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The Flag-Transitive C3-Geometries of Finite Order

Abstract It is shown that a flag-transitive C3-geometry of finite order (x, y) with x > 2 is either a finite building
of type C3 (and hence the classical polar space for a 6-dimensional symplectic space, a 6-dimensional orthogonal
space of plus type, a 6- or 7-dimensional hermitian space, a 7-dimensional orthogonal space, or an 8-dimensional
orthogonal space of minus type) or the sporadic A7-geometry with 7 points.
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1. Introduction

A C3-geometry G of finite order (x, y) is a residually connected incidence geometry on
I = {0, 1, 2}, in which the residue of an element of type i is isomorphic to a generalized
quadrangle of finite order (x, y), to a generalized digon, or to a projective plane of order x,
respectively for i = 0,1, or 2.

The remarkable theorem of Tits [18] says that a residually connected geometry with
generalized polygons as rank 2 residues is covered by a building, if its residues of type C3

or H3 are covered by buildings. Thus in attempting to classify a class of diagram geometries
with C3 or H3-residues, we immediately meet problems over which we have no control.
It would be nice if we had the classification of H3- and C3 -geometries. However, it seems
hopeless to classify them in general, because we can construct locally infinite H3- and
C3-geometries by some kind of free construction [18] 1.6. Thus locally finite C3- and
H3-geometries may be reasonable objects to consider. As for locally finite H3-geometries,
we can show that they are the icosahedron and the halved icosahedron (see [14] 13.2),
since they are thin by Feit-Higman theorem. Locally finite non-building C3-geometries are
much more difficult to classify, because there is a finite thick non-building C3-geometry
(called the sporadic A7-geometry) together with non-thick finite C3-geometries. Hence the
classification of localy finite C3-geometries can be thought of as one of the central problems
in diagram geometry.

It has been conjectured that a C3-geometry of finite order (x, y) with x > 2 is either a finite
building of type C3 or the sporadic A7-geometry, if it admits a flag-transitive automorphism
group. M. Aschbacher [1] proved this conjecture assuming that the residues of planes
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(elements of type 2) and points (elements of type 0) are desarguesian projective planes
and classical generalized quadrangles (associated with symplectic, hermitian or orthogonal
forms), respectively. A. Pasini and G. Lunardon investigated the general case and derived
several important results [11, 12, 13], which are summarized in [10]. In particular, the
conjecture was proved assuming the residues of planes are desarguesian [12], and the flag-
transitive flat C3-geometries were classified [9]. Recently, the conjecture was proved in the
case where the 2-order y is even [20].

In this paper, the conjecture is finally established.

Theorem A flag-transitive C3-geometry of finite order (x, y) with x > 2 is either a finite
building of type C3 or the sporadic A7-geometry.

Together with the works by Tits, Meixner, Brouwer and Cohen, and Pasini, this theorem
completes the last case remaining open on the question of locally finite thick flag-transitive
geometries belonging to Coxeter diagrams of rank at least 3 (see the discussion in the
introduction and Theorem 5 in [10]). Note that the locally finiteness implies the finiteness
for these geometries (see the last remark in [14] Section 14 as for those of type E6, E7, E8

and F4).

Corollary A locally finite thick flag-transitive geometry belonging to a Coxeter diagram
of rank at least 3 (that is, one of An, Cn, Dn for n > 3, F4, H3, H4, E6, E7 and E8) is either
a finite building or the sporadic A7-geometry.

The main ingredient of the proof of Theorem is the classification of finite simple groups.
At the present stage, this seems natural for the following reason.

Given a flag-transitive C3 -geometry of finite order, the residue of a plane is a flag-transitive
finite projective plane. Since the residues of planes are desarguesian for the buildings and the
A7-geometry, in order to establish the conjecture, we have to eliminate any flag-transitive C3 -
geometry of finite order with non-desarguesian flag-transitive projective planes as residues
of planes. Thus we need some results on non-desarguesian flag-transitive projective planes.
The best result available so far is the theorem by Kantor [7] (see Theorem 2.2.1), saying
that a flag-transitive non-desarguesian finite projective plane of order x admits an action of
a Frobenius group Fx+1 with p = x2+x + 1 a prime. The proof of this result depends on
the classification of finite simple groups.

In fact, it is conjectured that any flag-transitive finite projective plane is desarguesian.
If this conjecture is solved affirmatively, any flag-transitive C3-geometry has desarguesian
planes as residues of planes, and hence the theorem above follows from the above-mentioned
result of Pasini [12] (see also Theorem 3.7.3). However, at the present stage, it seems
unlikely to obtain the complete solution for the conjecture on flag-transitive projective
planes. We can eliminate flag-transitive non-desarguesian finite projective planes of 'small'
order x, using an interpretation of the conjecture into a problem of elementary number theory
by Feit [5] (see Proposition 2.2.2). Unfortunately, this interpretation is not only difficult to
accomplish in general, but also depends on the above result of Kantor.

Hence so far we cannot get control over the residues of planes in a flag-transitive C3-
geometry without relying on the classification of finite simple groups.
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On the other hand, the present proof does not require so much of knowledge and infor-
mation on C3-geometries. Moreover, required facts can be proved in a very elementary
way, although they are scattered across many books and papers. Thus I decided to write the
paper as self-contained as possible, including reproductions of some known results. Except
for the classification of finite simple groups, the paper relies only on [18, 17, 7, 5] (this is
quite elementary), and some part of [9] (which is not so difficult to read through: see also
the sketch given in [10] 5.3). Other facts used in the paper are either elementary or can be
found in some textbooks (e.g. [15, 16] and [3]).

In particular, I did not use results, whose proofs essentially require the representation
theory of the Hecke algebra for a geometry of type C3 developed by Ott and Liebler. In
[20] (Lemma 1 (5)(7)) we use results obtained from the representation theory and a detailed
analysis on the substructure fixed by an involution. However, this paper does not require
that. To make this point clear, in Section 3, I include the representation free proofs for
what I need, and also make detailed comments to some arguments in [11] (see 4.7) and [9]
(see 4.1.2).

The proof goes as follows. First, the number of maximal flags can be expressed in terms
of the orders x, y and an important constant a (Lemma 3.6.2). Assume that the geometry
in question is not a building nor the A7-geometry. We will derive a contradiction.

This assumption allows us to introduce an equivalence relation = on the points (the
elements of type 0), and in fact the points form one =-class. Then we can establish the
faithfullness of the action of the stabilizer of a point on the residue of the point (Lemma 4.2).
It is worth mentioning that at this very early stage we need the assumption of flag-transitivity
(compare the comments to Theorem A in [7] p. 15 and those to [9] given in [10] p. 27,
Remark 1,2).

Our assumption also implies that the residue of a plane is non-desarguesian or of order
x = 8 with the aid of the result of Kantor [7] and Lunardon-Pasini [9] (Lemma 4.1.1).
Using elementary arguments on generalized quadrangles, we can then bound the order of
the stabilizer of a maximal flag, and so the order of the whole flag-transitive group A in
terms of the prime p in Kantor's result (Lemma 4.4). This is the crucial point of the paper.

The remaining part of the proof mainly requires group theory. We can show that there is
a unique component L of the flag-transitive automorphism group A (Lemma 4.8) with the
aid of the classification of finite simple groups and small remarks on the substructure fixed
by an involution (Lemma 4.5.1). In particular, the non-solvability of A first proved in [20]
is also established at this stage.

Now the simple factor S of L satisfies rather restricted conditions on the order of S (see
the paragraphs before Lemma 5.1), and using the classification of finite simple groups, in
Section 5 we can eliminate each possibility for S. Straightforward estimation for the orders
of explicit simple groups in terms of the prime p plays a central role for the elimination,
which is of somewhat similar flavor to Part II of [7]. Here an elementary result concerning
an action of a central extension of a Frobenius group on a vector space is very effective (see
2.4). The case x = 8 often requires some special consideration.

The paper is organized as follows. In Section 2, I collect the standard terminologies
on geometry and fundamental results on projective planes, generalized quadrangles and an
action of a group. Lemma 2.3.4 seems to be new, and will be used to establish Lemma 4.4.
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Section 3 is a summary of the results on C3-geometries which will be used in the paper
together with their proofs. Section 4 and 5 are the main parts of the paper, where the
conjecture will be completely proved.

2. Review and preliminary results

In this section, we review some terminology on geometries (specifically generalized quad-
rangles) and groups, and then state some lemmas which turn out to be useful in Sections 4, 5.

2.1. Geometries

In this paragraph, we briefly review some fundamental terminologies in incidence geometry.
We basically follow those in [2].

An incidence geometry over an ordered set I = ]{0, . . . , r-1} (0 < 1 < • • • < r — 1)
is a sequence (G0 , • • •, Gr-1) of r mutually disjoint non-empty sets Gi (i e I) arranged in
the order given in / together with a reflexive and symmetric relation * on G0 U • • • U Gr-1

such that for each i e I we have x * y for x, y e Gi if and only if x = y. We usually write
G = (G0 , • • •, Q r - 1 ; *) or simply use G to denote such an object. The cardinality r of I is
the rank of the geometry Q.

The elements of G0 U • • • U Gr-1 are referred to as elements (or varieties) of Q. Two
elements x, y of G are called incident if x * y. A flag is a set of mutually incident elements
of Q. Two flags F and F' are called incident if every element of F is incident to every
element of F'. The type of a flag F (written as type(F)) is the set of indices i e I with
Gi n F = 0.

The incidence graph of a geometry G is the graph (V, E) with the set of elements of G
as V and {x, y} e E whenever x * y and x = y. A geometry G is connected if its incidence
graph is connected. The collinearity graph of G is a graph with the set G0 as the set of
vertices such that two elements x, y E G0 form an edge if and only if x = y and there is an
element l e G1 incident to both x and y.

Two geometries G and H over the same ordered set I are called isomorphic if there is
a bijective map f from UiEIGi to UiEI HiEI sending Gi to Hi for each i e I such that two
elements x, y of G are incident in G iff f(x) and f ( y ) are incident in H.

