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Abstract. We introduce a rational function Cn(q, t) and conjecture that it always evaluates to a polynomial in

q, t with non-negative integer coefficients summing to the familiar Catalan number ^ (2n). We give supporting

evidence by computing the specializations Dn(q) = Cn(q, 1/q)q ( n ) and Cn(q) = Cn(q, 1) = C n (1 ,q) . We
show that, in fact, Dn(q) q -counts Dyck words by the major index and Cn(q) q -counts Dyck paths by area. We
also show that Cn(q, t) is the coefficient of the elementary symmetric function en in a symmetric polynomial
DHn(x; q, t) which is the conjectured Frobenius characteristic of the module of diagonal harmonic polynomials.
On the validity of certain conjectures this yields that Cn(q, t) is the Hilbert series of the diagonal harmonic
alternants. It develops that the specialization DHn(jc; q, 1) yields a novel and combinatorial way of expressing
the solution of the y-Lagrange inversion problem studied by Andrews [2], Garsia [5] and Gessel [11]. Our proofs
involve manipulations with the Macdonald basis (Pu{x; q, t ) } u which are best dealt with in A-ring notation. In
particular we derive here the A-ring version of several symmetric function identities.
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where the sum is over all partitions of n. All products and sums in the uth summand are
over the cells of u and the parameters l , l ' , a, a' denote the leg, coleg, arm and coarm of
a given cell. That is, for a given cell s, when u is depicted by the French convention (see
Figure 1) l,l', a, a' give the number of cells that are strictly north, south, east and west of s
in u. The symbol n°'° is to express that this product omits the corner cell with l' = a' = 0.

On the surface, (1) appears to define only a rational function of q and t. Neverthe-
less, computer data and representation theoretical considerations lead us to conjecture that
Cn(q, t) evaluates for all n to a polynomial with non-negative integer coefficients and total

'Work carried out under NSF grant support.

1. Introduction

Our q, r-Catalan sequence is defined by setting



GARSIA AND HAIMAN

The proof of these identities is obtained by computations involving bases of symmetric
polynomials, which are best expressed in A-ring notation, a device which we pause to
explain very briefly, referring the reader to [3] or [8] for a fuller account. We represent an
alphabet of variables by a formal sum, usually denoted with a capital letter, as for instance

and that Cn(q) satisfies the recurrence

are themselves familiar q -analogues of the Catalan number. More precisely we show that

To support our conjecture we shall show here that the specializations

degree (n). In fact, a perusal of the tables in the appendix quickly reveals that the coefficients

of the resulting polynomial always add up to the familiar Catalan number

Figure 1.
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More generally, alphabets are allowed contain monomials as well as variables, so that
multiplication of alphabets makes sense. Now, given a symmetric function f, \hcplethystic
substitution of X into /, denoted f[X], is merely

note that the replacement f[X] ->- f[1-q] is inverse to f[X] - f [ X ( l — q)], as we would
expect.

It develops that the proof of (5) is intimately related to the q-Lagrange inversion problem
studied by Andrews [2], Garsia [5] and Gessel [11]. To see how this comes about we need
to review some material concerning the Macdonald bases { P u ( x ; q, t ) } u , {Qu(x; q, t ) } u

defined in [20]. Recall that {Pu(x; q, t ) } u is the unique family of polynomials which is
triangularly related (in dominance order) to the Schur function basis and satisfies a Cauchy
identity which, in A-ring notation, can be written in the form

with

where both products run over all the cells of u and the parameters l, a are respectively the
leg and the arm of the cell as defined above. Macdonald also sets
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One extends this to alphabets involving negative letters by writing / (uniquely) as a poly-
nomial in the power sums Pk and setting

This is well-defined and also yields

More generally, there is no difficulty in extending the notion to infinite alphabets, so that
we may consider such expressions as

and conjectures that J u ( x ; q, t) has an expansion of the form
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where S y ( x ) is the customary Schur function, and Kyu(q, t) is a polynomial with non-
negative integer coefficients. Here we shall have to deal with the two bases

and

where as in [20] we set

In fact, to simplify our notation let us also set

This given we may simply write

Now it develops that this expression is none other than the coefficient of the familiar
elementary symmetric function en(x) in the Schur function expansion of the symmetric
polynomial

In fact, it can be shown (see Theorem 3.2 below) that



The contents of this paper are divided into four sections. In the first we review the
q-Lagrange inversion results of [5] and recast them in A-ring notation. As a byproduct
we also obtain a novel and combinatorial way of expressing the solution of the Andrews-
Garsia-Gessel q-Lagrange inversion problem. In the second section we prove the identities
(18) and (19) and derive from them (4) and (5). In the third section we briefly review the
representation theoretical background that underlies all our computations. We refer the
reader to [7, 8, 20] for further information covering this material. The main object of this
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where the vertical bar denotes extraction of a coefficient-in this case the coefficient of
S1n-in the Schur function expansion of the symmetric function Hu(x; q, t). Equation (16)
yields

Given this expression for C n(q, t) in terms of DH n (x;q , t ) ,we shall show that Eqs. (4) and
(5) follow from the more general specializations

and

where fu denotes the so-called forgotten basis element indexed by u.
The connection with p-Lagrange inversion derives from the fact that if for convenience

we set

then the formal series

is the q-Lagrange inverse of the series

More precisely we show that



section is to show that all the conjectures given in [12] concerning the module of diagonal
harmonic polynomials can be replaced by the single statement that DHn(x; q, t) is the
bivariate Frobenius characteristic of this module. Recent results [13] by the second author
have also brought forward a 2-parameter family C ( m )(q, t) of rational expressions which
reduce to Cn(q, t ) f o r m = 1. Computer data leads to the conjecture that C ( m )(q, t) is (for
m,n> 1) a polynomial with non-negative coefficients adding up to ( m n + n ) / (1 + nm). In
the fourth section we present some evidence supporting this conjecture by extending some
of the methods and results of Sections 2 and 3. We conclude by presenting some further
open problems and conjectures which arise in the study of this new family.

2. (q-Lagrange inversion in A-ring notation

The general q-Lagrange inversion problem we are concerned with may be stated as follows.
We are given a formal power series
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and we are seeking a formal power series

which satisfies the equation

Note that equating the coefficients of zn we obtain the sequence of identities

which recursively determine all the coefficients of f(z). Thus the solution of (26) exists
and is unique. Our task is to show that a very useful form of the solution may be obtained
by rewriting one of the basic identities given in [5] in A-ring notation. To this end we need
to recall some of the contents of [5].

We begin with the following fundamental fact:

Proposition 2.1 For any two sequences {Dn }n and {on }n we have
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whose coefficients On(q) are rational functions of q. This collection is closed under all stan-
dard operations on formal power series including taking logarithms, exponentials, functional
composition and g-Lagrange inversion. For instance, given the equation

one can compute the pk
 's from the Dn's or vice versa by means of the Newton formulas

and

which are easily derived by differentiating (31), equating coefficients of equal powers of z,
and applying Cramer's rule.

