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Abstract A classical theorem of Robbins states that the edges of a graph may be oriented, in such a way that
an oriented path exists between any source and destination, if and only if the graph is both connected and two-
connected (it cannot be disconnected by the removal of an edge). In this paper, an algebraic version of Robbins'
result becomes a lemma on Hilbert bases for free abelian groups, which is then applied to generalize his theorem
to higher dimensional complexes. An application to cycle bases for graphs is given, and various examples are
presented.
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1. Introduction

Our aim is to generalize a classical theorem of Robbins of graph theory. A graph is a
pair G = (V, E) of vertices and edges, where E c (V

2). A directed graph is a graph
G = (V, E) together with functions ee :-» {s, t} for each e e E (s = source, t = target).
A directed graph is strongly connected if there is a directed path between any two vertices,
in both directions. A graph is k-connected if it may not be disconnected by deletion of
(k - 1) edges. These notions are extensively studied in graph theory, and have numerous
applications (see [3] for a survey of results).

Given a graph G, does there exist an orientation of its edges so that the resulting graph is
strongly connected? An obvious necessary condition is G to be 2-connected and a classical
theorem of Robbins asserts that this condition is also sufficient.

Theorem 1.1 [8] There is a strong orientation of edges of a graph G if and only if G is
2-connected.

A seminal graph-theoretic generalization of 1.1 is due to Nash-Williams.

Theorem 1.2 [7] Let G be a graph and let A,(a, b) denote the maximum number of edge—
disjoint paths between vertices a, b of G. Then G has an orientation such that there are at
least [ g^J edge disjoint directed paths from any vertex x to any vertex y.



Our aim is to present another kind of generalization: from strong connectivity for pairs
of vertices to "strong connectivity" for oriented cycles. We recall that an n-polyhedron
P is the convex closure of a finite set of points of RN whose affine span has dimension
n. The boundary BP of P is a union of (n — l)-polyhedrons. A 0-complex is a finite
set K0 of points. A .j-complex K = (Kj,..., K0) is obtained from a (j — l)-complex
K' = ( K j - 1 , . . . , K0) and a finite set Kj of j-polyhedrons by "glueings": for each P € Kj
there is a map $p: P -> K' which is an affine homeomorphism whenever restricted to
a k-polyhedron, k < (j — 1), and K is obtained byjdentifying x with $p(x) ,x € P.
Each j-polyhedron Q has two orientations Q and —Q. We will consider formal sums of
orientations of j-polyhedrons modulo the equations Q + (— Q) = 0. The orientation of Q
induces the orientations to each P e dQ. For j > 0 let dj Q = ]C/>e3e P be the formal
sum of oriented polyhedrons of the boundary of Q with an orientation induced by Q. Let
dov = — do(—v) = 1 if v e K0. A key feature of the notion of orientation is
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Let K = (Kn K0) be an n-complex. A j-cycle is a formal sum

such that

Hence dj Q is a (j — l)-cycle. An orientation of an n-complex is a choice of orientation
P for each n-polyhedron P. Next, we introduce the notion of strong connectivity, state our
main result and relate it back to graph theory.

Definition 1.3 Let K = (Kn,..., K0) be an n-complex and let 4 = {P}PeKn be its
orientation. We say that (K, <J>) is n-strongly connected if for each (n — l)-cycle R and for
each P & Kn there are coefficients n* € N = {0,1,...} such that

Theorem 1.4 Let K = (Kn,..., K0) be an n-complex. There is an orientation 4> such
that (K, <J>) is n-strongly connected if and only if the following two conditions hold:

(Ai) each (n — 1)-cycle R is a formal sum



(Aii) for each Q € Kn,

Remark 1.5 (Relations to graph theory) Let us observe how strong connectivity of graphs
and Robbins theorem fit into this scheme. Graphs (undirected) coincide with 1-complexes,
their vertices with 0-polyhedrons and their edges with 1-polyhedrons. An orientation of
a 1-complex is a prescription of an orientation to each edge. All 0-cycles are generated
by the pairs of oriented vertices (w, — v). Hence by 1.3, an orientation of a graph is
1-strongly connected if and only if it has a directed path between any pair of vertices,
in both directions. Hence 1-strong connectivity coincides with strong connectivity. Further,
Theorem 1.4 is simply equivalent to Robbins' theorem. The condition (Ai) asserts the graph
being connected, and (Aii) that each edge belongs to a circuit. These two conditions are
trivially equivalent to 2-edge connectivity and actually give a geometrical form of the
Robbins' theorem.