For a flag F and j e J := I - type(I), we write G j ( F ) := {y e Gi| x * y(Vx E F)}.
The sequence (G j0(F),..., G j m ( F ) ) (arranged in the order on J inherited from I) together
with the restriction of * as the incidence relation forms a geometry over the set J, which is
called the residue of F in G and is denoted by Resg(F) or simply by Res(F). If F = {x},
we write Res(F) by Res(x). A connected geometry G is called residually connected if
| G i ( F ) | > 2 for any i € I and for any flag F of type I — {i}, and if Res(F) is connected
for every flag F of G with |I - type(F)| > 2.

If there exists si (which is a natural number or the symbol I) depending only on i e I
such that there are exactly exactly si + 1 maximal flags containing each flag of type I — {i},
Si is called the i-th order of a geometry G.

The isomorphisms from a geometry G to itself form a group with respect to the composi-
tion of maps, which is denoted by Aut(G) and called the (special) automorphism group of
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G. If there is a homomorphism p from a group G to Aut(G), we say that G acts on G (or G
admits G) and the kernel of p is called the kernel of the action. If a group G acts on G, we
denote by GX the stabilizer of a flag X, that is, the subgroup of G of elements stabilizing
X globally. Since isomorphisms of G preserve Gi for each i € I, GX acts on the geometry
Res(X). The kernel of this action is denoted by Kx. That is, Kx is the normal subgroup of
GX fixing each variety contained in X, and hence Gx/Kx is isomorphic to a subgroup of
Aut(Res(X)).

A group G is called flag-transitive on G if G acts transitively on the set of maximal flags.
A geometry G is flag-transitive if it admits a flag-transitive group. If G is flag-transitive then
the stabilizer GX is flag-transitive on Res(X) and so Gx/Kx is a flag-transitive subgroup
of Aut(Res(X)). Furthermore, if G is flag-transitive, the i-order of G can be defined for
any i 6 /.

2.2. Generalized polygons and projective planes

Let n, s, t be natural numbers with n > 2. A generalized n-gon is a connected incidence
geometry (P, L; *) of rank 2 (see 2.1) whose incidence graph is of diameter n and of girth
2n. If the 0- and 1-orders of G can be defined, and they are s and t respectively, we refer to
(s, t) as the order of G.

The incidence graph of a generalized 2-gon (called digon) of order (s, t) is isomorphic
to the complete bipartite graph with bipartite parts of sizes s + 1 and t + 1. It is easy to see
that a connected incidence geometry (P, £; *) of rank 2 is a generalized 3-gon if and only
if it is a projective geometry (that is, for two distinct elements x, y of P (resp. £) there is
a unique element of £ (resp. P) incident to both x and y).

In the generalized 3-gon, or equivalently, a projective plane P, we have s = t, which is
simply called the order of P. If s = 1, the elements of P are just the vertices and the edges
of an ordinary triangle.

The following result due to Kantor [7] (Theorem A and the proof of Lemma 6.5) on
flag-transitive finite projective planes is based not only on the classification of finite simple
groups but also on the classification of their primitive permutation representations of odd
degrees.

Theorem 2.2.1 [7] If P = (P, £; *) is a projective plane of finite order x (x > 1),
admitting a flag-transitive automorphism group F, then one of the following occurs.
(1) P is desarguesian and F > PSL(3, x).
(2) P is non-desarguesian or desarguesian of order x = 2 or 8. The group F is a Frobenius

group F(x2+x+1) with the cyclic group of prime order p = x2 + x + 1 as the kernel and
a cyclic group of order x + 1 as a complement. The group F acts primitively both on
P and L.

Note that in any case the group F above acts primitively both on P and £.
It is conjectured that the Case (2) does not occur except for x = 2 and 8, but it seems

difficult to prove this. In fact, many arithmetic properties for the prime p = x2+x + 1 are
known, which are unlikely to hold. By an elementary argument, recently Feit [5] verified
the following:
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Proposition 2.2.2 [5] Let P be a flag-transitive non-desarguesian projective plane of
finite order x. Then x is a multiple 0/8 with x > 14,400, 008 and p = x2 + x + 1 is a
prime with p > 207, 360, 244, 800, 073.

2.3. Generalized quadrangles

A generalized 4-gon is also referred to as a generalized quadrangle, which will be abbre-
viated to GQ in this paper. It is easy to see that a connected incidence geometry (P, £; *)
of rank 2 is a GQ of order (s, t) if and only if the following conditions are satisfied, where
we call elements of P and £ points and lines respectively:

(1) Each line is incident to s + 1 lines and two distinct lines are incident to at most one
point.

(2) Each point is incident to t + 1 lines and two distinct points are incident to at most one
line.

(3) If P is a point and L is a line not incident to P, then there is a unique point Q incident
to L and collinear with P.

Recall that two points are called collinear if they are incident to a line in common. Dually
two lines are called concurrent if they are incident to a point in common.

Lemma 2.3.1 For a G Q S = (P, £; *) of order (s, t), the following hold.
(1) ([15] 1.2.1.) \P\ = (s + 1)(st + 1) and |£| = (t + 1)(st + 1).
(2) ([15] 1.2.2.) s + t divides st(s + 1)(t + 1).
(3) ([15] 1.2.3, The inequality of D.G. Higman.) If s > 1, then t < s2.
(4) ([15] 1.4.1.) Let A = { a 1 am}(m >2) and B = { b 1 , . . . , b n ) (n > 2) be disjoint

sets of pairwise non-collinear points of S. If s > 1 and each points of A is collinear
with all the points of B, then (m — 1)(n - 1) < s2.

An ovoid of a GQ S = (P, L; *) is a subset O of P such that any line of £ is incident
to a unique point of O. Any two distinct points of an ovoid are not collinear. We have
\O\ = st + 1 by an elementary counting argument.

The GQ S' = (P', £'; *') of order (s', t') is called a subquagrangle of a GQ S =
(P, £; *), if P' c p, £' c £, and if *' is the restriction of * on the elements of S'.

Lemma 2.3.2 Let S = (P, C; *) be a GQ of order (s, t), having a subquadrangle S' =
(P', £'; *') of order (s, t'). Assume that s > 1 and t > t'. Then the following hold.
(1) ([15] 2.2.1) For each point Q of P - P', there are exactly st' +1 points of P' collinear

with Q which form an ovoid of S'.
(2) ([15] 2.2.2(vi)) If S' has a subquadrangle S" of order (s, t") with t" < t', then t" = 1,

t' = s and t = s2.

(In Lemma 2.3.2(1) above, note that every point of P — P' is an external point in the
sense of [15] 2.2, since S' has order (s, t').)
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In Section 4, we examine the substructure Sz = (Pz, £z; *') of a GQ S = (P, £; *)
of order (s, t) stabilized by an automorphism group Z of S. Here Pz and £z are the sets
of points and lines fixed by all elements of Z respectively, and *' is the restriction of * on
Pz U £z. The possible shapes of Sz can be determined by the same argument as in [15]
2.4.1, where a grid means a geometry (Q, B; *) of rank 2 with Q = {xij |i =0 , . . . , s1, j =
0, . . . , s2}, B = {Li, M j | i = 0 , . . . ,s 1 , j = 0, . . . , s2} for some natural numbers s1, s2

with the incidence * defined by xij *Lk iff i = k and xij * Mk iff j = k, and a dual grid is
a geometry (G0, G1; *) such that (G1, G0; *) is a grid.

Lemma 2.3.3 The substructure Sz = (Pz, £z; *') of a GQ S = (P, £; *) of order (s, t)
stabilized by an automorphism group Z of S is one of the following shapes:
(1) £z = 0 and any two distinct points of Pz are not collinear.
(1') Pz = 0 and any two distinct lines of £z are not concurrent.
(2) Pz contains a point P such that P is collinear with Q for every point Q e Pz and

every line of Lz is incident to P.
(2') £z contains a line L such that L is concurrent with M for every line M e £z and

every point of Pz is incident to L.
(3) Sz = (Pz,£z;*')is a grid.

(3') Sz = (Pz, £z; *') is a dual grid.
(4) SZ = (PZ,CZ; *') is a subquagrangle of S of order (s', t') for some s' > 2 and

t'>2.

Combining the above results, we obtain the following new result on GQ's, which is
crucial to establish the key lemma, Lemma 4.4, in this paper.

Lemma 2.3.4 Assume that a group X acts on a GQ S = (P, £; *) of order (s, t) with
s > 2 and t > 1, satisfying the following conditions.
(i) If an element g E X fixes a line L € £, all the points on L are fixed by g.

(ii) There are two non-concurrent lines of L fixed by X.
Then | X / K | < t, where K is the kernel of the action of X on S.

Proof: By the conditions (i), (ii), the substructure Sx = (Px, £x) of a GQ S fixed by X
contains a pair of non-concurrent lines together with all the points on them. Then it follows
from Lemma 2.3.3 that Sx is a subquadrangle of order (s, t") for some 1 < t" < t. If
t" = t, X acts trivially on S, and so X = K and the claim follows in this case. Thus we
may assume that t" < t.

Then there is a point Q in P — Px. Let Y := XQ, the stabilizer of the point Q in
X. Let A be the X-orbit on P - Px containing Q, and let B be the set of points of
Px collinear with Q. By Lemma 2.3.2(1), B is an ovoid of Sx, and hence B consists
of st" + 1 pairwise non-collinear points. As s > 1, \B\ > 1. As X does not fix a
point of A, \A\ > 1. Since X fixes every point of B while acts transitively on A, each
point of B is collinear with all the points of A. Suppose there are two distinct points S,
T = Sg (g e X) of A which are collinear, and let M be the unique line through 5 and
T. Since S and T are two distinct points on the line M incident to a point P of B, the
line M goes through P by the definition of a GQ. Since M is incident to P = Ps, S
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and Sg = T, M is the unique line through P and S, and also the unique line through
P — Pg and Sg = T. Thus the line M is fixed by g. Then by Condition (i) the point S
is fixed by g, which contradicts the assumption that S = T. Hence the points of A are
pairwise non-collinear. Since the assumptions of Lemma 2.3.1(4) are satisfied, we have
(\A\ - 1) < s2 /(st" + 1 - 1) = s/t".

