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Abstract A combinatorial method of determining the characters of the alternating group is presented. We use
matrix representations, due to Thrall, that are closely related to Young's orthogonal form of representations of the
symmetric group. The characters are computed directly from matrix entries of these representations and entries
of the character table of the symmetric group.
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1. Introduction

The irreducible complex representations of the alternating group are closely related to the
representations of the symmetric group. Each irreducible representation of An is a direct
summand of the restriction of an irreducible representation of Sn; in fact, most of the
irreducible representations of Sn remain irreducible upon restriction. The exceptions are
those representations p such that e x p = p, where e is the sign representation. When
this occurs, p | An is the direct sum of two irreducible representations p+ and p~. Thrall
constructed the isomorphism € x p = p and used it to describe matrix representations of p+

and p~ [8]. The purpose of this paper is to present a combinatorial method for determining
the characters of p+ and p~, using Thrall's construction. Other methods in the literature
rely on algebraic arguments within the theory of characters [5].

2. Young's orthogonal form and the associator

Let X = (L1,..., L1) be a partition of n, i.e., L1> .... > L1 > 0 and L1+ • • • + L1= n.
The diagram of X is the set DL = {(i, j) | i, j € Z, 1 < i < 1,1 < j < L1}. The content
c(i, j) of (i, j) e DX is defined to be j — i. The conjugate X' of X is the partition satisfying
(i, j) € DV iff (j, i) e DL. If X' = X, X is said to be self-conjugate. A tableau of shape X is
a bijection from DL to the set {1,..., n}. More informally, we can view T as a configuration
of the integers 1,.... n with T(i, j) lying at the point (i, j). A tableau T is standard if
T(i, j) < T(i, j + 1) and T(i, j) < T(i + 1 , j ) for all i, j. The transpose T' of T is the
tableau of shape X' satisfying T'(i, j) = T(j, i); T' is standard if and only if T is standard.
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extends to an irreducible representation of Sn.

Using this representation, one can easily show that e x px = px for any partition X. See
[2] for further details on the orthogonal form and related representations.

Let A. be a self-conjugate partition. We can now establish the isomorphism between € x Px

and px by exhibiting S e GL(Vx) satisfying Spx(g)v = s g n ( g ) p L ( g ) S v for all g e Sn,
v G Vx. Notice that, by Schur's Lemma, this defines 5 up to multiplication by a scalar.
Also by Schur's Lemma, since S2 commutes with pl, S2 is a scalar. Thus, 5 may be chosen
(in two ways) so that S2 = I. Following [7] we will call such an S an associator for px.

Theorem 2.2 (Thrall) [8] Let TO be a standard tableau of shape X, where X is self-
conjugate. For any standard tableau T also of shape X, define sgn(T) to be sgn(w), where
w e Sn satisfies wT = T0. Let d(X) be the length of the main diagonal of X; i.e., d(K) is
the largest integer j such that (j, j) € Dx. Let S': Vx -> Vx be defined by

S'(T) = sgn(T)T'.

Then S = i (n -d(L) ) /2S'(T) is an associator for pA.

Proof: We first establish that S'px(g) = sgn(g)px(g)S'. Let Pj = (j, j + 1), and assume
that T, U are standard tableaux of shape X satisfying PjT = U. The subspace spanned by
T, U, T', U' is invariant under the action of both S' and px(p j). The equality S'px(Pj) =
—p L (p j )S ' can easily be verified on this subspace after observing that sgn(T) = —sgn((U),
sgn(T') = -sgn(U'), dT(j, j + 1) = -dT '(J, j + 1), and dv(j, j + l) = -dv,(j, j + 1).
If Oj T is not standard, then the subspace spanned by T and T' is invariant under the action
of both S' and PL(O J) . The equality S'PL(OJ) = —px(a j)S' can easily be verified on
subspaces of this form as well, so S'pi(p j)(v) = — p L ( a j ) S ' ( v ) for all v e Vl. Since the
transpositions Oj, 1 < j < n — 1, generate Sn, the result follows.