In particular, the starring operations of [5]

See [5], Theorem 2.1 for the proof of this result.
In what follows we work with the collection FP(?) of all formal power series

if and only if
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send an element D(z) € fP (q ) with D0 = 1 into another such element. It is easy to verify
from (34) that we have (when D0 — 1)

Two other basic operators on FP(q) introduced in [5] are roofing and unroofing, respec-
tively defined by setting

Un-roofing was introduced in [5] to untangle g-products of the form

More precisely, we have

as can be easily verified by equating coefficients of zn and using the simple identity

It is standard practice in the classical Lagrange inversion theory to write the given formal
series F(z) in the form

This given, one of the expressions for the solution of (26) given in [5] may be written in the
form

a result we will shortly rederive in proving Theorem 2.1 below.
The main difficulty we encounter in applying formula (40) consists in the problem of

inverting the formal series v*E(z). It develops that this inversion can be easily carried
out by recasting (40) as a symmetric function identity. To see how this comes about we
need to make a slight change of notation. Because of the algebraic independence of the



Rewriting F(z) according to (39), this becomes

Multiplying both sides by *E(z) and using the second equation in (35) with 6 replaced by
E gives

By (38), unroofing both sides untangles this q-product into the equation

where fu is the 'forgotten' basis element indexed by u.

Proof: Proposition 2.1 gives that (26) is equivalent to

This given we can show that (40) is equivalent to the following sequence of identities:

Theorem 2.1 For n = 1,2, ...we have

This simply amounts to setting

for a suitable infinite alphabet x = {x 1 , x2, £3,.. .}. This point of view enables us to derive
from (40) a remarkable expression for the coefficients of the solution of (26). To state the
result in a form convenient for our applications we rewrite our unknown series in the form

elementary symmetric functions en(x), there is no loss in assuming that the coefficients En

can be written in the form
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To invert the series v*E(z/q) we start by writing *E(z/q) in exponential form and use
A-ring notation. This yields the following sequence of equalities:

for some suitable infinite alphabet A. Substituting in (46) we get

where again, pk[A] denotes the power sum in the alphabet A. In this form v*E(z/q) is
easily inverted. Namely, we have

The same reasoning that allowed us to write (39) yields that we shall have

where in the present context p k ( x ) and hm (x) simply denote the power sum and complete
homogeneous symmetric functions in the alphabet x = { x 1 , x 2 , . . . } . This yields us the
expression
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This establishes (40). Substituting the expression in (41) for f(z) and replacing z by z/q
yields the identity
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and (43) follows then immediately from the definition (47) of the alphabet A. S

Remark We should point out that (47) and our referring to A as an alphabet is only a device
to guide us into the proper use of matrices relating the various bases of symmetric functions.
For instance, if {cn}n is any sequence whatsoever, writing it in the form cn = hn[A] allows
us to denote by en[A] the sequence {dn}n which is related to cn in the same manner the
sequence (en(x)}n of elementary symmetric functions is related to the sequence {hn(x)}n

of homogeneous symmetric functions. In particular, since in any alphabet x with more
than 2 letters e 2 ( x ) = h 2 ( x ) — h 2 ( x ) , then e 2 [ A ] is only a convenient way to refer to the
polynomial d2 = c2 — 02-

Our next task is to show that the coefficient kn (q) in the solution (43) of our q-Lagrange
inversion problem has also a remarkable combinatorial interpretation. To do this we need
some notation. We recall that the points of the x, y-plane with integral coordinates are called
lattice points and the squares with lattice vertices are usually referred to as lattice squares.
The lattice squares with unit side will be referred to here simply as cells. The cells with
vertices (i,i),(i + 1,i +1l) will be called diagonal cells. The lattice square with vertices
(0,0), (n, n) will be denoted by SQ[n]. The collection of all diagonal cells in SQ[n] will
be referred to as the diagonal of SQ[n]. This given, we let Dn denote the collection of all
lattice paths from (0,0) to (n, n) which proceed by NORTH and EAST steps and constantly
remain weakly above the diagonal of SQ[n]. Paths in Dn are referred to as Dyck paths; it

is well known that Dn has cardinality equal to the Catalan number Cn = n+1(2n). Given

201

Multiplying this by (48) with z replaced by zq and using (45) gives

In particular, equating coefficients of zn we derive that

On the other hand, a simple argument based on the fact that the elementary and forgotten
bases are dual with respect to the Hall inner product [19] yields us the identity
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Figure 2.

D E Dn we let a(D) denote the number of cells below D and strictly above the diagonal.
We may interpret a (D) as the area between D and the diagonal of SQ[n]. Figure 2 shows an
element of D9, the diagonal of SQ[9] (dark shading) and the area between (light shading).

To each path D € Dn we associate a vector I(D) = (i1 < i 2 < . . . < in), where ik is
the x-coordinate of the unique NORTH edge (ik, k — 1) > (ik, k) in the path. It is easy
to see that a vector I= (i1 < i2 < • • • < i n ) comes from a path of Dn if and only if its
coordinates satisfy the conditions

We can also represent the vector I (D) in the form 0ao 1a1 • • • (n - 1)an-1 where ai = ai (D)
gives the number of NORTH steps of D along the line x = i. In our example this would be
a0 = 4, a2 = 3, a5 = 2, all other ai = 0.

For instance in the example above

It is also easy to see that the quantity

gives the number of cells of SQ[n] that are above D. This immediately gives the identity

202
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Figure 3.

It develops that the coefficient kn(q) can be obtained by an appropriate q -counting of the
elements of Dn. This connection is a simple consequence of a factorization of the paths
of Dn. More precisely, given D e Dn and given that a0(D) = k we can break D up (see
Figure 3) into a vertical step of length k followed by a sequence of paths

each preceded by an EAST step, with Dmi e Dmi and

Of course, if one of the summands here is 0 the corresponding path must be assumed to be
consisting of a single lattice point and all we see is the EAST step that precedes it. Moreover,
we require that the path Dmi has its first and last vertices on the line x = i + y — k. A look
at Figure 3 should give a clear idea on how this factorization should be carried out.

Symbolically, we can represent this factorization by writing

where Vk denotes the initial vertical portion of D consisting of the first k NORTH steps, and
the symbol E, represents the EAST step that precedes Dmi. Note that the number of cells
weakly east of Dmi and strictly west of the diagonal of SQ[n ] is given by a(Dmi)+(k - i )mi,-,



thus the factorization in (53) yields us the identity
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where the (k) is contributed by the cells weakly east of Vk. This given, we can state our

combinatorial interpretation of kn(q) in the following form.