We can obtain another bound of \A\ in terms of t as follows. Note that in the above we
saw that each line through a point P of Px is incident to at most one point of A. Since the
points on a line of £x are fixed by X, t" + 1 lines of £x through P are not incident to a
point of A Thus \A\<t-t" <t.

The substructure SY of S fixed by Y contains Px U [Q] and Cx. Thus it follows
from Lemma 2.3.3 that SY is a subquadrangle of 5 of order (s, t') properly containing the
subquadrangle Sx. If SY = S, then Y < K and \X/K\ < \X : Y\ = \A\. Since \A\ < t,
as we saw above, the claim follows in this case.

Hence we may assume that SY is properly contained in S. Then it follows from
Lemma 2.3.2(2) that t" = 1, t' = s and t = s2. Pick a point R of P- PY. For the
stabilizer Z = YR of R in Y, the substructure Sz fixed by Z contains PY U {R} and LY,
and hence SZ is a subquadrangle of S properly containing SY. Applying Lemma 2.3.2(2)
to the sequence (SY, Sz, S) of GQs, we have Sz = S, as s > 1. Hence Z < K.

We will bound \X : Y\ = \A\ and \Y : Z| = \A'\ in terms of s, where A' is the Y-orbit
on P - PY containing R. We have already obtained the bound \A\ < (s/t") + 1 = s +1
in the above paragraph. Repeating exactly the same arguments in that paragraph for A' and
the set B' of points of SY incident to R (and replacing X by Y), we conclude that A' and
B' satisfy the assumptions of Lemma 2.3.1(4) and that B' is an ovoid of SY consisting of
(s2 + 1) pairwise non-collinear points. Then we have (\A'\ - 1) < s2/(s2 + 1 - 1) = 1
and so \A'\ = 2. Hence \X/K\ < |X : Y\\Y : Z\ = \A\\A'\ < 2(s + 1) in the remaining
case. As s > 2 by our assumption, 2(s + 1) < s2 = t and the claim follows. D

2.4. Groups

In this paper, the notation in [4] will be basically used to denote particular simple groups.
For the definitions and the standard properties of coprime action of a group on another
group, the Frobenius groups, the components, and E(G) and F(G) of a finite group G,
see [16]. An elementary lemma [6] 3.11, p. 166 on linear groups turns out to be useful in
Sections 4, 5, which I include here for the convenience of the readers.

Lemma 2.4.1 Let F be a group acting faithfully on an n-dimensional vector space over a
finite field GF(q). Assume that F has a cyclic normal subgroup P such that, as a GF(q)P-
module, V is the direct sum of s mutually isomorphic irreducible GF(q)P-modules of
dimension t. Then, identifying V as an s-dimensional vector space W over GF(q'), the
permutation group F on V is equivalent to a subgroup of the group GL(s , q') of semilinear
transformations on W, where FL(s, qt) is a split extension of the linear group GL(s, qt)
by the group of field automorphism isomorphic to the cyclic group Gal(GF(q t)/GF(q)) of
order t. Furthermore, CF(P) corresponds to a subgroup of the linear group GL(s, qt) on W.
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In particular, if F and P satisfy the assumption of the lemma above, F/CF(P) is iso-
morphic to a subgroup of the cyclic group Gal(GF(q')/GF(q)) of order t. In Section 4, we
frequently apply this lemma in the following form.

Lemma 2.4.2 Let B be a finite group containing a normal subgroup C such that B/C is
a Frobenius group with the kernel of prime order p and a cyclic complement of order m.
Assume that B acts on an r-group R for a prime r distinct from p. Assume furthermore
that there is a Sylow p-subgroup P of B of order p such that PC/C is the Frobenius kernel
of B/C and [P, R] = 1. Then \R\ > rm.

Proof: Since B/C is isomorphic to the Frobenius group Fm, PC is normal in B and
hence B = NB(P)C by the Frattini argument. Then B/PC = NB(P)/PCC(P) is a cyclic
group of order m, and there is an element w E NB(P) such that NB(P) = (w)PCc(P) and
z := wm e CC(P). We set F := P(w). Then Z(F) = (z) and F/Z(F) = Fm.

The group P acts coprimely and non-trivially on R by the assumption. The kernel CF(R)
of the action of F on R is a normal subgroup of F not containing P. As F/Z(F) = Fm

we have CF(R) < Z(F). Let K be the full inverse image of Or(F/CF(R)) in F. As K
is a normal subgroup of F not containing P, K < Z(F). Let R = R0 D R1 D • • • D
Rl-1 D Rl = 1 be the chief F-series of R. Each chief factor R i - 1 /R i is an elemen-
tary abelian r-group, affording an irreducible representation of F over GF(r). We can
easily verify that K coincides with the kernel of the action of F on these chief factors:
K = n l

i=1CF(R i-1/R i). As K < Z(F), P is not contained in K, and hence there is an
F-irreducible module V := R i - 1 / R i over GF(r) with P £ CF(V).

The kernel CF(V) of the action of F on V is a normal subgroup of F not containing P,
and so CF(V) c Z(F). The group F := F/CF(V) acts faithfully and irreducibly on the
vector space V and P = PCF(V)/CF(V) is a cyclic normal group of F of order p. By the
Clifford theorem, as a P-module, V is the direct sum of irreducible F-modules V 1 , . . . , Vs

on which F acts transitively. We set n := dim V and k := n/s. By Lemma 2.4.1, F can be
identified with a group of semilinear transformations on V recognized as an s-dimensional
space over GF(rk), in which the group of linear transformations corresponds to CF(P).
Hence F/CF(P) is isomorphic to a subgroup of the cyclic group Gal(GF(rk)/GF(r)) = Zk.
Since Fm = F/Z(F), m divides \F/CF(P)\ and so k. Thus we have m < k < n and
rm <rn -\V\ < \R\. D

3. Properties of C3-geometries

In this section, I give several known facts about C3-geometries with some sketch of
proofs, in order to make this paper as self-contained as possible. Especially, I quote
some results from [12] with explicit proofs along with the original one, because they are
very much important to start the proof of the main theorem. Here I thank Antonio Pasini
for allowing me to do so. Note that the results in 3.5-3.7 do not require the flag-tran-
sitivity.
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3.1. Definition

A residually connected geometry Q = (G0, G1, G2: *) over I = {0, 1, 2} is called a C3-
geometry of order (x, y) if the following hold:

(1) For each element a & G0, the residue Resg(a) of a is a GQ of order (x, y),
(2) For each element l € G1, the residue Resg(l) of l is a generalized digon, and
(3) For each element u E G2, the residue Resg(u) of u is a projective plane of order x.

3.2. Notation

In the remainder of this paper, G = (G0 , G1, G2; *) will always mean a C3-geometry of
finite order (x, y) with x > 2. The letters x and y are always used to denote the 0- and
2-order respectively. Furthermore, the letter A is always used to denote a flag-transitive
automorphism group of G, if G is flag-transitive.

Elements of Gi are called points, lines and planes respectively for i = 0, 1,2. We usually
use the letters a, l and u to denote a point, a line and a plane in a typical maximal flag.
For a flag F and a type i not contained in the type of F, we use Gi(F) to denote the set of
elements of type i incident to all the elements of F.

Two distinct points a, b are called collinear and denoted by a ~ b if there is a line incident
to both a and b. In general, there are several distinct lines incident to a and b. The number
of lines incident to two distinct points a, b will be denoted by n(a, b) := \ G 1 ( a ) n G1(b)\.

Two distinct lines are called coplanar if they are incident to a plane. If two distinct lines
l and m are coplanar, they intersect at a point a in the projective plane Res(v), where v is
a plane incident to l and m. If w is another plane incident to both / and m, we have two
distinct "lines" D and w in the GQ Res(a) incident to two "points" of the GQ Res(a), which
is a contradiction. Thus if two distinct lines l and m are coplanar, there is a unique plane
incident to them.

Two distinct planes v, w are called cocollinear and denoted by v ~ w if there is a line l
incident to both v and w. If there is another line m incident to both v and w, two coplanar
lines / and m are incident to distinct planes, which is not the case as we saw above. Hence
if two distinct planes v and w are cocollinear, there is a unique line incident to both v and
w, which will be denoted by u n w.

3.3. Buildings of type C3

The typical examples of flag-transitive C3-geometries of order (x, y) with finite x, y with
x > 2 are the finite classical polar spaces of type C3. Explicitly, they are the classical polar
spaces for 6-dimensional symplectic spaces, 6-dimensional orthogonal spaces of plus type,
7-dimensional orthoganal spaces, 8-dimensional orthogonal spaces of minus type, and 6-
and 7-dimensional hermitian spaces, which are described as follows.

Let (V6, s6) be a 6-dimensional vector space over a finite field GF(q) with a non-
degenerate symplectic form s6, (V6, f6

+) a 6-dimensional vector space over a finite field
GF(q) with a non-singular quadratic form f6

+ of plus type, (V7, f7) a 7-dimensional vector
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space over a finite field GF(q) with a non-singular quadratic form f7, (V8, f8) an 8-
dimensional vector space over a finite field GF(q) with a non-singular quadratic form f8

-

of minus type, and let (U6, h6) and (U7, h7) be 6- and 7-dimensional vector spaces over
GF(q2) with non-degenerate hermitian forms h6, and h7 respectively. Let (W, f) be one of
these spaces with forms. Note that maximal totally isotropic (or singular) subspaces of W
are of dimension 3. Define G0, G1 and G2 to be the sets of 1-, 2- and 3-dimensional totally
isotropic (or singular) subspaces of W. We define the incidence * by inclusion. Then
we may verify that the resulting geometry G(W, f) = (G0, G1 ,G2 ' , *) is a C3-geometry
admitting the flag-transitive action of associated classical groups. The order of G(W, f) is
(q, q),(q, 1), (q, q), (q, q2), (q2, q) or (q2, q3), if (W, f) = (V6, S6), (V6, f

+), (V7, f7),
(V8, f8 ), (U6, h6). or (U7, h7), respectively.