Finally, (S')2 = (-l)(n-d(L))/2 I since
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There is a bijection between the irreducible representations of Sn and the partitions of n.
The dimension of the representation corresponding to X is equal to the number of standard
tableaux of shape X. The representations have been constructed in several ways using these
tableaux [1,2, 4-6]. The following construction is known as Young's orthogonal form.

Theorem 2.1 Let Vx be the C-span of the standard tableaux of shape X. For each standard
tableau Tof'shape X, define the axial distance dT on { 1 , . . . , n}bydT(p,q) = c ( T - l ( q ) ) —
c ( T - l ( p ) ) . If pj is the transposition (j, j + 1), then the linear map px: Sn -> GL(Vx)
defined by

and sgn(T) = (-l)(n-d(X))/2sgn(T'). Thus, S2 = I. n



Taking traces of this equation gives tr(S/ox(g)) = x+(#) - X (#)• D

Since the value of x * |AM = x+ + X~can'3e found in the character table of Sn [4], one
can solve for x+ and x~ if to(Sfli(g)), the difference character of x+ and x~. is known.
We need only compute tr(5px (g)) for one element in each even conjugacy class of Sn, since,
by Clifford's theorem on the characters of normal subgroups, x+(#) = X~(hgh~l), where
g € An, h € Sn — An [3]. For cycle type (a\,..., am) (with the a/ listed in nonincreasing
order), a representative permutation will be

YOUNG'S ORTHOGONAL FORM AND CHARACTERS 129

3. The difference characters of An

We continue to consider the case where A is a self-conjugate partition. The purpose of
this section is to decompose px | An into irreducible representations and determine their
characters.

Proposition 3.1 The eigenspaces of S are An-modules under the action of p L (g ) , g e An.
Let V+, V- be the eigenspaces ofS corresponding to the eigenvalues 1, —1, respectively,
and let pL

+, pL
-, be the projections of pL | An into GL(V+), GL(V -), respectively. Then

(assuming n > 1) pL | An decomposes into irreducible representations as the direct sum
of pL

+ and pL
-.

Proof: For v € Vx, if Sv = av, then Sp L (g )v = p L (g)Sv = PL(g)av = apL(g)v. Since
S2 = I but (for n > 1) S is not a scalar, V+ and V~ are both nontrivial, and V+ + V- = Vx.
Let xx | An be the character of pL | An. Since pL is an irreducible Sn-module, and An has
index 2 in Sn, the inner product [xL | An, XA | An] is at most 2. Thus, pL

+ and pL
- must

be irreducible. D

Corollary 3.2 Let g € An. If x + , X - are the characters of p+
L, pL

-, respectively, then
tr (Sp L (g ) ) = x + (g) -x - (g) .

Proof: We have

where bj = a1 + • • • + aj. The cycles of this permutation are of course the factor
permutations (1 • • • b1), (b1 +1 • • • b 2 ) , . . . , but we will abuse notation at times and refer to
the sets {1, . . . , b1}, {b1 + 1, . . . , b2} as the cycles of the permutation as well.

Let q = ((n - d(L))/2). It is straightforward that

tr(SpL(g)) = iq Esgn(T')pL(g)T',T = (-i)q Esgn(T)pL(g)T'T,



where the sum is taken over all standard tableaux of shape A.. If g is the representative
permutation of its cycle type, pL (g) can be expressed as a product of pL (pi) as above. Since
PL (pi ) T is in the span of T and pi T (which is defined to be 0 if it is not standard), p L (g )T can
be expanded so that there is at most one term corresponding to each subsequence of the pi 's
occurring in the expansion of g. It is not hard to see that distinct subsequences correspond
to distinct permutations acting on T, since one can readily convert the permutation into
cyclic notation. If wT = T', then w is a product of q disjoint 2-cycles. This w can be
expressed as the product of a subsequence of the pi's if and only if each pair T(j, k) and
T(k, j) is transposed by one of the pi's. In other words, both of the following must be true
for all j #k such that (j, k) e Dx:

• T(j, k) and T (k, j) are in the same cycle of g.
• \ T ( j , k ) - T ( k , j ) \ = 1.