Theorem 2.2

Proof: Denote for a moment the right-hand side of (55) by on (q). The factorization (53)
and the identity (54) imply that we must have

From this we immediately derive that on(<?) satisfies the recursion

where we must adopt the convention that o 0 (q) = 1. This given, to complete our argument
we need only show that kn(q) itself satisfies the same recursion. Our point of departure is
Eq. (44), which after multiplying both sides by E(z) and using (39) becomes

Canceling the common factor z and making the replacement z > zq we obtain

We can use Proposition 2.1 once more and get

But now (41) and (42) allow us to rewrite (57) in the form



The polynomials H u (x ;q , t ) which enter in our formula (15) have a similar

We can see, that as long as q and t are generic, the y^s are all distinct. This al-
lows Macdonald to construct P u ( x ; q , t ) as the unique polynomial satisfying the condi-
tions

It is shown there that the eigenvalues of d1 are given by the sums

and

with

which is plainly equivalent to the one in (56). This completes our proof. S

3. Specializations and further identities

To proceed with our developments we need to review some further material from the theory
of Macdonald polynomials. We recall that in [20] Macdonald introduces an operator on
the space An of symmetric polynomials in the variables {x1, x 2 , . . . , xn} by setting for
Pe An

Equating coefficients of zn yields the recursion

Making the replacement z > z/q we finally obtain
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characterization. It will be convenient here to express this characterization in A-ring nota-
tion. A first step in this direction is provided by the following basic identity.

Theorem 3.1 For any symmetric polynomial P(x)we have

where

Proof: Before we proceed with our argument we must recall that all A-ring identities
may be deduced from the single basic principle that the operation pk[•] is a ring homomor-
phism:

Thus if we define

then (64) becomes a simple consequence of the identity

This given, to show (63) it is best to verify it on the power symmetric function basis. Note
that since we may write for any integer m > 1

we see that for any partition u = (u1 > u2 > • • • > uk > 1) we have (from (58))

Note next that the kernel in (64) has the z-partial fraction expansion
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which gives that for an integer m we have

Using this identity for m = £reS ur we can rewrite (67) in the form

which reduces to (63) by the additivity of the power symmetric function. S

Macdonald in [20] derives a number of specializations for his polynomial P u
( x ; q , t ) .

One of them plays an important role here. In A-ring notation it can be stated as follows.

Proposition 3.1

This yields the following specialization for our polynomial Hu(x; q,t).

Corollary 3.1

In particular we must have

Proof: Multiplying both sides of (68) by hu(q, t) and using (10) and (8) gives

Replacing t by 1/t and multiplying by tn(u) we get from (11)



and (70) follows upon division by 1 - u and changing the sign of u. S

We are now in a position to derive our A-ring characterization of the polynomial Hu (x; g,t) •
To this end let us set for any symmetric polynomial P(x)
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as desired. Now, using (11), this may be rewritten as

However, it is well known and easy to show that

Thus (71) reduces to

This given we have

Theorem 3.2

Proof: Using Theorem 3.1 we we can rewrite a) of (62) in the form

Making the replacement X > 1-t multiplying both sides by h u ( q , t) and using (8) we get
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which is converted by (10) and (61) into

Making the replacement t >1 / t , multiplying by tn(u)+n-1 and using (11) gives

Now note that for a partition u = (u1 > u2 > • • • > un > 0) we have from (13)

or better

Substituting this in (75) we finally obtain

which is easily reduced to (74a). Finally, equating coefficients of un-1 in both sides of (70)
we get that the coefficient of the Schur function S1n(x) = en(x) is precisely as asserted in
(74b). This completes our proof. S

Note that since the polynomials Bu(q, t) are all distinct, (74a) fixes H u ( x ; q , t ) up to a
multiplicative constant. Clearly, this freedom is removed by the knowledge of any one of
the coefficients in the Schur function expansion (11). Thus we see that (74a) together with
(74b) uniquely determine H u (x ;q , t ) . In particular we must have

Corollary 3.2
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Proof: The definition (73) makes the operator A1 symmetric in t and q. Thus from (73a)
we get

On the other hand (74b) becomes

However, since Bu(t, q) = B u ' (q , t) we see that the polynomial H u ( x ; t, q) satisfies pre-
cisely the conditions which characterize H u ' ( x ; q,t). Thus (76) must hold true as asserted.

We are now in a position to establish our specializations (18) and (19). Both of them
have straighforward but tedious verifications. However, we will follow here a more indirect
path to them since in the process we will collect some rather remarkable identities. We start
by noting that our polynomials {Hu(x; q, t ) } u satisfy the following Cauchy formula:

Theorem 3.3

Proof: Making the replacements X >1-t and Y >1-t in (6) and using (8) and (10)
we get

Making the replacement t > 1/t and using (11) gives

Now note that

Thus, since for any alphabet A we have hn[—tA] = (—t)nen[A], we easily see that (77)
follows from (79) upon cancelling the factor (—t)n from both sides. S

Formula (77) has the following immediate specialization:
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Corollary 3.3

Proof: Just make the replacement Y -> (1 — u) and use (69). s

A further specialization is obtained by eliminating the presence of u in (80). This gives

Corollary 3.4

Proof: Note that each summand of (80) has the factor (1 - u) in the numerator and reduces
to the corresponding summand in (81) (see (13)) if we divide this factor out and set u = 1.
On the other hand, we have

where the symbol O [ ( 1 — u)2] is to indicate that the remainder is a sum of terms all divisible
by (1 — u)2 at the very least. This is simply due to the fact that the expansion of en in terms
of power sums can be written in the form

where mt (o) is the number of cycles of length i in a. Thus the first term in the right hand
side of (82) represents the contribution of the full cycles of Sn and the rest comes from
the remaining permutations. This given, we see that we can divide both sides of (80) by
(1 - u), setu = 1, and obtain (81) as desired. S

We can easily see from (74) that the A1 image of (81) produces a right hand side that
is remarkably close to the right hand side of defining formula (15). It turns out that this
calculation yields the following beautiful identity:

Theorem 3.4

Proof: As we already observed, in view of (74), the right hand side of (83) is the result
of applying A1 to the right hand side of (81). Thus we only have to compute the image of
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the left hand side. However, due to the linearity of the power symmetric function under
plethysm we immediately get from (73):

which gives (83). S

It develops that both (18) and (19) can now be established by placing information extracted
from (83) back into (15).

Theorem 3.5

Proof: From (8) and (10) we get that

Now, Macdonald showed [20] that the polynomial P u { x ; q , t ) reduces to the ordinary Schur
function when t = q. This gives

Thus the specialization t = 1/q reduces (83) and (15) to the form

Here the rational function A u (q) can be identified without computation from the dual
Cauchy formula



A REMARKABLE q, f-CATALAN SEQUENCE 213

This gives that

In particular, from (72) we derive that this sum need only be carried out over hook shapes.
A simple calculation gives that when u' = (V, n — r),

and using (72) with u = q we get

On the other hand, (72) again with u = qn+l and u' = (lr, n — r) gives

This permits us to write (86) in the form

and (84) is now a consequence of the dual Cauchy formula

This result yields more than (4). More precisely we have:

Corollary 3.5 For any partition A.