These classical polar spaces are finite buildings of type C3, which are characterized by
Tits in terms of the (LL) condition [18] p. 543, Proposition 9. Here the Condition (LL)
means that there is at most one line through two distinct points, which is equivalent to
saying that n(a, b) = 1 for any pair of collinear points a, b. (Note that the Condition (O)
in [18] Proposition 9 is equivalent to the Condition (LL), as n = 3. See also [14] 7.4.3 for
an elementary proof of the following Theorem.)

Theorem 3.3.1 [18, 14] If a C3-geometry G satisfies the condition that n(a, b) = 1 for
any pair of collinear points a, b, then G is a building of type C3.

Theorem 3.3.1 and [17] p. 106, 7.4 imply that a geometry G in Theorem above corre-
sponds bijectively to a polar space S of rank 3. (Note that in [17], a building in our sense is
called a weak building.) Assume, futhermore, that G has finite order (x, y) with x > 2. If
y = 1, each line of S is contained in exactly two planes of 5, and 5 is uniquely determined
by [17] p. 113,7.13. In our case, as x is finite, 5 is a polar space for a non-singular orthog-
onal form of plus type on a 6-dimensional space over the finite field GF(x). In particular, x
is a prime power. If y > 2, the polar space S is thick (see [17] p. 105, line 1-3) and hence
every plane of S is a Moufang projective plane by [17] p. 110, 7.11. Then each plane of S
is coordinatized by an alternative division ring. Since a finite alternative division ring is a
finite field by the theorem of Artin-Zorn, the finiteness of x implies that every plane of 5 is
desarguesian. By [17] p. 167, 8.11, S is embeddable, which implies that S can be realized
as G(W, f) for some vector space W having a symplectic, orthogonal or hermitian form f
in the way described above. Hence we have the following.

Theorem 3.3.2 If a C3-geometry of finite order (x, y) with x > 2 satisfies the property
that n(a, b) = 1 for any pair of collinear points a, b, then it is one of the above six families
of finite classical polar spaces for some prime power q = x.

3.4. The sporadic A7-geometry

The sporadic A7-geometry is described as follows: First, we set G0:= the 7 letters of
O = {1, 2 , . . . , 7} and G1 := the 35 (unordered) triples of O. We consider a projective
plane having O as the set of points. Such plane should be of order 2 and can be determined
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by specifying its 7 lines. For example, n = (O, C) is a projective plane, where L. consists
of the lines 123, 145, 167, 246, 257, 347 and 356. Here we also denote a line by the triple
of points on it. It can be verified that there are 30 such planes, which form two orbits of
the same length 15 under the action of the alternating group A7 on O. Two planes belong
to the same A7-orbit if and only if they have exactly one line in common. Now we define
G2 as one of these two A7-orbits, and determine * by natural containment. The resulting
geometry (G0, G1, G2; *) is called the sporadic A7-geometry.

In general, a C3-geometry is called flat if each point is incident to every plane. We can eas-
ily observe that the sporadic A7-geometry is a flat C3-geometry, admitting a flag-transitive
action of A7. In fact, the sporadic A7-geometry can be characterized by this property.

Theorem 3.4.1 [9] If G is a flag-transitive flat C3-geometry of finite order (x, y) with
x > 2, then G is isomorphic to the sporadic AT geometry.

3.5. Finiteness

We can verify that the local finiteness (that is, the finiteness of order) of a thick C3-geometry
G implies the (global) finiteness of G.

Lemma 3.5.1 Let G be a C3-geometry of finite order (x, y). Then for any point a and any
plane u not through a, there is a plane v through a cocollinear with u.

Proof: Since G is connected, the incidence graph of G is connected. As the residue of a
point is a GQ, this implies that any plane MO through a can be joined to the plane u by a
sequence (u0 = w, u 1 , . . . , un = u) of planes such that ui-1 is cocollinear with ui for each
i = 1 , . . . , n . Let n be the minimum length of sequences (u0, u 1 , . . . , un = u) with a * u0,
ui-1 ~ ui (i = 1 , . . . , n). If n < 1, then the claim follows. Suppose n > 2.

Consider the lines l := u0 n u1 and m := u1 n u2 in the projective plane Res(u1). If
l = m, the sequence (u0, u 2 , . . . , un) of planes with ui-1 ~ ui has length n — 1 and joins
w and u, which contradicts the minimality of n. Thus l = m, and hence they intersect at a
unique point b on u1. Let r be the unique line in the projective plane Res(u0) joining a and
b. Note that r does not lie on u2, as a is not on u2 by the minimality of n. Thus r and u2 are
non-incident elements in the GQ Res(b), and hence there is a plane v through r cocollinear
with u2. Then the sequence (v, u 2 , . . . , un = u) of planes of length n - 1 joins a and u,
and satisfies v ~ u2 ~ • • • ~ u. This is a contradiction.

Corollary 3.5.2 If G is a C3-geometry of finite order (x, y), then G is a finite geometry.

Proof: We fix a point a of G. If b is a point not collinear with a, any plane u containing b is
not incident to a, since any two distinct points can be joined by a line in the projective plane
Res(u). By Lemma 3.5.1 there is a plane v through a cocollinear with u. Since a (resp. b)
is collinear with any point on l = u n v in the projective plane Res(v) (resp. Res(u)), the
collinearity graph F of G is of diameter at most 2. Since there are a finite number of lines
through a point and each line is incident to a finite number of points, the neighbourhood of
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a point in G is a finite set. As the diameter of G is finite, G has a finite number of points.
Since the residues of points are finite, G has finite number of lines and planes.

3.6. The Ott-Liebler number

For every point-plane flag (a, u), we denote by a(a, u) the number of planes v(=u) through
a cocollinear with u but a is not incident to u n v. As is shown in the Lemma below,
a := a(a, u) is a constant, not depending on the particular choice of a point-plane flag
(a, u). The number a is called the Ott-Liebler number of G, after the mathematicians
who first investigated the meaning of this constant in terms of the representation theory
of the Hecke algebra associated to G. The following result was proved first with the aid
of representation theory, but later Pasini provided an elementary and representation-free
proof, ([11] p. 82-84) which I include here.

Lemma 3.6.1
(1) The number a := a(a, u) is a constant, not depending on the particular choice of a

plane u and a point a on u.
(2) For any point b not on a plane u, there are exactly a + 1 planes through b cocollinear

with u.

Proof: (1) For any point-plane flag (b, v), we write
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Then a(b, v) = |A(b, v)| .
We will first show that a(a, u) = a(a, u') for any plane u' incident to the point a. Since

Res(a) is connected, it suffices to prove this claim for a plane u' cocollinear with u such
that a * (u n u'). We set l := u n u', and define a map f : A(a, u) —> A(a, u') as follows.

For each v e A(a, u), the line u n v is distinct from l, as a /*(u n v). Then u n v and l
intersect at a unique point, say b, distinct from a in the projective plane Res(u). Let m be
the line joining a and b in the projective plane Res(u). As a /*(u n v), m is not incident to
u, in particular, l = m. Since l is the unique line of the projective plane Res(u') through a
and b, we conclude that m is not incident to u'. Thus, in the GQ Res(b), there is a unique
plane v' through m coplanar with u'. Clearly a * v', but u' n v' is distinct from l, and hence
u' n v' is not incident to a. Thus the plane v' uniquely determined by v e A(a, u) lies in
A(a, u'). Define (v)f := v'.

The map f' : A(a, u') -> A(a, u) can be similarly defined, and it is immediate to see that
f' is the inverse map of f. Thus f is a bijection and so a(a, u) = \A(a,u)\ = \A(a,u')\ =
a(a, u').

Next we will show that a(a, u) = a(a', u) for any point a' on the plane u. We may
assume that a = a'. Let l be the unique line on the projective plane Res(u) joining a and
a'. We define a map g : A(a, u) -> A(a', u) as follows.

For each plane v E A(a, u), the line u n v is distinct from l, as a /*(u n v). In particular,
/ is not incident to v. Then there is a unique plane w in the GQ Res(a) through l and
cocollinear with v. As u and v are not coplanar in Res(a), u = w. Since l is incident to
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both w and u, we have l = u n w. As a is not on u n v, we have (u n w) = (u n v), and
hence they intersect at a unique point, say b, in the projective plane Res(v). If b lies on
l = u n w, then u, v, w form a proper triangle in the GQ Res(b), which is a contradiction.
Thus b is not on l, and in particular, a' = b. Let m' be the unique line in the projective
plane Res(w;) joining a' and b. If the line m' is also on u, then m' = u n w = l and l is
incident to b, which contradicts the above conclusion. Hence m' is not on u. Then there is
a unique plane v' through m' and cocollinear with u in Res(b).

We define vg := v'. As v' is incident to m', the point a' is on v', but the line (v' n u) does
not pass through a', since the unique line l on u through a and a! does not pass through
b. Hence v' E A(a', u). The similar map g' : A(a', u) -> A(a, u) can be defined by
exchanging a and a', and it is immediate to to check that g' is the inverse map of g. Thus
g is a bijection and a(a, u) = a(a', u).

Since G is residually connected, the conclusions above imply that a(a, u) is constant for
any point-plane flag (a, u), and the Claim (1) is proved.

(2) By Lemma 3.5.1, there is a plane v through b cocollinear with u. We fix such a plane
v, and set B(b, u) := [w e G2(b) | w = v, w ~ u}. We will define a bijective map f from
B(b, u) to A(b, v), where A(b, v) means the same notation as in the proof of (1).