Further, let us see what 2-strong connectivity means. A pair (G, D), where G is a graph
and each element of D is an orientation of a cycle of G, is 2-strongly connected if any
orientation C of any cycle of G is obtained from a disjoint union of the arcs of some cycles
of D (a cycle may be taken more than once) by deletion of pairs of oppositely directed
arcs with the same vertices. Our theorem addresses the problem when is it possible to
reorient cycles of D so that (G, D) is 2-strongly connected. Similar questions are studied
extensively. Let us mention at least one open problem [10] called Cycle Double Cover
Conjecture: Is it true that every 2-connected graph has a family of cycles such that each
edge is in precisely two of them?

However, a relation of our result to the cycle double cover conjecture is not known. Let us
remark finally that conditions (Ai) and (Aii) of 1.4 may be poly normally tested: To test (Ai)
it suffices to solve a linear number of systems of linear diophantine equations with integer
coefficients (for an efficient algorithm see [4]). Gaussian elimination may be applied to test
(Aii).

The paper is organized as follows. In Section 2 we present examples. In Section 3 an
algebraic version of Robbins' Theorem becomes the crucial lemma in the proof of 1.4. The
lemma may be of independent interest. This raises the question of whether the geometric
version of Robbins' Theorem (graphs whose edges lie on cycles are strongly connected)
has higher-dimensional analogues; this issue is discussed in Section 4.

Our work was begun during an enjoyable summer at the SFB for Discrete Mathematics in
Bielefeld, for which the authors are very grateful. In particular, we thank Herbert Abels and
Walter Deuber. The first author thanks Charles University for partial support and generous
working conditions during a week in Prague and the second author thanks DIMACS, Rutgers
University, where the work was completed.
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(i.e. Hn-1(K - intQ) is torsion for each Q e Kn).
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Figure 1.

2. Examples

Example 1 Let (P, <) be a partially ordered set (poset) and m e N. Consider an m-
complex Cm(P) defined as follows. Let (ep; p e P} be a basis of Rp. For each strict chain
C = p0 < P1 < ... < pk, k < m, let AC be the K-simplex associated with C, i.e., the
convex closure of { e p 0 , . . . , epk}. Complex Cm(P) is a union of all Ac, C being a strict
chain of length at most m, modulo obvious glueings.

For example, let us consider the poset 2[1,n] of all subsets of { I , . . . , n } . C(2[1,n]) is
homeomorphic to the n-cube Cn with vertices ( e 1 , . . . , en), ei e {0, 1} in Rn (see figure 1).
Further, let2(1,n) be the subposet of the nonempty proper subsets of {1, . . . , n). Cn_2(2(1,n))
is the boundary of the subset C'n = {(x 1 , . . . , x n 6 Cn, UXt = 0} of Cn, hence Cn_2(2(1,n))
is homeomorphic to an (n — 2)-sphere (see figure 1). Now, let k be any field. Tits' complex
T(k, n) is the complex associated to the poset (k, n) of nonempty, proper subspaces of kn.
T(k, n) is an (n — 2)-complex, whose (n — 2)-polyhedrons correspond to flags (maximal
chains in (k, n)).

Tits' Theorem asserts that T(k, n) is homotopically a wedge of (n — 2)-spheres, so
according to the remarks in the introduction one expects to find a natural (n — 2)-strong
orientation on T(k, n).