In particular



Proof: By splitting X from the rest of the argument of en in (87) we obtain yet another
dual Cauchy formula. Namely

Theorem 3.6

where u' = (u', u ' , . . . , u'h) denotes the partition conjugate to u. From this, using (8)
and (10), we derive
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and (88) is obtained by substituting this in (84) and equating coefficients of sy(x). To
prove (89) we note that the first equality follows from (88) because, as we have already
observed, (74b) gives Cn(q, t) = DHn(jc; q, t) \ e n ( x ) - But then the second equality is a
simple consequence of the g-binomial expansion

and the corresponding Cauchy identity.

Proof: In [20] Macdonald gives the specialization

where as is customary, for any integer m and any parameter t we set

Making the replacement t > 1/t in (91), and using (11) gives
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Since as we have observed, for any alphabet A we have en[—tA] = (—t)nhn[A], we are led
to the specialization

But now the symmetry expressed by Corollary 3.2 yields us also the other specialization

This given, we are in a position to let t > 1 in (83) and (15). To this end we note that the
coefficient of Hu(x; q, t) in (83) may be rewritten in the form

where k denotes the number of parts of u and a1,a2, ...,as denote the lengths of the
successive vertical segments of the east boundary of the diagram of u. Since both numerator
and denominator of A u (q , t) have the factor (1 — t)k as a common divisor, we can cancel
it out and set t = 1 to get

Substituting (92) and this into (83) and making the appropriate cancellations we are finally
led to the expansion

On the other hand since for any two alphabets A and B we have the dual Cauchy formula

with f u[B] denoting the forgotten basis element, we can use it with A = 1-q and B = 1 — q
and get that
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Comparing with (93) we are led to the conclusion that

Since the coefficients of H u ( x ; q,t)in (83) and (15) only differ by the factor tn(u)qn(u') we
can pass to the limit as t > 1 in (15) and derive the specialization

which is just another way of writing (90). This completes our proof. S

Remark This theorem establishes the claim we made in the introduction that the formal
series f ( z ) defined by (20) and (21) is indeed the solution of the q-Lagrange equation in
(23). In particular, equating coefficients of en(x) in (55), we deduce that the specialization
Cn(q) = Cn(q, 1) may be given the combinatorial interpretation

from which the recursion in (5) can be easily derived.
We close this section by establishing a number of identities closely related to our q, t-

Catalan which are also of independent interest. To do this we need to extract some further
information from the theory of Macdonald polynomials.

where w is the involution that interchanges the elementary and the homogeneous symmetric
function bases. In particular, we have

Proof: We recall that in [20] Macdonald proved that

Making the substitution x > 1-t, multiplying both sides by h u ( q , t ) and noting that
hu(q,t) =hu(t,q), formulas (8) and (10) give

Theorem 3.7
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This is converted by (11) into

Using (76) we get

and (94) follows upon replacing q by 1 /q . The identity in (95) is then obtained by equating
the coefficients of sy (x). S

Theorem 3.8

Proof: Formula a) is an immediate consequence of (77). In fact, when the alphabet Y
reduces to a single letter z, the left hand side of (77) becomes

To evaluate the right hand side we note that, when Y = {z}, (11) reduces to

On the other hand since (74b) essentially states that

then (95) for y = (n) gives

Thus

and we see that in this case (77) is none other than (96a) multiplied by zn.
It develops that after making the substitutions t > 1 / t , q >1/q formula (96a) becomes

(96b). Indeed, if we do this we get
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Cancelling the common factor tnqn and using (94) we get

and (96b) follows by applying the involution W to both sides of this relation.

Theorem 3.9

Proof: Note that for any two alphabets A, B we have the addition formulas

Using (99a) with A = (l_^(l_q) and B = 1 / z , from the definition (73) we immediately
obtain

However, since

(100) reduces to
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as desired. Using (99b) in an analogous manner we get

which reduces to (98b) since here hn_k[ 1/z] = (1/z)" * and

The machinery we have put together allows us to derive an interesting collection of
identities. Remarkably, it develops that many of the sums that can be obtained by deleting
some of the factors in the q, t-Catalan summand evaluate to familiar expressions. We give
below a representative sample.

Theorem 3.10
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where h u ( t ) and h u (q) denote the standard hook products, for instance

Proof:
a) Just equate the coefficients of en (x) in both sides of (83) and use (74b).
b) The Schur function expansion of the power symmetric function pn(x) may be written

in the form

where X(n) denotes the value of irreducible character xy at the n-cycles. In particular this
gives that

Thus (lOlb) follows by equating the coefficients of en(x) in (81) and using (74b).
c) Applying A1 to (96a) and using (74a) we get

which gives (using (97))

which is the left hand side of c). On the other hand we have

and since

we derive that
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and (lOlc) follows by combining (98a) with (103), (105) and the dual Cauchy identity

d) Equating coefficients of en(x) on both sides of (102) gives

which is the left hand side of d). On the other hand since

(104) now gives

and (101 d) follows by combining (98a) with (107), (108) and the Cauchy identity

e) Equating coefficients of en(x) in (96a) and using (74b) gives

On the other hand, from the dual Cauchy formula

we get

and (lOle) follows from the classical identity
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Note that the same identity could be obtained by equating coefficients of S(n)(=hn) in (96b).
f) Equating coefficients of S(n) in (96a) and using (97) gives

On the other hand, from (110) we get

This establishes (101f).
g) Equating coefficients of en in (96b) and using (74b) gives

But then from the standard Cauchy formula

we derive that

and (101g) follows from the dual Cauchy formula in (111),
h) Finally, equating coefficients of en in (98b) we get

But (112) rewritten for n = k gives

and (101h) immediately follows since for v h k

This completes our proof.
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4. Diagonal harmonics

We shall deal here with certain subspaces of the ring Q[X, Y] of polynomials with rational
coefficients in the two sets of variables X = [ x 1 , X 2 , . . . , x n ] and Y = { y 1 , y 2 < . . . , yn}. For
a given exponent vector p = ( p 1 , p2, • • •, pn) we set

If

then we let

and refer to it as the bihomogeneous component of P of bidegree (h,k). A subspace
M c Q[X, Y] which contains all the bihomogeneous components of each of its elements
is said to be bigraded. If M is bigraded then it has the direct sum decomposition

where Hh,k(M) consists of the bihomogeneous elements of M of bidegree (h, k) or, equiv-
alently the space

We refer to it as the bihomogeneous component of M of bidegree (h, k).
Recall that the diagonal action of the symmetric group Sn on Q[X, Y] is defined by

setting for a E Sn and P € Q[X, Y]

Note that if a bigraded subspace M c Q[X, Y] is invariant under this action, then all its
bihomogeneous components are also invariant. In this case we have an associated bigraded
character HM(q, t) which is defined as the bivariate generating function of the characters
of the components Hh,k(M). In symbols
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We also have an associated bigraded Frobenius characteristic C M ( x ; q , t ) which is simply
the image of MM(q, t) under the Frobenius map. In symbols

where H M ( a ;q,t) denotes the value of this character at a and py(a) (x) is the power basis
element indexed by the partition y(a) which gives the cycle structure of a. Since the Schur
function Sy(X) is the Frobenius image of the irreducible Sn-character xy we then have the
two parallel expansions

where the Cy,M(q,t) is the bivariate generating function of the multiplicity of xy in the
various bihomogeneous components of M. In particular, when M is finite dimensional,
C y , M ( q , t ) will necessarily be a polynomial with non-negative integer coefficients.