For each w e B(b, u), consider the line u n w on u. If u n w = u n v, w e A(b, u), and
we define wf := w. Assume that u n w is distinct from u n v, and let a be the unique point
on the lines u n v and u n w in the projective plane Res(u). As b /*u, a is distinct from
b. Let m be the unique line joining a and b in the projective plane Res(w). If m is on v,
m = u n w, and u, v, w form a proper triangle in the GQ Res(a), which is a contradiction.
Thus m is not on v, and hence there is a unique plane w' in the GQ Res(a) through m and
cocollinear with u. As b * m * w', b * w', but b /*(v n w'), for otherwise m = (v n w') is the
unique line in the projective plane Res(v) joining two points a and b. Thus w' e A(b, u).
We define wf := w'.

To show the bijectivity of f, we will give the inverse map g of f. For each w' e A(b, v),
let consider the line w' n v. If w' n v = v n u, then we set (w')g := w'. Assume that
w' n v = v n u. Then the lines w' n v and v n u intersect at a unique point, say a,
in the projective plane Res(v). As b is not on u, a = b. Let m be the unique line of
Res(w') joining a and b. As m is not on u, there is a unique plane w in the GQ Res(a)
through m and cocollinear with u. Clearly w e B(b, u). Define (w')g := w. It is
immediate to see that g gives the inverse map of / above. Then f is a bijection, and hence
a = \A(a, u)\ = \B(b, u)| is the number of planes through b cocollinear with u minus 1.
The Claim (2) is proved. D

Lemma 3.6.2 If G is a C3-geometry of finite order (x, y), then G has (x2+x + 1 ) ( x 2 y +
1)/(a + 1) points, (x2 + x + 1 ) ( x 2 y + 1 ) ( x y + 1 ) / ( a + 1) lines, (x2y + 1 ) ( x y + 1)
(y + 1)/(a + 1) planes, and (x2 + x + 1 ) ( x 2 y + 1 ) ( x y + 1)(y + 1)(x + 1)/(a + 1)
maximal flags.

Proof: For a fixed point a, we will count the number of the following set in two ways:
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For each plane u not through a, there are a + 1 planes through a cocollinear with u by
Lemma 3.6.1(1). For each such plane v, v n u = l is a unique line with (u, l, u) e X, Thus
|x| = (|G2|-|G2(a)|)(a+1).

On the other hand, for each plane v through a, we have (v, l, u) e X if and only if l is
a line on v not incident to a, u is a plane through l not incident to a. There are x2 lines /
on v not through a, and for each such line / there are y planes (=v) through l. Since there
are exactly a planes w through a cocollinear with v but l = v n w does not pass through a
by Lemma 3.6.1(1), among x2y such pairs of (l, u), there are exactly x2y — a pairs (l, u)
with (v, l, u) € X. Hence we have |x| = \G2(a)\(x2y - a).

Since \X\ = (|G2| - |G2(a)|)(a + 1) = |G2(a)|(x2y - a), we have

Then |G0| and |G1| can be obtained from |G0| = |G2|(x
2 + x + 1 ) / ( x y + 1)(y + 1) and

|g1| = |G2|(x
2 + x + 1 ) / ( y +1). The number of maximal flags is obtained as |G0|(xy + 1)

(y + 1)(x + 1).

3.7. A characterization

By elementary counting arguments involving the Ott-Liebler number a and Theorem 3.3.2,
we can obtain a nice characterization [12] of the finite buildings of type C3 and the sporadic
A7-geometry. Since this is very important to our proof, I repeat it for the convenience for
the readers. We first need the following elementary lemma.

Lemma 3.7.1 Let G be a C3-geometry of finite order (x, y) with x > 2. Assume that there
is a point b not on a plane u. Then the following holds:
(1) For any line m through b, we have

(2) We have

(3) Assume that there is a line l on u, which is not u n v for any plane v through b cocollinear
with u. Then we have

(4) Assume that there is a line-plane flag (l, v) such that v is incident to b but l does not
pass through b. Then we have

Proof: We use the double counting argument to prove each claim.



266 YOSHIARA

(1) Choose a plane v incident to m. Let A(b, v) be the set of planes w ( = v ) incident
to b and cocollinear with v but the line v n w is not incident a. By Lemma 3.6.1(1),
a = \A(b, v)\. We will count the cardinality of the following set in two ways.

For each plane w e A(b, v), the line v n w on w is not incident to b. Then m and v n w are
distinct lines in the projective plane Res(w), and they intersect at the unique point c (=b).
Since b and c are distinct points on the projective plane Res(w), there is a unique line l
( = m ) on w joining b and c. Thus a = \X\.

On the other hand, for each point c on m distinct from b, there are n(b, c) — 1 lines
through b, c distinct from m. For each such line l, l is not incident to v in the GQ Res(b).
For, otherwise, there are two distinct lines l, m through two distinct points in the projective
plane Res(v). Then there is a unique plane w (=v) of Res(b) incident to l and cocollinear
with v. Since w e A(b, v), we have \X\ = SceG0(m)-|b|(n(b, c) - 1).

(2) We count the cardinality of the following set in two ways:

Fix a point a on M and a line l through a and b. Since b is on l but not on u, l is a line not
incident to u in the GQ Res(a). Then there is a unique plane v through l cocollinear with
u. Thus |y| = Sa€G0(u)n(b, a).

On the other hand, there are a + 1 planes v through b cocollinear with u by Lemma 3.6.1(2).
For each such plane v, there are x + 1 points on u n v, and each point on u n v can be joined
to b by a unique line in the projective plane Res(v). Thus \y\ = (a + 1 ) ( x + 1).

(3) We count the cardinality of the following set in two ways:

For a point a on l and a line m through a and b, there is a unique plane v through m
cocollinear with u, by the same reason as we saw in the former part of the proof of (2).
Thus \Z\ = EaeG0(l) n(b, a). On the other hand, for each plane v through b cocollinear
with u u n v intersects l at a unique point, as u n v and l are distinct lines of the projective
lane Res(u). Thus \Z\ = (a + 1) by Lemma 3.6.1(2).

(4) We count the cardinality of the following set in two ways:

We have |W| = Ea€G0(l)(n(b, c) — 1), because for each point a on l and each line m through
a and b not on v, m and u are not incident in the GQ Res(a), and so there is a unique plane
w ( = v ) incident to m and cocollinear with u.

On the other hand, choose any one of a planes w ( = v ) incident to b cocollinear with v
but v n w is not incident to b. If l = v n w, then for any point a on l, the unique line m
through a and b in Res(w) is not incident to v and (a, m, w) e W. If l = v n w, then
there is a unique point a on l incident to w (which is the point of intersection of l and
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v n w), and (a, m, w) e W for the uniuqe line m through a and b on w. Since there are
|G2(b) n G2(1)|— 1 planes through b cocollinear with v and v n w = l, we have

and the claim follows.

By Lemma 3.7.1(1), the condition a = 0 if and only if n(a, b) = 1 for any pair of
collinear points a, b. Thus if a = 0, then G is a building by Theorem 3.3.1.

Theorem 3.7.2 [12] If n(a, b) is constant for any pair of collinear points a, b in a C3-
geometry G of finite order (x, y) with x > 2, then either G is flat or a=0. In the latter
case, G is a building as we remarked above, and hence one of the six families of finite
classical polar spaces in 3.3.

Proof: Assume that G is not flat. Then there is a point b and a plane u not through b. Let
N be the constant n(b, c) for any point c (=b) collinear with b, and let M be the number of
points on u collinear with b.

Choose any line m through b. Since x points on m distinct from b are collinear with b,
it follows from Lemma 3.7.1(1) that N = 1 + (a/x). Then the Lemma 3.7.1(2) implies
that M = (x + 1)(a + 1)/N = (x + 1)x(a + 1)/(a + x). Since x > 1, M < x(x + 1) <
x2 + x + 1 = \G0(u)\. Then there is a point, say a0, on u not collinear with b. Any line l on
u through a0 is not of form u n v for any plane v through b cocollinear with u. Applying
Lemma 3.7.1(3) to such a line /, we conclude that the number of points on l collinear with
b is equal to (a + 1 ) / N = x(a + 1)/(a + x). We set L := x(a + 1)/(a + x). Then L is a
natural number less than x and M = (x + 1)L.

Now there are exactly a + 1 planes through b cocollinear with u by Lemma 3.6.1(2).
As a > 0, there is at least one of such plane v. Let v be one of such plane and set
l' := u n v. As b is not on u, l' is not incident to b. Applying Lemma 3.7.1(4), we have
a + 1 + xK = N(x + 1), where we set K = \G2(b) n G2(l')\. As N = (a + x)/x, we
have K = 1 + (a/x2). In particular, x2 divides a, and hence a = 0 or a > x2. Since
L = x(a + 1)/(a + x) is a natural number less than or eqaul to x, L < x - 1 or L = x. In
the latter case, we have x = 1, which contradicts our assumption. Thus L < x — 1. Then
we have xa + x < xa — a + x2 — x and so a < x2 — 2x. Hence a = 0. This implies that
N = 1, and therefore G is a building of type C3 by Theorem 3.3.1.

3.8. Imprimitivity blocks and planes

Here I give an elementary lemma, whose proof requires the assumption of flag-transitivity
of A on Q.

Lemma 3.8.1 Let G be a C3-geometry of finite order (x, y) with x > 2, admitting a
flag-transitive automorphism group A. If O is a system of imprimitivity blocks of G0 under
the action of A, then either \G 0(u) n A | < 1 for each block A and each u e G2 or O = {G0}.
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Proof: Assume that | G 0 ( u ) n A| > 2 for some block A in £2. As A = Ag or A n Ag = 0
for g 6 Au, the set {G0(u) n Ag | g e Au} forms a system of imprimitivity blocks in G0(u)
under the action of Au. By Theorem 2.2.1, in any case, Au acts primitively on G 0 ( U ) . As
\ G 0 ( u ) n A| > 2, we have G0(u) n A = G0(u), or G 0 (u) c A.