We will call such a standard tableau transposable. Thus, pL(g)T' ,T # 0 iff T is trans-
posable, and the expansion of p L (g )T has a unique term in the span of T'.

We can now begin to determine t r ( S p L ( g ) ) . Assume throughout that g is the representative
permutation of its cycle type.

Lemma 3.3 If g has more than d(K) cycles of odd length, then t r (Sp L (g ) ) = 0.

Proof: If T is transposable, then each cycle of g of odd length must contain one entry on
the main diagonal of T. This is impossible if T has shape A, and the number of cycles of
odd length exceeds d (L). D

Lemma 3.4 If the number of cycles of g is less than d(A,), then tr(Sp),(g)) = 0.

Proof: If the number of cycles of g is less than d(X), then there exists a cycle of g
that contains more than one entry on the main diagonal of A.. We construct an invo-
lution on the transposable tableaux. Given a standard tableau T of shape A, choose b
minimal so that there exists a < b with a and b in the same cycle of g and both on the
main diagonal of T. Let T* = aa+1pa+3 • • • Pb-4Pb-2T. This is an involution, since T
and T* are equal on the main diagonal and aa+1aa+3 • • • ab-4ab-2 has order 2. In the
computation of PL(g)T,T and pL (g)(T*y,T*, the only factors that differ are those corre-
sponding to pa, pa+2, • • •, pb-3, pb-1; for each of these the difference is a factor of —1.
Thus, pL(g)T',T = (-l)(b-a+l+)/2pL(g)(T')',T*. Since sgn(T) = (-l)(b-a-1)/2 sgn(T*),and
b — a is odd, sgn(T)px(g)T',T + sgn(T*)px(g)(T*)',T* = 0. Summing over all transposable
tableaux, tr(Spx(g)) = 0. D

Lemma 3.5 If g has a cycle of even length, then t r (Sp L (g ) ) = 0.

Proof: We construct an involution similar to that of the previous lemma. Let (c • • • c +
2k — 1) be a cycle of g and let T be a transposable tableau of shape A.. If this cycle intersects
the main diagonal of T, it does so in at least two places (since T is transposable). In this
case, let a, b be the two smallest numbers in this intersection. If the intersection is empty,
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let a = c — 1 , b = c + 2k. In either case, define T* to be aa+1aa+3 • • • pb-4pb-2T. As
in the proof of the previous lemma, this is an involution. Also as before, p L ( g ) T ' T =
( - 1 ( b - a + l ) / 2 P l ( g ) ( T * Y , T * , and sgn(D = (-1)(b-a-1)/2 sgn(T*), so sgn(T)px(g)T',T+
sgn(T*)px(g)(T*)',T* = 0, and T*(S(n(g)) = 0. D

Remark Lemma 3.5 can also be established by purely group-theoretic means, by showing
that, given the hypotheses of the lemma, the conjugacy classes of g in Sn and An are the
same, and, thus, x+(g) = X - ( g ) .

The only remaining cycle types are those consisting of d(A.) cycles of odd length. In
analyzing this case, it will help to use the concepts of hook and hooklength. For (i, j) e DL,
the corresponding hook Hij is the set of points in DA. of the form (i, k), j < k or (k, j),
i < k. The hooklength hij is the cardinality of H iJ. A hook of a tableau T is the image
under T of a hook of its diagram.

Also needed will be the following result about posets. A linear extension of a poset P
with \P\ = m is a bijection T: P -> {1, . . . , m} such that i <p j implies T ( i ) < T(J).

Lemma 3.6 Let P be a disconnected poset of size m. For each element p e P, choose
an indeterminate xp. Then

Then, if f# 0, f is a homogeneous polynomial of degree n(n - l)/2 - (m - 1). If p and
q belong to the same component but are not adjacent in the ordering, then (xp —xq) divides
f, since \ T ( p ) - T(q)| > 2 for T e L(P). If p and q belong to different components, then
for any T e L(P) with T ( p ) - T(q) = 1 we can find r' e L(P) with T ' (q) - T ' ( p ) = 1 by
letting T'(p) = T(q) , T ' (q) = T ( p ) , and T' = T otherwise. The contributions of T and T'
to / are identical except that the variables xp and xq have been switched. Thus, their sum is
divisible by xp — xqt and in this case as well (xp — *?) divides f. So n(n — l)/2 — (m — 2)
irreducible factors of / have been identified, and / must be 0.