This circumstance yields a representation theoretical approach to the Macdonald conjec-
ture concerning the coefficients K L u (q , t). Note that (11) and (95) yield

Thus if K y u (q , t) is a polynomial it must necessarily be of degree n(u ' ) in q and degree
n(u) in t. This shows that the Macdonald conjecture is equivalent to the statement that the
K l u ( q , t) themselves are polynomials with positive integer coefficients. In particular we
may prove the Macdonald conjecture by constructing (for each u) a bigraded module whose
Frobenius characteristic is given by the polynomial Hu(x; q, t). This observation has been
the point of departure in a continuing investigation that has brought forward a number of
problems that are of interest in their own right. In particular, it ultimately brought us to a
path which led to the q, t -Catalan and the calculations of the present paper. To see how all
this comes about we need some further ingredients.

Let u = (U1 > u2 > ··· > uk > 0) be a partition of n and let

be the pairs (l', a') of the various cells of the diagram of u, arranged in lexicographic order.
Set

This given, we let Mu[X, Y] be the space spanned by all the partial derivatives of Du(x,y).
In symbols



Since the polynomial Du(x, y) is bihomogeneous of bidegree ( n ( u ) , n(u ')) and alternates
in sign under the diagonal action, we can easily deduce from (125) that Mu[X, Y] is, under
this action, a bigraded Sn -module. We may then write its Frobenius characteristic in the
form
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Supported by extensive computer explorations and strong theoretical evidence, in [7] we
conjectured that indeed we have

This equality, which we refer to as the C = H conjecture, is one of several that can be found
in [7], where we presented (for each u) a number of different constructions all of which,
upon the validity of the C = H conjecture, should lead to the same bigraded submodule of
Q[X,Y].

Clearly, (127) is equivalent to the identities

Now it is shown in [9] and [8] that this does hold true for all u when L is a hook and for all
L when u is a hook, a 2-row or a 2-column partition. Moreover, it has recently also been
verified (by different independent approaches in [1] and [21]) for all partitions of the form
u = (1k,2,n-k-2).

It is a classical construction of the invariant theorists that with every finite matrix group
action on the polynomial ring there is an associated space of harmonic polynomials which
are solutions of all corresponding non-trivial homogeneous invariant polynomial differen-
tial operators. In the case of the diagonal action, the corresponding space of harmonic
polynomials, which we shall refer to as Diagonal Harmonics may be simply defined as the
solution space

It is easy to see that we have here yet another bigraded subspace of Q[X, Y] which is also
invariant under the diagonal action.

Its discovery prompted the second author to carry out an extensive computer exploration
of the space DHn[X, Y]. The resulting data suggested a number of surprising conjec-
tures concerning various specializations of the bigraded character of DHn[X, Y]. These
conjectures are described in full detail in [12].

Now very recently, in an algebraic geometrical setting suggested by C. Procesi, the
second author, assuming the C = H conjecture and a number of other desirable algebraic
geometrical facts, was led to conjecture that the Frobenius characteristic of DHn[X, Y]



There is a convenient way to depict a Parking Function, which reveals many of its properties.
In the n x n lattice square SQ[n] of Section 2 we represent the drivers that prefer the kth

place by labeled circles, stacked on the kth column starting at the lattice square at height
equal to one plus the number of drivers who prefer one of the first k — 1 parking places.

Note that in particular, this implies that our q, t-Catalan must necessarily be the Hilbert
series of the alternating part of DHn[X, Y].

It is precisely this development that led us to the calculations we have presented here.
Indeed, we were thus forced to investigate to what extent the implications of this identity
could be conciliated with the various conjectures ventured in [12]. We shall presently
see that all of the conjectures in [12] are, in fact, only specializations of (129) and they
may be replaced by the single identity in (129). Since this identity was derived through
algebraic geometrical considerations which are entirely independent of the calculations of
the present paper and the computer explorations that led to the conjectures in [12], this
complete agreement may be viewed as the most remarkable evidence in support of the
C = H conjecture. To fully appreciate what we are asserting here we need to briefly
review some of the contents of [12].

The most fascinating discovery advanced in [12] is that the diagonal action of Sn on
DHn [X, Y] appears to be equivalent to a sign-twisted version of the the action of Sn on the
so called Parking Functions of Konheim and Weiss [15]. In fact, there is even a graded
refinement of this, but to state it we need to know some properties of Parking Functions.

This concept, which also arises in computer science in the theory of hashing [14], can be
defined picturesquely as follows. On a one way street there are n parking spaces, labeled
1, 2 , . . . , n in succession. There are n drivers who plan to park on this street. Each of the
drivers has a preferred parking space in mind. Say the ith driver wishes to park in parking
space fi. We call the map i -> fi) a Preference Function. The cars arrive one at a time.
The ith car proceeds to parking space fi and, if it is free, the driver parks there. However,
this place may already be occupied. If that happens, the driver will proceed (in the legal
direction) to the first available parking space and park there. A Parking Function is simply
a Preference Function under which all cars will be able to park. It is easy to see that not all
Preference Functions are Parking Functions. For instance if less than 4 drivers wish to park
in the first 4 parking spaces then more than n — 4 prefer to park in the last n — 4 parking
spaces and they cannot all park. However, this type of occurrence is the only thing that can
go wrong. More precisely, it can be shown that a Preference Function is a Parking Function
if and only if for all k there are at least k drivers who prefer one of the first k places. In
symbols

is none other than the symmetric polynomial defined by (15). That is, using the present
notation, we should have
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Figure 4.