Now choose any plane v (u = v) cocollinear with u. As v = ug for some g e A, we
have 0 = G0(u n v) c G0(u) n G 0 (v ) C A D Ag. As A is a block under the action of A,
we have A = Ag D G0(v).

Since the incidence graph of G is connected, we can verify that any plane w can be joined
to u by a sequence u = U 0 , . . . , u m = w of planes such that ui-1 is cocollinear with ui for
each i = 1 , . . . , m. Hence the above argument shows that A contains G 0 (W) . As w is an
arbitrary plane, we conclude that Go = A.

4. Some Lemmas

In the remainder of this paper, we assume that G is a C3-geometry of finite order (x, y)
with x > 2, admitting a flag-transitive automorphism group A. Furthermore, we assume
that G is neither a building nor the sporadic A7-geometry. In Sections 4, 5, we will derive
a contradiction.

4.1. The structure of residues of planes

Lemma 4.1.1 The following hold;
(1) For a plane u of G, AU/KU is isomorphic to a Frobenius group Fx+1 of order p(x + 1)

with the cyclic kernel of prime order p = x2 + x + 1 and a cyclic complement of
order x + 1. Furthermore, either x = 8 and p = 73,or x > 14,400,008 and hence
p > 207, 360, 244, 800, 073.

(2) The stabilizer Aa,l,u of a maximal flag (a, l, M) of G coincides with the kernel Ku on the
plane u.

Proof: Since Au acts flag-transitively on the projective plane Res(u) of order x,
Theorem 2.2.1 implies that either AU/KU contains PSL3(x) (and Res(u) is desarguesian) or
Au/Ku has the shape described in the Claim (1).

Assume that AU/KU contains PSL 3 (x ) . Then Au acts doubly transitive on the set of
points on u. Hence n(a, b) is constant for any pair (a, b) of distinct points on u. Since
any two collinear points are incident to a line and so a plane, the transitivity of A on
the planes implies that n(a, b) is constant for any pair of collinear points. Then it fol-
lows from Theorem 3.7.2 that G is either flat or one of classical polar spaces of type
C3.

Since G is not a building by the asumption, G should be flat. However, Theorem 3.4.1
implies that G is the sporadic A7-geometry, which again contradicts the assumption. Thus
it follows from Theorem 2.2.1 that Res(u) is either non-desarguesian or the desarguesian
plane of order x = 2 or 8. Moreover, AU/KU = Fx+1 in any case.
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If x =2, the group AU/KU = F3 acts transitively on the set of 21 = (7) pairs of distinct

points of Res(u). Then n(a, b) is constant as we saw in the above paragraphs, and obtain a
contradiction. Thus x = 2.

Now the Claim (1) follows from Theorem 2.2.1 and Proposition 2.2.2. Then Claim (2)
follows from Claim (1), since the Frobenius group AU/KU = Fx+1 acts sharply transitively
on the maximal flags of Res(u).

Remark 4.1.2 In the above proof, a characterization of the A7-geometry (Theorem 3.4.1,
[9]) is required. However, we do not need the whole proof of Lemma 2 [9] for our purpose,
since we may assume that the residues of planes are desarguesian. (Explicitly we can omit
the proof from the line 5 p. 266 to the line 25 p. 267 [9], where the non-desarguesian case
is treated.)

Moreover, it should be mentioned that the conclusion x < y of Lemma 1 [9] (whose
proof essentially requires some representation theory) is not needed to establish the main
theorem of [9] in our situation. Indeed, this was used at only two places: one is at the last
part of the paragraph mentioned above, and the other is to examine the case x = 2 (the
second line p. 270 [9]). The former is related to the case we do not care about.

The latter case can be treated as follows, not relying on any deep results. The latter claim
"y < x2 —x" of Lemma 1 [9] follows from the fact that the residue of a point has an ovoid
(see the proof of Lemma 5 [9]) by applying a standard result on GQs with ovoids ([15]
1.8.3). Then a flag-transitive flat C3-geometry G of order (x = 2, y) has order (2, 1) or
(2, 2). Since each line is realized as u n v for some two cocollinear planes u and v, we
can easily observe that A is faithful on the set of planes. In particular, the kernel Ka for
a point a is trivial, as a is incident to every plane. If (x, y) = (2, 1), there are 6 planes
by Lemma 3.6.2, and hence the flag-transitive group A is a subgroup of S6 as A faithfully
acts on G2. However, A is not transitive on 7 points. Thus (x, y) = (2, 1). It is easy
to verify that any GQ of order (2, 2) is isomorphic to the GQ of 1- and 2-spaces of the
4-dimensional symplectic space and so it has the flag-transitive automorphism group A6 or
S6. As Ka = 1 at a point a, the stabilizer Aa is isomorphic to A6 or S6, and so A = A7

or 57 as \G0\ = 7. Since \G2\ = 15, we have A = A7, and now it is easy to see that G is
uniquely determined.

Lemma 4.2 The stabilizer Aa of a point a acts faithfully on the residue Resg(a).

Proof: For two points a, b of G, we write a = b if a = b or there is a sequence a =
a0, a 1 , . . . , am = q of points with n(a i - 1 , ai) > 2 for each i = 1 , . . . , m. (For the definition
of n(a, b), recall 3.2.) Clearly, the relation = is an equivalence relation on the set G0 of
points, and hence each equivalence class is a block of imprimitivity under the action of A.

If n(a, b) = 1 for any collinear points a, b, G is a building by Theorem 3.3.1. Hence
each =-class contains at least two points. Choose points a, b with n(a, b) > 2, and let m
be a line incident to a and b, and pick a plane u incident to m. Then G0(u) contains at least
two distinct points a, b in the =-class through a. Then it follows from Lemma 3.8.1 that
G0 is one =-equivalence class.

269
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Now we will show that Ka = Kb for distinct points a, b with n(a, b) > 2. By the result
above, this implies that Ka = Kb, for all the points b, and hence Ka fixes every element of
G and Ka = 1, as we claimed.

Let m be any line through a and b, and let v be any plane through m. As the kernel Ka fixes
every element in Res(a), Ka fixes a maximal flag (a, m, v), and hence Ka < Kv = Aa,m,v

by Lemma 4.1.1(2). In particular, Ka fixes the point b on m and every line through b on v.
Now we pick two distinct lines l, m through a and b. Note that there is no plane w

incident to both / and m. For, otherwise, the distinct lines l and m in the projective plane
Res(w) intersect in two disitinct points a and b. In particular, l and m are non-coplanar
lines in the GQ Res(b) on which the group Ka acts. By the remark above, Ka fixes the
non-coplanar lines l, m and each plane through l or m together with all the lines on it. By
Lemma 2.3.3, the substructure of the GQ Res(b) fixed by Ka is a subquadrangle of order
(x, y), and hence coincides with Res(b). Thus Ka acts trivially on Res(b), or equivalently
Ka < Kb. We have Kb < Ka by the same argument replacing a and b, and hence Ka = Kb.
As we saw above, this implies Ka = 1, the faithfulness of the action of Aa on Res(a). D

Lemma 4.3 For a prime p = x2 + x + 1, a Sylow p-subgroup P of A is of order p and
acts semiregularly both on G0 and G1.

Proof: Let P be a Sylow p-subgroup of A. Suppose that there is a non-trivial element g
of P fixing a point a. We may assume that g is of order p. The element g acts on the GQ
Res(a) with (x + 1 ) ( x y + 1) lines.

If p = x2 + x + 1 divides xy + 1, p divides (-x2)(xy + 1) + (xy - y + 1) (x 2 + x + 1)
= x + 1 — y. If y < x + 1, then p = x2 + x + 1 < x + 1 — y and so y + x2 < 0,
which is a contradiction. If y > x + 1, then p = x2 + x + 1 < y — x — 1 and so x2 < x2

+2(x + 1) < y, which contradicts Lemma 2.3.1(3). Thus y = x + 1. By Lemma 2.3.1(2),
x + y = 2x +1 divides xy(x + 1 ) ( y + 1) = x(x + 1)2(x + 2). As 2x + 1 is prime to x and
x + 1, 2x + 1 divides x + 2. However, this implies that 2x + 1 < x + 2, which contradicts
the assumption that x > 2.

Hence p is prime to \ G 1 ( a ) \ = (x + 1 ) ( x y + 1). Thus g fixes a line l through a, and acts
on the set of y + 1 planes through l. Since y+1 <x2 +x +1 = p by Lemma 2.3.1(3), g
fixes every plane through l. As Aa,l,u = Ku by Lemma4.1.1(2), g fixes every plane through
/ together with the lines on them. Now take any line m in Res(a) coplanar with l. Then g
acts on the set of y + 1 planes through m and hence fixes them together with the lines on
them, as y + 1 < p. Thus g fixes all the elements of Res(a), and so g = 1 by Lemma 4.2.
We have proved that P acts semi-regularly on the set G0 of points of Q.

Suppose |A|P > p2. As \G0\ = p(x2y + 1)/(a + 1), then it follows from the above
semi-regularity of P on G0 that p divides x2y +1. Then p divides (x2y +1)x — (x2 + x + 1)
(xy - y) = x + y. This implies that p = x2 + x + 1 <x + y<x2 + x (see Lemma
2.3.1(3)), which is a contradiction. Thus \A\P = p.

If P fixes a line l, P fixes each point of l, as x + 1 = \G0(l)\ < x2 + x + 1 = p. Since
this contradicts the semi-regularity of P on G0, P is also semi-regular on G1. D

Lemma 4.4 We have \KU\ < min{ay, y2} if y > 1, and Ku = 1 if y = 1. In both cases,
we have \A\ < p7 for a prime p = x2 + x + 1.
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Proof: By the definition of the Ott-Liebler number a, for each point-plane flag (b, u),
there are exactly a planes v (=u) incident to b and cocollinear with u but b E G0(u n v).
As we remarked before Theorem 3.7.2, the condition a = 0 is equivalent to n(a, b) = 1
for any collinear points a, b. Since we assume that G is not a building, we have a =
0 by Theorem 3.3.1. Thus there is at least one plane v (=u) incident to b and coco-
llinear with u but b is not incident to u n v. Let v be one of such planes, and set / =
u n v.

