1) = k1(1 + K1 + K2).

Proof:

(1) It is clear from Lemma 5.3 and 5.4.
(2) It follows from Lemma 5.4 that

This is impossible. Hence we get

From Claim 1, we get

From Claim 4 and Lemma 5.3,

Therefore as d ( G , e) = d ( a , x) = 2 and B ~ G,
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Since K2 is a positive integer, by Lemma 3.4(2), S k1 + 3 is a positive integer at least 3. Let
n = Sk1 + 3. Then

Hence we get n = 3 and

Therefore we know all the intersection numbers of F and they are the same as those of
J(8, 3). By the uniqueness (see [7] and [10]), we get

Appendix

The next theorem was proved by A. Hiraki and H. Suzuki.

Theorem Let A be a complete multipartite graph Kr x s with T > 2, s > 2. Then there
is no distance-regular graph F with diameter d > 3 such that Fd(a) ~ A for every vertex
a in F.

Proof: The intersection array of A is as follows.

Suppose there exists a graph F satisfying the hypothesis. Take any a, B e F with D(a, B) =
d. Then P

d
d1 = |A1(B)| = (T - 1)s, pd

d2 = |A2(B)| = s - 1 and kd = |A| = Ts. By an
argument similar to that in Section 3, the intersection diagram becomes as in Fig. 13.

Since A2(B) is a coclique, Dd
2 is a coclique. For any x e Dd

1 and y e Dd
2, we know

e(x, Dd
1) = (T - 2)s and e(y, Dd

1) = (T - 1)s.

Claim 1 For every a, G E F with d(a, G) = d — 1, Fd(a) n F1(G) is a coclique.

Figure 13.



So k > k2. which is impossible (see Lemma 5.1.2 of [5]). Hence we get p1
dd = T.

Claim 4 For every a e F and every edge B ~ G in Fd(a), F1 (B) n F1 (G) c Fd(a).

Since p2
dd > 1,

Suppose p1dd < T — 1, then

Therefore Fd(a) n Fd(G) is a clique. Since the size of the maximal cliques of Fd(a) ~ A
is T,

Claim 3 For every edge a ~ G, Fd(a) n Fd(G) is a clique. p1
dd = T, k = (T - l)S2.

Take B, D e Fd(a) n F d (G). Then G e D1
d. For any u E Dd

2, there is v e D2
d such that

D(u,v) = d-2(see Fig. 14).
Since G ~ v, d(G, u) = d - 1. So D e Dd

1. Hence

Since pd-1
d3 = 0, we can take B e Fd(a) n F3(G). Then G e Dd-1

3. As Fd(a) n F1(G) c
Dd

2 and Dd
2 is a coclique, we get the claim.

Claim 2 e(Dd-1
1, Dd

1) = 0, a1 = (T - 2)S.

Suppose there is an edge G ~ D such that G e Dd-1
1, D E Dd

1. Then Fd(a) n F1(G)
contains an edge B ~ D, which contradicts Claim 1.

For any x E Dd
1,

Figure 14.
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Since G E Dd
1, the claim follows from Claim 2.

Claim 5 T = 2, p1
dd = 2, a1 = 0, k = s2, b1 = s2 - 1, k2 < 2s(s - 1).

In this case

Since T >2 and s > 2, we have

So we get the claim.

Claim 6 d = 3.

Since kb1 = k2C2, Claim 5 implies that

So

Since b2 < b2 + a2 = k - c2 < c2, we get d = 3.
By Claim 6, the intersection diagram is as in Fig. 15.

By counting e(D3
2, D2

1),

Since kb1b2 = k3C3C2 ,

Figure 15.

Since T > 2, there is an edge B ~ D in Fd(a) D Fd(G) for a ~ G. From Claim 4,



Since s > 2, this is impossible. Therefore we get the assertion. O
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