In the general case, if P is the disjoint union of posets P1 and P2, a linear extension
of P induces linear extensions of P1 and P2. If we consider all of the extensions of P that
induce a particular pair of extensions of P1 and P2, we have the situation of the preceding
paragraph, and the sum over these extensions is 0. Thus, the entire sum is 0. D
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where L(P) denotes the set of linear extensions of P.

Proof: First assume that P is the disjoint union of two linearly ordered components. Let
v be an arbitrary linear extension of P and let



The sum in Lemma 3.6 also appears in [2], where Greene uses it to derive the Murnaghan-
Nakayama Rule for evaluating the characters of Sn. He proves the above identity in the
case of disconnected planar posets as well as finding an identity for the sum when P is a
connected planar poset.

Theorem 3.7 If g does not have cycle type (h11, h22 hd(L),d(L)),then tr(SpL(g)) = 0.

Proof: We assume that g consists of d(X) cycles of odd length but does not have cycle
type (h11, h22, • • •, hd(L),d(L)). Among the transposable tableaux of shape A., each main
diagonal entry belongs to a distinct cycle of g, by a counting argument similar to that in
the proof of Lemma 3.3. Let T be such a tableau. At least one cycle of g must intersect
more than one of the hooks Hii of T. Let gi be the cycle of g containing T(i,i), and let
gT = gj, where j is minimal so that gj intersects more than one of the hooks Hii. Let LT

be the skew-diagram T - l ( g T ) . An equivalence relation on the transposable tableaux can
now be defined as follows: T ~ U iff

132 HEADLEY

AT = AU (implying gT = gu) .
For all (i, j) G LT= LU, T(i, j) > T(j, i) iff U(i, j) > U(j, i).
T = U on L - LT.

We claim that sgn(T) = sgn(U) if T ~ U. First, assume the main diagonals of T and U
are the same. Then a and a + 1 occupy positions symmetric across the main diagonal of T
if and only if the same is true for U. So U can be obtained from T by a sequence of pairs of
transpositions of the form (a, b) (a + 1, b + 1), which preserve the required order relations.

Now assume that the main diagonals of T and U are different. Since XT = LU contains
only one point on the main diagonal, there is a unique j such that T(j, j) # U ( j , j).
Assume that a < b, where T(j, j) = a and U(j, j) = b. Since T and U are transposable,
b—a is even. In U, b—2 and b— 1 must occupy positions symmetric across the main diagonal;
by replacing b with b — 2, b — 2 with b — 1, and b — 1 with b, we obtain a new tableau U'
with b - 2 on its main diagonal. Clearly, sgn(U') = sgn(U'). and \U'(i, j) - U'( j , i ) | = 1
for i # j. Also, U'(i, j) < U'(j, i) if and only if U(i, j) < U(j, i). We can proceed
in a similar manner, acting on U' with a product of 3-cycles, until we have produced a
tableau with a on its main diagonal. We can then argue as in the previous paragraph, so
sgn(T) = sgn(U).

For an equivalence class B of the given relation, define a poset PB as follows. Let T e B.
As a set, PB consists of all points (i, j) e AT such that i = j or T(i, j) > T(j, i). We say
that (i, j) < ( i ' , j ' ) in PB iff i < i' and j < j', or i < j' and j < i'. Label the elements of
PB (in any fashion) as p 1 , . . . , pm; if pk = (i, j) and i # j, let pt

k = (j, i) (which is not in
PB). We claim that there is a bijection from L(PB), the set of linear extensions of B, to B.
If T is a linear extension of PB, a unique tableau T is determined by the conditions

T(T-1(i)) < T ( T - I ( J ) ) for all i < j,
T ( p t

i ) = T ( p i ) - 1 for all i for which pt
i is defined, and

T agrees with the tableaux in B on L — LT.