The kernel Ku fixes the line l and the plane u, and hence acts on the set G2(l) - {u} of y
planes through l distinct from u. As Ku n Av fixes a line-plane flag (l, v) together with all
the points on l, it follows from Lemma 4.1.1(2) that Ku n Au < Aa,l,v = Kv for a point a
on l. Thus Ku n Av = Ku n Kv.

In particular, \KU : Ku n Kv\ = \VK"\ < \G2(l) - {u}\ = y. On the other hand, note
that v is an element of the set A(b, u) := {w E G2(b) | w ~ u, b /*(u n w)} of cardinality
a = 0 (see 3.6.1(1)), on which Ku acts. Thus the above conclusion also implies that
\KU : Ku n Kv\ = \VK"\ < \A(b, u)| = a. Hence \KU : Ku n Ku\ < min{a, y}.

Assume that y = 1. Then each line m on u is incident to exactly two planes u and w,
say. As Ku fixes m and u, it also fixes the plane w. Then for a point b on m, we have
Ku < Ab,m,w = KW by Lemma 4.1.1(2). Thus Ku = Kw for any plane w cocollinear
with u. By the connectivity of G, this implies that Ku fixes every element of G, and hence
Ku = 1 if y = 1.

Now assume that y > 1. We set X := Ku n Kv. The group X fixes the point b, and
so acts on the GQ Res(b). We will verify that X satisfies the conditions (i), (ii) in Lemma
2.3.4. First note that x > 2 by Lemma 4.1.1(1).

Assume that an element g e X fixes a plane w of Res(b). If w = u, g e Ku fixes every
line of Res(b) on w. Assume that w = u . If w intersects M at a line m in Res(b), say, then
g e Ku fixes a maximal flag (b, m, w). By Lemma 4.1.1(2), g fixes every line on w. If w
does not intersect u in Res(b), each line m on w is cocollinear with the unique line m' on u,
as Res(b) is a GQ. Since g fixes both w and m', g fixes the line m, and hence g fixes every
line on w. Thus the property (i) holds.

Next, suppose u and v are cocollinear in Res(b). Then there is a line m of Res(b) incident
to both u and v, and hence the lines m and l intersect at a unique point c in the projective
plane Res(w). However, in Res(c), u and v are planes incident to two distinct lines l and
m, and hence u = v, a contradiction. Thus u and v are non-cocollinear planes of Res(b),
and the Condition (ii) is verified.

It now follows from Lemma 2.3.4 that \X\ < y, as X acts on Res(b) faithfully by
Lemma 4.2. Hence we have \KU\ = \KU : X\\X\ < min{a, y} • y = min{ay, y2}, if
y>1.

Since y < x2 by Lemma 2.3.1(3) and x2 < x2 + x + 1 = p, we now have \KU\ <ay <
ap for any y. Moreover, y + 1 < p, x2y + 1 < x4 + 1 < p2, and (xy + 1)(x + 1) <
(x3 + 1 ) ( x + 1) < p2. Since A is transitive on the set of maximal flags of G with the
stabilizer Ku = Aa,l,u of a maximal flag (a, l, u) (see Lemma 4.1.1(2)), it follows from
Lemma 3.6.2 that
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Now substituting the above inequalities into this formula, we obtain

4.5. Substructure fixed by an involution

Assume that \A\ is even, and let Gi be the substructure of G fixed by an involution i of
A. The substructure Gi is extensively investigated in [11, 10]. However, there is a gap
in the proof of [11] Lemma 2.6 line -14 to -7 p. 176. (The formula for the number t
was miscopied from [15] 2.2.1: This should be t = (1 + x ) ( 1 + xz)(y - z), but not
t = (1 + z)(1 + xz)(y — z), as stated.) Since the conclusion x = z in that paragraph was
derived from this error, the original proof does not hold as it is. This is not a serious gap,
because we can afford a new proof of this fact by modifying the arguments in [11] 2.7.

In fact, in order to establish the main theorem in this paper, we only need the following
information on the substructure Gi.

Lemma 4.5.1 If y is odd, any involution i of A does not fix a plane.

Proof: Assume that y is odd, and suppose there is an involution i e A fixing a plane
u. Since AU/KU is of odd order p(x + 1) by Lemma 4.1.1(1), i is contained in Ku. Let
a be any point on u. The involution i fixes a and so acts on the GQ Res(a). The plane
u € Res(a) is fixed by i together with all the lines on u. Then for each line m in Res(a)
on M, the involution i acts on the set of y planes through m distinct from u. As y is odd, i
fixes at least one of such planes, say v. Since i e Aa,mu = Kv by Lemma 4.1.1(2), i fixes
every line on v. Then it follows from Lemma 2.3.3 that the substructure of the GQ Res(a)
fixed by i is a sub GQ of order (x, z) for some 1 < z < y.

If z = y, i acts trivially on Res(a) and so i e Ka, which contradicts Lemma 4.2. Thus
1 < z < y and there is a line of Res(a) not fixed by i. Pick a line m e Res(a) not fixed
by i. By Lemma 2.3.2(1), the set O of lines of Res(a) which are fixed by i and are coplanar
with m consists of xz + 1 lines. The lines m and mi are coplanar with each line of O. If
m is coplanar with mi, the unique plane v incident to both m and mi is stablized by the
involution i. As AV/KV is of odd order, i acts trivially on Res(v). In particular, m = mi,
which is a contradiction. Thus m is not coplanar with mi. Since Res(a) is of order (x, y),
there are exactly y + 1 lines of Res(a) coplanar with m and mi, among which exactly xz. +1
lines of O are fixed by i. However, as y - xz is odd, the involution i should fix at least one
line not in O, which is a contradiction.

Lemma 4.6 Any Sylow p-subgroup P of A is not contained in the Fitting subgroup F(A)
of A and centralizes F(A).

Proof: Let P be a Sylow p-subgroup of Au for a plane u. We may assume that F(A) = 1.
As p = \A\P and F(A) = A, F(A) contains a Sylow p-subgroup of A iff F(A) contains



all Sylow p-subgroups of A iff p divides \F(A)\. If p divides |F(A)|,then P is the unique
Sylow p-subgroup of the nilpotent group F(A), and hence P < A. As A is transitive on the
planes, P fixes all the planes of G. However, this implies that P fixes a line u n v for a plane
v cocollinear with u, which does not occur by Lemma 4.3. Thus p /||F(A)|, equivalently
P C F(A).

Now assume that P acts non-trivially on F(A). Since F(A) is nilpotent, there is a prime
r such that P acts non-trivially on R := O r(F(A)). We have r = p, by Lemma 4.3 and
the claim in the above paragraph. Since AU/KU = Fx+1, we may apply Lemma 2.4.2 for
B - Au, C = Ku, P and m = x + 1, and conclude that rx+1 < \R\.

On the other hand, we can obtain an upper bound of \R\ as follows. Since P C R =
Or(A) and (R n AU)KU/KU = AU/KU = Fx+1 R n AU C Ku. Then \R n Au\ < ay <
ax2 by Lemma 4.4 and Lemma 2.3.1(3). We have \R : R n Au\ < \A : Au\ = (x2y + 1)
(xy + 1)(y + 1) / (a + 1) < (x2x2 + 1) (x • x2 + 1)(x2 + 1)/(a + 1) by Lemma 3.6.2 and
Lemma 2.3.1(3). Since xi + 1 < 2xi for i = 2, 3, 4, \R\ = \R : R n AU\\R n Au\ <
8x4+3+2x2 = 8x11

It follows from the above bounds for \R\ that 2x+1 < rx+1 < |R| < 8x11, and so
2x-2 < x11 Then x < 79, and so x = 8 and p = 73 by Lemma 4.1.1(1).

In this case, we may verify that the possible values for y are 4, 6, 8, 10, 13, 16, 20,
24, 28, 34, 40, 48, 55, 56 and 64 by Lemma 2.3.1(2). If y is even, as x is even by
Proposition 2.2.2, Ku contains a Sylow 2-subgroup of A by Lemma 3.6.2. In particular,
the largest normal 2-subgroup O2(A) of A is contained in Kw for each plane w, and hence
O2(A) < nweg2 Kw = 1. If y is odd, y = 13 or 55. It follows from Lemma 4.5.1 and
Lemma 3.6.2 that |A|2 = (y + 1)2 = 2 or 23. If a Sylow p-subgroup P of Au acts non-
trivially on O2(A), then |O2(A)| > 2x+1 = 29 by Lemma 2.4.2. Hence P acts trivially on
O2(A). Thus in any case, we have [P, O2(A)] = 1.

Suppose F(A) n Ku contains an r-subgroup on which P acts non-trivially. Then r is
odd by the above paragraph, and yx+1 < rx+1 < \KU\ < y2 < x4 by Lemma 2.4.2 and
Lemma4.4. However, x = 8 does not satisfy this inequality. Thus F ( A ) n K U < C F ( A ) ( P ) .

Now, as we saw in the first paragraph, P acts coprimely on F(A). Then [F(A), P] is a
group of order \F (A) \ / \C F ( A ) (P) \ , which is an odd number dividing \F(A)\/]F(A) n Ku\
as we saw above. Thus \[F(A), P]\ divides [A : Ku]. By Lemma 2.4.2, for each prime
divisor r of \[F(A), P]\ ,r x + 1 = r9 divides |[F(A), P]\ and so [A : Ku]. However, for each
possible value for y above we can compute [A : Ku] by Lemma 3.6.2 and conclude that there
is no such prime r. Hence we have a final contradiction, and obtain that [P, F(A)] = 1. D

Lemma 4.7 Assume that y is even and x = 8. Then a Sylow p-subgroup P centralizes a
Sylow 2-subgroup T of A contained in Ku.