Michel Brion provided the following one. Fix a basis E = { e 1 , . . . , en} for kn. A chain
V" C • • • C V* (i1 = dim Vi1) of subspaces is called special if each V is spanned by a
subset of E. The subposet P of special chains is isomorphic to 2(l,n) and thus C(p) is a
subcomplex of T(k, n) which is an (n — 2)-sphere. As a sphere, C(P) has two orientations
which make it an (n — 2)-cycle. Choose one, and orient each simplex of a special flag
according to i. Now observe that for any flat V1 C • • • C Vn-1 there is a special flag
FV • • • C Fn-1 and an upper triangular matrix A satisfying AVk = Fk, 1 <k <n-1.
For each flag V we will orient the associated (n — 2)-simplex A v of T(k, n) by AV = 4 A f .
Evidently every Av belongs to an (n — 2)-cycle, hence the resulting orientation of T(k, n)
is (n — 2)-strongly connected.



STRONG CONNECTIVITY OF POLYHEDRAL COMPLEXES 121

To conclude this example, we remark that the property of being wedges of spheres
is shared by many complexes defined in a combinatorial way, e.g., isthmus-free matroid
complexes, order complexes of geometrical lattices and Tits buildings (see [1,2]).

The next example provides a preparation to Section 4. Let K be a 2-complex and
H 1 ( K ) = 0. Is it true that K is 2-strongly connected if and only if each region of K2

belongs to an orientable pseudosurface? The beetle provides a contraexample to this natural
generalization of the geometrical Robbins' Theorem.

Example 2 (The beetle)

K2 = (P1, P2, P3, P4}
K1 - (a, b, c, d, e, f} U dP1 U dP2 U 3P3 U dP4

K0 = { x 1 , x 2 , x3, x4} U da U db U 3c U dd U de U df U 93P1 U ddP2 U ddP3 U ddP*.

The glueings are indicated by arcs.

Now, P1 does not belong to a pseudosurface, but the beetle is still 2-strongly connected
by Theorem 1.4, since

0 = 2d2(P1 (abc)) + d2(P2(abde)) + d2(P3(bcef)) + d2(P4(afdc)).

The order of arcs in the brackets determines the orientations of P1, P2, P3, P4.
Note that the coefficient at d2(P1 (abc)) must be at least 2; indeed H1 (k - P1) ~ Z/2.

3. A lemma on Hilbert bases and a proof of Theorem 1.4

Our generalization is based on the following key Lemma 3.2, whose proof is an algebraic
version of Robbins' classical proof.

Definition 3.1 Let A be a free abelian group. Hilbert basis of A is a subset B =
( b 1 , . . . ,bn] of A such that for each v e A there are numbers n", e N satisfying v =

£}=.«?;•



For example, if B' is a basis of A then both B' U (~B') and B' U {- ^,beB, b] are Hilbert
bases of A. Hilbert bases are studied extensively in combinatorial optimization, see e.g., [4].

Lemma 3.2 Let A be a free abelian group and let B be a finite subset of A. There exist
€b 6 {1, -1}, b € B such that eB = {ebb; b € B} is a Hilbert basis if and only if
(Bi) B U (-B) generate A.

(Bii) For each 0 e B there are mb € Z, m^ 0 such that

where n^ = n% + 1 > 0.
To show sufficiency, we indeed prove a stronger result. Assume that B U (—B) generates

A and e is defined on a subset B' of B. It is possible to extend e to e' such that e'B is a
Hilbert bases of A if and only if

(Cii) For each ft e B there are mb e N and e b { l , -1} such that

hence

The proof of this statement goes as follows: Take a 6 B — B' and assume for a contra-
diction that e cannot be extended to B' U {a} so that (Cii) holds. It means that there are
x, y e B so that "x must use a and y must use —a". That is to say

a) if ex is any extension of e to B, mb € N so that

In Remark 1.5 we observed a reformulation of the Robbins' Theorem: A graph G has
a strong orientation if and only if G is connected and each edge belongs to a cycle. Our
proof of 3.2 is a mere algebraisation of a proof of this statement.