Since T(p t
i) and T(pi) are consecutive integers for all i, the relations inherited from PB

are enough to guarantee that T is standard, so T e B.
Conversely, if T e B, the integers T(pi) can be put in increasing order T(pjt),...,

T(pim), and we can define T: PB -> {1 m} by T ( P j i ) = i. Since T is standard and
transposable, T preserves the relations of PB, so T is a linear extension. The two maps we
have defined are clearly inverses, so the bijection is established.

The only factors in the computation of px(g)T',T that differ as T varies over B are
those corresponding to the transpositions oT(P j i). The product of these factors for T € B
corresponding to the linear extension r is

Setting xpj = c(pj), Lemma 3.6 can be applied if PB is disconnected. Assume that PB
contains (k, k). Now PB cannot intersect a hook HM with k' > k, since, for any PJ in the
intersection, we would have T(k, k) < T(k', k') < T(PJ) for all T e B. Thus, PB would
contain a second main diagonal point, namely (k', k'), and this is a contradiction. Since PB
is not contained entirely within Hkk, it must intersect some Hk',k' with k' < k. We claim
that the intersection of PB with Hkk is not connected to the rest of PB. Otherwise, we could
choose (i, j), (k, 1) € AT (T e B) such that (i, j) € Hii, (k, l) e Hkk, i < k, and j < l. If
i < i' < k and j < j' < l, then T(i, j) < T(i', j') < T(k, l) for T e B, so (i', j') € XT.
Thus, XT contains at least 2(l — k) + 3 points: it contains all points on the hook Hkk from
(l, k) to (k, k) to (k,l), and also must contain the points (k — 1, l) and (i, k - 1). However,
the cycle gk-1, which contains T(k — 1,k — 1) and lies entirely within Hk-1,k-1, would then
have to be contained in the 2(1—k) +1 points on Hk-1,k-1 from (l — 1,k — 1) to (k— 1,k — 1)
to (k — 1, l — 1). Since the lengths of the cycles are nonincreasing, this is a contradiction.

Now, by Lemma 3.6,

Since sgn(T) is constant for T e B, the contributions of the tableaux in B to tr(Spx(g))
sum to 0. Thus, tr(Spx(g)) = 0. n

The remaining case is covered by the following.

Theorem 3.8 Assume that g has cycle-type (h 1 1 ,h 2 2 , . . . . hd(L),d(L)), and let ki =
(hii - l)/2. Then tr (Sp L (g) ) = ±ik1+...+kd(L)Rh11 • • hd(L),d(L), the sign depending on
the choice of S.

Proof: First, assume that X is contained in the hook H11. The proof of this case will be
by induction. If k\ = 0, then tr(Spx(g)) = 1. If T is a transposable tableau consisting
of a single hook of length 21 — 1, then T is a subtableau of exactly two transposable
tableaux T1 and T2 consisting of single hooks of length 21 + 1. We can assume that
T1(l + 1,1) = T2(l, l + 1) = 2l, and Tl(1,l + 1) = T2(l + 1,1) = 2l + 1. We can also
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Since -i^/(2l + l)/(2/ - 1) • i'~ V2/ - 1 = -/V2/ + 1, the result follows.
Now consider an arbitrary self-conjugate A.. If T is transposable and has shape A., g

can be written as a product of transpositions aj with j and ./' + 1 in the same hook //**.
Each such aj corresponds to a factor in the computation of p\(g)r,T- Thus, the factors
can be grouped by hooks, and tr(5/o^(g)) is (up to a sign change) simply the product

(i*1 Vfiii) • • • (ikdm V^CXMCM)- n

This is the most difficult step in the construction of the character table of An from that
of Sn, since the other characters can be found by restriction. It should be noted that the
methods of this paper could be used in conjunction with the orthogonality relations for
characters, rendering some of the calculations unnecessary. In particular, the relations can
be used to deduce Theorem 3.7 from Theorem 3.8, and vice versa.
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assume that sgn(T1) = sgn(T). If T ( 1 , l ) = 21-1, then we do the following calculation
(in which PL and g are ambiguous but can be determined by their context):

lf T(l, l) = 2l-l , then