Figure 4 illustrates the Parking Function

Driver i is represented by a circle labelled i, and we agree to place the labels in increasing
order along each column. This manner of representing a Parking Function brings into
evidence that there is a path D e Dn associated to each Parking Function. This is simply
the graph of the function k -> #{i : fi < k}. The condition in (130) assures that this path
remains weakly above the diagonal. We can reverse the process and construct all Parking
Functions in the following manner. We first choose a path D E Dn. Next we draw circles to
the right of the vertical steps in the path. Finally we choose the labels that are to fall in each
column and place them there in increasing order. Note that if D has s vertical segments of
lengths d 1 ,d 2 , . . . ,ds then there are exactly

ways of placing the labels in the circles. It will be convenient to denote by Pn the collection of
all parking functions on the one way street with n parking spaces, and by Pn (D) the Parking
Functions constructed in this manner from the path D. Now there is a natural way to let Sn

act on Pn. For a given a E Sn we simply replace the label i by zi, and rearrange the circles
so that the labels again increase along the columns. In other words we assign the driver of
car zi, what used to be the preference of the driver of car i. It is clear from our construction

that under this action Pn breaks up into 1/n+1(2nn) orbits, given by the subcollections Pn(D)
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as D varies in Dn. This implies that the corresponding Sn -representation contains precisely

1/n+1(2n
n) occurrences of the trivial representation.

The area a(D) under a Dyck path D corresponding to parking function / will be briefly
referred to as the weight of /. Note that since the corresponding Dyck path does not change
under the Sn action, the weight itself will also remain invariant. This given, the Parking
Function conjecture made in [12] can be expressed as follows

Conjecture The action of Sn on the diagonal harmonics of DHn[X, Y] which are ho-
mogeneous of degree k in the Y variables is a sign-twisted version of the action on the
collection of parking functions of weight k.

Now it is not difficult to show (see [12]) that this conjecture is equivalent to the symmetric
function identity

Putting this together with (55), (43) and (90) we see that the Parking Function conjecture
(Conjecture 2.6.4 of [12]) is thus simply the special case t = 1 of (129). Note further that
since the coefficient of en in (132) is

we can deduce that if (129) holds then the alternants of DHn have a Hilbert series which
specializes for t = 1 to the q-Catalan number Cn (q) defined by (5). The conjecture that the
dimension of the alternating part of DHn is given by the Catalan number was also noted in
[12]. Of course, it is also a direct consequence of the ungraded Parking Function conjecture

since if we sign-twist a representation with 1/n+1(2n
n) occurrences of the trivial we will get a

representation with the 1(2n) occurrences of the sign representation.

Conjecture 2.5.1 of [12] states that the coefficient of the irreducible character xL in
P n (q , 1/q)q(n) is given by the Schur function specialization

Note that it is not even obvious that this rational function simplifies to a polynomial for
general L, let alone to a polynomial with positive integer coefficients. However, Proposi-
tion 2.5.2 of [12] assures us that this is indeed the case. In A-ring notation this conjecture
translates into the symmetric function identity
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which, as we have seen, is the content of Corollary 3.5. Thus we see again that this second
conjecture from [12] is another specialization of (129).

Using conjecture (129) we get complete information about each of the invariant subspaces
Hh,k(DHn). In particular, we can easily calculate for large values of n the bivariate Hilbert
series of DHn. In fact, it is not difficult to see that this Hilbert series is given by the formula

where again p\ denotes the first power symmetric function. So assuming (129) we obtain
that
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where

Now in [9] (see also [8]) we established a recursion from which F u (q , t) is easily computed.
Our computations, carried out for n < 16, exhibit F u ( q , t) as a beautiful polynomial with
integer coefficients giving further support to the Macdonald conjecture as well as our C = H
conjecture, the latter implying that F u ( q , t) should give the Hilbert series of our modules
Mu[X, Y]. In this manner we can also easily evaluate (136), the result of course agreeing
perfectly with the tables in [12] of the actual values of FDHn(q, t) for n < 7.

The present work has a closely related extension which leads to further combinatorial
constructs and conjectures. It develops that for each integer m > 0 the two sequences

and

admit a treatment that follows closely our treatment of Cn(q, t) and DHn(x; q, t). To see
how this comes about we need some definitions. Let J = Jn denote the ideal generated
by the polarized power sums



which in particular implies that also C(m)
n(q, t) must be a polynomial with non-negative

integer coefficients. It can be shown (see [12]) that R ( m ) [ X ; Y] for m = 1 reduces to a
bigraded Sn-module Q[X, Y]/J equivalent to DHn[X, Y]. Moreover, it is a special case
of the relationship between R(m) and F(m) that any basis of diagonal harmonic alternants
minimally generates A. This given, we see that (141) and (142) are natural extensions of
our conjectures concerning DHn(x; q, t) and Cn(q, t). We should thus suspect that some
of our manipulations in Sections 1 and 2 can be carried out also for an arbitrary m > 1.
We should also expect some interesting combinatorial descriptions for the specializations
at t = 1/q and t = 1 for both DH(m)

n(x; q, t) and C(m)
n(q, t). It develops that this is the

case up to a point. We shall see that an exploration of these two constructs leads to some
very interesting questions.

5. The extended family C(m)
n(q, t): Results and problems

In this section we give a brief overview of what can be proved concerning DH(m)(x; q, t)
and C(m)

n(q, t). For brevity and to avoid repetitions we shall omit some of the details here,
especially when they can be easily filled in by imitating our previous arguments.

Combining this with (140) and (16) we deduce the further conjecture that

Now the same algebraic geometrical considerations which produced (129) have led the
second author to conjecture that

Clearly R(m)[X; Y] is a bigraded Sn-module under the action described and F (m)[X; Y]
carries only the sign representation. This given, we let CR

(m)(x; q, t) denote the Frobenius
characteristic of R(m)[X; Y] and let FF(m)(q, t) be the Hilbert series of F(m)[X; Y]. From
the preceding remarks, we have

and twist its natural Sn-action by the (m - 1)sf power of the alternating representation,
so that the generators of this module, which are the minimal generators of Am-1, become
Sn-invariant. It is not hard to show that the Sn-alternating part of R(m)[X; y] is naturally
isomorphic (except for a sign twist) to the space spanned by any minimal set of generators
for Am. Let us call this space F(m). In symbols

and let A = An denote the ideal generated by the polynomials P ( x 1 , X 2 , . . . , x n ; y 1 ,
y 2 , · · · , yn) which alternate in sign under the diagonal action. For convenience let us set
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In the case m = 1, as we have already mentioned, the right hand side of (145) q -counts
Dyck words by the major index statistic. However, we don't know what the extension of
this property might be for arbitrary m. There is at least one clue. The lattice path setting
of Section 1 has a natural extension here. Denote by RE(m)[n] the lattice rectangle with
vertices (0,0), (mn, n). Proceeding in an analogous manner we shall let D(m)

n denote the
collection of lattice paths that consist of NORTH and EAST steps and constantly remain
above the diagonal joining (0,0) to (mn, n). Now it easy to show that, for q = 1, the right
hand side of (145) gives the cardinality of D(m)

n. Given a path P e D(m)
n let us label each

EAST step by an a and each NORTH step by a b and let w(P) denote the word obtained by
reading these letters out of P from left to right. We might suspect that in general the right
hand side of (145) q-counts these words by the major index statistic as it does for m = 1.
This is not so even for m = 2. We must then leave it as an open problem to find the statistic
on words that works in the general case.
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To begin with we have an analogue of Theorem 3.5. Namely

Theorem 5.1

Proof: The same calculations that led us to (86) now yield

Using (72) with u = qmn+1 this can be rewritten in the form

which easily yields (143) by an application of the corresponding dual Cauchy identity.