Let us see first that (Bi) and (Bii) are necessary. The necessity of (Bi) is trivial, for
necessity of (Bii) assume the coefficients €b, b € B exist. W.l.o.g. assume €p = 1. Then
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In this formal sum, the coefficient at a is nonnegative and the coefficient at y equals to
my

y fy
y ^ 0 which violates b).

We have a contradiction, hence € can always be extended so that (Cii) is satisfied and
thus lemma follows.

We get Theorem 1.4 as a corollary.

Proof of Theorem 1.4: Let A = Z n - 1 (K) be the group of (n - l)-cycles of K and let
B = {d n P} P € K n . By 4.2 we may change an orientation of Kn to an orientation for which
B' = (dn P } p e K n is a Hilbert basis of A if and only if H n - 1 ( K ) = 0 and B satisfies (Bii)
which is equivalent to (Aii). Hence the theorem is proved.

4. Some geometrical observations

Is there a geometrical form of (Aii)? Example 2 shows that a natural condition is strictly
stronger than (Aii) even for 2-complexes. Hence, the geometrical analogue turns out to be
not very geometrical, although it is illustrative at least for 2-complexes.

Definition 4.1 A geometric n-cycle is a triple L = {Ln, Ln-1, H} where Ln is a set of
n-polyhedrons Ln-1 is a set of (n — l)-polyhedrons containing dP for each P e Ln and
H is a set of affine "glueing" homeomorphisms between elements of Ln-1 closed under

inverse, composition and so that P-> P is the only glueing from P to P. We write P ~ Q
if h(P) = Q for some h e H. Moreover, a geometric n-cycle satisfies that for each
P e Ln-1 /~ there exist exactly two P 1 ,P 2 € Ln and Qi e 3Pi ,i = 1,2, such that
Q1= Q2 in Ln-1, and P = Q1 = Q2 in Ln-1 ~.
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b) if €y is any extension of e to B, my
b e N so that

We assume (Cii) hence there are €*, ey extending e and mb, my
b e N such that

and also by a) and b) e* = 1,e% = -1,

Without loss of generality assume mx > my
a. Then



Anorientationof ageometricn-cycleisan orientation of Ln whichsatisfies £/>6t dnP =
0. L is orientable if it possesses an orientation.

A geometric 1-cycle is a graph consisting of a cycle. It seems to be a well-known fact
that the geometric 2-cycles are the pseudosurfaces and the orientable geometric 2-cycles
are the orientable pseudosurfaces. However, in general, geometric n-cycles do not posses
a "nice" geometrical realization.

Definition 4.2 Let K be an n-complex and let P € Kn. We say that P belongs to a
ramified geometric n-cycle if there exists an oriented geometric n-cycle L = (Ln, Ln-1)
and a function 1: L -> K such that

(i) LJ = U{(Q 1 , . . . , QmQ}mQ > 0, j = n, n - 1 and mP > 0.
( i i )1 /Qi = id/q for each Q e Ln, Ln-1 and i e [1, mQ]

(iii) For each Q e Kn, the orientations of Q induced by all the corresponding Qi of Ln are
the same.

Condition (Aii) is now equivalent to

(Gii) Each P e Kn belongs to a ramified geometric n-cycle
which for n = 2 has form

(G'ii) Each region of K2 belongs to a ramified orientable pseudosurface.

Concluding remarks

1. Given a graph G and a family D of its cycles, when is it possible to orient cycles of D
so that any orientation C of any cycle of D may be obtained from a disjoint union of the
arcs of some oriented cycles of D (each oriented cycle may be taken at most once this
time) by deletion of pairs of opposity directed arcs with the same vertices? The answer
to this problem is not known. It is not difficult to observe that the natural condition that
each cycle (region) of D belongs to an orientable pseudosurface is again stronger.

2. Given 2-connected graph G, does there exist a family D of its cycles such that each edge
of G belongs to at most two of them and (G, D) is 2-strongly connected? This question
is equivalent to the cycle double cover conjecture and thus probably hard, but we also do
not know the answer for a weaker problem when the condition "each edge belongs to at
most 2 cycles" is replaced by "each edge belongs to at most C cycles, C being a constant".
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