We thus obtain a complete analogue of Corollary 3.5:

Corollary 5.1 For any partition L

In particular



To conform as closely as possible to the notation of Sections 2 and 3, let us denote the
symmetric function in (146) by k(m)

n(q). For a given P E D(m)
n let a(P) denote the number

of lattice squares below P that are above the diagonal of RE (m)(n) and let ai(P) denote,
as before, the number of NORTH steps of P on the line x = i. This given, we have the
following extension of the identity in (55).

Theorem 5.3

Obvious as this may be to conjecture, given (55), its proof turns out to be not entirely
routine. In fact, it will involve some rather surprising uses of our A-ring and Lagrange
inversion machinery. For the moment we shall let P(m)

n(q) denote the right hand side
of (147) and shall obtain the equality k(m)

n(q) = P(m)
n(q) as the ultimate consequence of

a number of auxiliary propositions which will progressively change both of them into a
common final expression.

Our basic ingredient here is the formal series

Note that by Proposition 2.1 (with q replaced by qm) this is equivalent to setting

Let us also define f(z) = Zk>1 fkz
k as the solution of the Lagrange inversion problem

where, as in Section 2,
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Our next task is to derive a combinatorial interpretation for the specializations at t = 1 of
DH(m)(x; q, t) and C(m)

n(q,t).We start with the following identity which can be established
by only minor changes in the proof of Theorem 3.6.

Theorem 5.2
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Finally, following (42) let us also set

This amounts to setting as in (41)

Now it turns out that f(z) and g(z) are not equal, as we might have been inclined to believe.
Rather we have

Proposition 5.1 The formal power series g(z) is the solution of the inversion problem

Proof: Using the notation of Section 2 we may write F(z) in the form

Substituting this into (153) and making the necessary cancellations yields

and a multiplication by *E(z) gives

Since now qm plays the role of q, the natural unroofing operation we must work with here
should be

In fact, this untagles qm-products of the form

More precisely, we have
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This given, unroofing both sides of (155) we get

Using (152), cancelling z and making the substitution z -> z/q we get

We can now follow almost verbatim the steps in the proof of (43). The only change is that
now the alphabet A must be chosen so that

We are thus led again to the equation

The dual Cauchy formula (50) then gives

which by (156) is seen to be equivalent to our original definition (146). This completes our
proof. D

We shall next examine f(z) and its relation to g(z). To this end it is more convenient to
set

This given, we obtain the following recursion for the coefficients of H ( z ) .

Proposition 5.2

Proof: Multiplying (150) by the denominator of F(z) in (148), making the replacement
z -> zqm and cancelling out z gives
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Using again Proposition 2.1 we deduce (by (157)) that this identity is equivalent to

The substitution z —> z/q simplifies this to

and our desired identity (158) immediately follows by equating coefficients of zn. n

Formula (158) reveals that Hn(q) may be also be obtained by appropriately q-counting
ordinary Dyck paths. In fact, note that (158) is essentially (56) with qm replacing q and
e k [ X 1 - q m ] replacing ek(x). This observation immediately yields the following corollary of
Proposition 5.2.

Proposition 5.3

The A-ring expression e k [ X 1 - q m ] may also be given a lattice path interpretation. To see
this, let F(m, k) denote the collection of lattice paths (which proceed by EAST and NORTH
steps) that start at (0, 0) with an EAST step and end at (m, k). For a path G e F(m, k) we
let a(G) denote the number of lattice squares below G and let ai(G) denote as before the
number of NORTH steps of G on the line x = i. This given, we have

Proposition 5.4

Proof: The addition formula for the elementary symmetric function ek gives

Given a choice of k 0 , k 1 , . . . , km-1 with k0 + k1 +···+km-1 = k let G(k0 , k 1 , . . . , km-1)
denote the path of F ( m , k ) which has ki NORTH steps on the line x = m — i. This
establishes a bijection between F(m, k) and the summands in (161). Now it is easy to see
that the number of lattice squares under G ( k 0 , k 1 , . . . , km-1) is given precisely by the sum
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Since by construction ai(G(k0, k 1 , . . . , k m - 1 ) ) = km-i we see that (160) is just another way
of writing (161). D

This result allows us to rewrite the right-hand side of (147) as a sum over Dn. Namely
we have

Proposition 5.5

Proof: Given a path P E D(m)
n and an integer i E [0, n] let (mi, yi) be the point of P with

x-coordinate mi and highest y-coordinate. It is easy to see that there is a unique path in Dn

which passes through the points

Let us denote this path by D(P).
For a given D E Dn we can construct all the paths P E D(m)

n for which D(P) = D by
the following procedure. We first take each EAST step of D and replace it by m successive
EAST steps to obtain a path P ( D ) e D(m)

n which passes through the points

Then between the vertices ((i — 1)m, yi-1) and (im, yi) of P ( D ) we insert a subpath that
proceeds by EAST and NORTH steps and starts with an EAST step. Clearly, the area under
the resulting element P e D(m)

n decomposes into the area under the path P ( D ) , which is
equal to ma(D), plus the area between the chosen subpath and P ( D ) itself. Now it is
not difficult to see that Proposition 5.4 implies that summing over all possible choices of
subpaths produces the identity

But then summing over all D E Dn yields the equality in (162) as desired. n

An immediate corollary of this result is a recursion expressing P ( m )
n (q) in terms of the

coefficients of f(z). This may be stated as follows.



Proof: This is yet another consequence of the path factorization. To avoid conflict of
symbols, we shall replace mi by ni in both (53) and (54), and otherwise use the same
conventions we made in Section 2. Thus we write

and

The idea is to collect together and sum all terms corresponding to paths D which factorize
as in (165) for a fixed choice of k and n1, n 2 , . . . , nk. We see that in each of these terms
the first vertical segment of a path D e Dn (that is Vk in (165)) contributes the factor ek(x),
and each of the other vertical segments of D contributes a factor of the form em[sX 1-qm].

Now we easily see from (159) that the sum over Dni e Dni of qm a ( D i ) times all the factors
contributed by the vertical segments of Dni must necessarily condense into the coefficient
H n i (q) . Taking into account that (166) gives

and (164) necessarily follows by summing over all possible choices of k and n 1 , n 2 , . . . ,nk.
This completes our collection of auxiliary identities and we can proceed to the

Proof of Theorem 5.3 We are left to show that also k(m)
n(q) is equal to the right hand side

of (164). Our starting point is the inversion problem in (153). Multiplying both sides of

we see that the sum of all the D-terms which correspond to a fixed choice of k and
n 1 , n 2 , . . . ,nk will produce the monomial
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Proposition 5.6
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(153) by the denominator of F(z) in (148) and cancelling out z we get

Making the replacement z -> zqm and changing the summation variable, we may rewrite
this as

Using the basic inversion result of Proposition 2.1 (with qm replacing q) and the definition
(149) of f(z) we can convert (167) into the identity

Rewriting g(z) and f(z) by means of (152) and (157) we are led to

The substitution z -> z/q simplifies this to

from which we immediately derive (equating coefficients of zn) that k(m)
n(q) is indeed equal

to the right hand side of (164) as desired.
As a corollary of Theorem 5.3 we obtain the following combinatorial interpretation for

the specialization of C(m)
n(q, t) at t = 1.

Theorem 5.4

Proof: Using (74) we see from the definitions (138) and (139) that C(m)
n(q, t) is equal to

the coefficient of en(x) in the Schur function expansion of DH(m)
n(x; q, t). Thus, (168) is

obtained by equating coefficients of en(x) in both sides of (147).
Tables of C(m)

n(q, 1) may be easily computed through a recurrence which extends (5).
This recurrence is best expressed in terms of the generating function

and it may be stated as follows.



It develops that (168) is a q-analogue of (171). In fact, the summation in (168) can also
be interpreted as a q-counting of T(m+1)n according to a suitable area statistic. This can
be seen as follows. Given a tree T E T(k)n, let us label each of its leaves by a and
all the other nodes by b. Reading these labels in the depth-first traversal of T yields
a word in the alphabet {a, b} which we shall refer to as the word of T and denote by
w(T). There is a standard way to visualize words constructed in this manner from a
planar tree. We simply associate to T a lattice path P ( T ) whose steps are governed by
the letters of w(T). The idea is to replace each b by a raising step given by the vector
(1,k — 1) and each a by a down step given by (1, — 1). Then as we read one by one
(from left to right) the letters of w(T) we progressively construct all the edges of P (T) .
It is well known [18] and easy to show that the resulting lattice path will remain above
the x-axis, for all but the last step (which necessarily corresponds to the last leaf of T
in the depth-first order). This condition is necessary and sufficient for a lattice path P
with steps given by (1, k - 1) and (1, -1) to be the path of a tree T E Tn(k). The case
of interest here is when k = m + 1. In fact, from the remarks above we can see that
there is a natural bijection between T(m+1)n and D(m)n. Given a tree T e T(m+1)n we simply
replace each (1, m)-step of P(T) by a NORTH step and each (1, -1) step (except the
last) by an EAST step. Clearly, this results in a path P e D(m)n. Moreover, it is not
difficult to show that the area a(P), as defined to give (168), counts also the number of
lattice points (i, j) (j > 0) strictly below those vertices of P ( T ) that are starting points
of (1, m)-steps. Denoting the latter number by A(T) we can thus rewrite (168) in the
form

Proof: We recall that a k-ary tree is a planar tree all of whose nodes have either 0 or
exactly k children. We shall denote the collection of k-ary trees with n internal nodes
by T(k)n. We see that T(2)n is simply the collection of customary binary trees. Thus the
cardinality of T(2)n is given by the Catalan number. More generally we have

Theorem 5.5
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In particular, if we let T(m+1) denote the collection of all (m + 1)-ary trees, we must also
have

where n(T) denotes the number of internal nodes of T. The latter of course is also equal
to the number of (1, m)-steps in P ( T ) .



The functional equation in (170) follows from a factorization of the paths P ( T ) which
is best explained in terms of the corresponding factorization of the words w(T). Note that
unless a T e T(m+1) consists of a single leaf, its root will have m + 1 children and will
necessarily be labelled by a b. Since the letters of T are derived from a depth-first order
reading, we have, by definition,

However, we suspect that the problem of constructing these two statistics might be of
an order of difficulty comparable to the construction of the charge statistic in the work
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Here w(Ti) denotes the word of the ith subtree of T, the latter being the tree rooted at the
ith child of the root of T. Now when we convert w(T) into P ( T ) the path P(T1) will be
attached at the tip of the vector (1, m). As a result the contribution to A(T) coming from
the letters of w(T1) is A(T1) + mn(T\). Similarly, it is not difficult to see that the letters of
w(Ti) will contribute A(Ti) + (m + 1 - i)n(T i) to A(T). To summarize, (174) yields that

Since

we deduce from (174) and (175) that

and the functional equation in (170) is thus obtained by summing over all possible choices
of T1,T2,...,Tm+1. a

This combinatorial fact brings us to the central problem concerning C (m)
n(q,t) We see

that upon the validity of the Conjecture 3.30, there must be for each n and m two statistics,
a(T), B ( T ) on trees in Tn

(m+1), both having the same distribution as A(T), and such that

Moreover we see from (145) that these statistics must also yield the identity



Now, (43) and (90) gave us that the specialization DHn(x; q, 1) = kn(q) is none other
than 1/qn times the coefficient of zn+1 in the solution f ( z ) of the q-Lagrange inversion
problem (26). This suggests that the symmetric function DHn(x; q, t) may also appear
as a coefficient in the solution of some q, t-analogue of Lagrange inversion. Given the
bivariate symmetry exhibited by DHn(x; q, t) this q, t-analogue should turn out to be quite
remarkable. We should point out that that none of the q-analogues that have been given in
the literature so far (see the references in [24]) lead to a formula such as in (177). Thus the
construction of an inversion problem yielding DHn(x; q, t) should lead to new avenues in
Lagrange inversion. d

Appendix: Tables of Cn(q,t)

Displayed below are the polynomials Cn(q, t) for n = 2 through n = 6. For convenience,
we have arranged the coefficients of each polynomial into an array: the coefficient of qhtk
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[16] of Lascoux and Schutzenberger. Thus the solution of this problem might require
deeper combinatorial methods than are being used in most of the bijective combinatorics
of present day literature. In particular we view our q, t-Catalan as a considerably more
complex construct than any of the multivariate Catalan polynomials that have been studied
so far (see, e.g., [4]).

As a final remark we should point out that the specialization of DHn(x; q, t) given in
(84) may be written in the rather suggestive form

where, as in (39), we set

This makes DHn(x; q, 1/q)q ( n ) appear as yet another q-analogue of the coefficient of zn+1

in the solution f ( z ) = Zn>1 fnz
n of the Lagrange inversion problem

Indeed, one form of the classical Lagrange formula would give
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appears in in position (h, k), indexed from (0,0) at the lower left. For example,
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