Proof: As y is even, the number of maximal flags is odd by Lemma 3.6.2 (note that x
is even by Proposition 2.2.2). Then Ku = Aa,l,u (see Lemma 4.1.1(2)) contains a Sylow
2-subgroup of A. Since \A\P = p by Lemma 4.3, a Sylow p-subgroup P contained in Au

acts coprimely on Ku, and hence there is a P-invariant Sylow 2-subgroup T of Ku.
Assume that [P, T] = 1. Then we can apply Lemma 2.4.2 for B = Au, C = Ku, P,

m = x + 1, R = T and r = 2. Then we have \T\ > 2x+1. On the other hand, as T is a
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subgroup of Ku, we have y2 > \T\ by Lemma 4.4. Thus we have y2 > 2x+1. If x = 8, it
follows from Lemma 4.1.1(1) and Lemma 2.3.1(3) that 2x+1 > x4 > y2, which is against
the inequality y2 > 2x+1.

Lemma 4.8 There is exactly one component L of A. The group L contains all the Sylow
p-subgroups of A, and CA(L) is of odd order. Moreover, L is transitive on G0.

Proof: Let F*(A) — F(A)E(A) be the generalized Fitting subgroup of A, and let P be
a Sylow p-subgroup of A contained in Au for a plane u. Suppose that F(A) = F*(A).
By Lemma 4.6, P < CA(F*(A)) < F*(A) = F(A) by the fundamental property of the
generalized Fitting subgroup. However, this contradicts the fact that P £ F(A) remarked
in Lemma 4.6. Thus E(A) contains at least one component.

Suppose E(A) does not contain P. Then P acts coprimely on E(A). If P does not
normalize some component L, E(A) contains at least p isomorphic components. As
each component has at least 60 = |A5| elements, we have \A\ > \E(A)\p > 60pp. By
Lemma 4.4, this implies that p6 > 60P, which contradicts Lemma 4.1.1(1). Thus each
component L of A is normalized by P. If P centralizes all the components of A, then
P < CA(F*(A)) < F*(A), as [P, F(A)] = 1 by Lemma 4.6. However, this implies that
p divides E(A) and hence P < E(A), which contradicts the assumption.

Hence there is at least one component L on which P acts coprimely and non-trivially.
Then S := L/Z(L) is a non-abelian simple group such that Out(S) contains a subgroup of
odd prime order p, which is greater than 71 by Lemma 4.1.1(1), and |S| < \A\/p < p6 by
Lemma 4.4. Note that 2P > p6 for such an integer p.

We now use the classification of finite simple groups to verify that there is no such simple
group. Clearly, S is not an alternating group or a sporadic group. Thus S = X (q) is
of Lie type for some Dynkin diagram X and a prime power q = rf (here we follow the
notation in ATLAS [4], Section 3, Page xvi). Then we can easily observe that either p
divides f, or p divides (n + 1, q ± 1) and S = An(q) or 2An(q). In the first case, we have
q = rf > If > p6, and hence | S\ >q > p6, a contradiction. In the latter case, p < n + 1,
and so |S| > qn(n+1)/2 > 2P > p6, a contradiction.

Hence E(A) contains P. As \A\P = p, there is a unique component L with \L\P = p.
Thus L is a normal subgroup of A and contains all the Sylow P-subgroups of A.

Suppose that L is not transitive on G0. Then the L-orbits on G0 form a proper (may
be the trivial) system of imprimitivity blocks under the action of A. By Lemma 3.8.1,
aL n G0(u) = {a} for any point a on a plane u. For any g e L n Au, ag lies in aL n
G 0 (u ) = {a}, and so a8 = a. Thus L n Au fixes every point on «. This implies
that L n Au < Ku and so P £ Au n L, which is a contradiction. Thus L is transitive
on G0.

Suppose that there is an involution i of CA(L). Since L contains every Sylow p-subgroup
of A, i centralizes each of them. Assume y is odd. As x is even by Proposition 2.2.2, there
are an odd number of lines of Q. Thus there is a line / fixed by i. As i does not fix any
plane by Lemma 4.5.1, any plane v through l is cocollinear with vi and l = v n vi. Now
take a Sylow p-subgroup Q of A contained in Av. Since [Q, i] = 1, Q should fix a line
l = v n vi, which contradicts Lemma 4.3.
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Assume y is even. Since Ku = Aa,l,u for a plane u contains a Sylow 2-subgroup of A
by Lemma 4.1.1(2), there is a plane, say u, such that i e Ku. If there is a line l on u and
a plane v through l not fixed by i, then v n vi = l is fixed by a Sylow p-subgroup Q of
A contained in Av, which contradicts Lemma 4.3. Thus every plane cocollinear with u is
fixed by i. In particular, for any point a on u, the action of i on the GQ Res(a) fixes u and
every plane cocollinear with u. Since AV/KV is of odd order p(x + 1) for any plane v,
the involution i fixes all the lines on each plane cocollinear with u. By Lemma 2.3.3, this
imples that i e Ka. However, Ka = 1 by Lemma 4.2.

Hence, in any case, we have a contradiction. Thus C A ( L ) is of odd order. In particular,
L is the unique component of A.

5. Proof of the Theorem

We use the notation in Section 4. Let L be the unique component of A (see Lemma 4.8),
and S := L/Z(L). By Lemma 4.4, we have \S\ < \A\ < p7. Moreover, we can estimate
the order of a Sylow 2-subgroup of S in terms of p.

If y is even, the number of maximal flags is odd by Lemma 3.6.2, and so Aa,l,u = Ku

contains a Sylow 2-subgroup of A. By Lemma 4.4 and Lemma 2.3.1(3), we have \A\2 <
y2 < (x2 + x + 1)2 = p2. Moreover, a Sylow p-subgroup P of A centralizes a Sylow
2-subgroup of A by Lemma 4.6.

If y is odd, Au is of odd order for any plane u by Lemma 4.5.1. Then the 2-part |A|2 of \A\
divides (x2y + 1 ) ( x y + 1 ) ( y + 1)/(a + 1) = \Q2\ = \A : Au\ (see Lemma 3.6.2). As x is
even by Proposition 2.2.2, | A|2 divides y + 1. In particular, \A\2 < y +1 <x2+x + 1 = p
by Lemma 2.3.1(3). Furthermore, if y = 1, we have \A\2 = 2 and hence A is a solvable
group, which contradicts the existence of L in Lemma 4.8. Thus y > 1.

Hence, it follows from the above conclusions and Lemmas 4.1.1, 4.3, 4.4 that the non-
abelian simple group 5 satisfies the following properties:

(i) p = x 2 + x + 1 = \S\P,
(ii) |S| < p7

(iii) p = x2 + x + 1 is a prime with p > 207, 360,244, 800, 073 and x > 14, 400, 008,
or p = 73 and x = 8.

(iv) We have y > 1 and \S\2 < y2 < p2. If y is odd, |S|2 < y+1 < x2 + x + 1 = p.
Moreover, if y is even and x = 8, a Sylow 2-subgroup of S is centralized by an element
of order p in S.

We first make a list of simple groups S with these properties, using the classification of
finite simple groups and some calculations. (In fact, we can eliminate the case y even and
x = 8 if we observe that no finite simple group satisfies the Condition (iv) by examining
their subgroup structures. However, we do not need such examination, because the other
conditions are strong enough to eliminate every possibility for S.)

In view of Atlas [4], mere is no sporadic simple group S with a prime divisor p satisfying
(iii). If S is the alternating group of degree m, then p < m and |S| = m!/2 > p.(p-1)!/2 >
p • 2p-3, as each of the p - 2 integers in the interval [2, p - 1] is at least 2. Then the
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Condition (ii) above implies that p6 > 2 P - 3 , and therefore p = x2 + x + 1 < 33, which
contradicts the Condition (iii).

Thus S must be a finite simple group of Lie type. We write S = Xn(q), where Xn shows
the associated Dynkin diagram of rank n (with the order of graph automorphism if S is of
twisted type) and q is the size of the defining field. Here we follow the Atlas notation [4],
and for example, we use 2An(q) (not 2An(q

2)) to denote PSUn(q
2) = Un(q).

Lemma 5.1 Assume that S = Xn(q) is a simple group of Lie type satisfying the properties
(i) (ii) (iii) (iv). Then one of the following holds, where q = rf is a power of an odd prime
r distinct from p, except in the Case (1) and (7).
(1) S = A 1 (q) = L2(q) for some q = rf with an odd prime r.
(2) S = An(q) = Ln+1 (q) or S = 2An(q) = Un + 1(q) for some n=2,...,6.
(3) S = B2(q) = C2(q) = S4(q) = O5(q).
(4) S = 2D4(q)= O8-(q).
(5) S = 3D4(q) for some q = rf.
(6) S = G 2 ( q ) for some q = r f with q > 2.
(7) s = 2G2(q) for some q = 32k+1 with k > 1 .

Proof: We write q = rf for a prime r. For e = ±1, we use the symbol eAn to denote An

and 2An by 1An and -1An respectively. We also use the similar convention eDn for Dn and
2Dn. The order \Xn(q)\ is given as follows ([4]): For short, here we instead give d\Xn(q)\
and the order d of the center of some covering group of Xn(q).

Xn(q)

eAn(q)
(n > 1 if e = 1,n > 2 if e = -1)

Bn(q) (n>2)

Cn(q) (n>3)
2B2(q) (q=22k+1)
eD n(q) ( n > 4 )
3D4(q)

G2(q) ( q>2 )
2 G 2 ( q ) (1 = 32 k + 1 ,k>1)

F4(q)
2F4(q) (q = 22k+1, k > 0)

E6(q)

2E6(q)

E7(q)

E8(q)

d|Xn(q)|

qn(n+1)/2Pi=1(q
i+1 - ei+1)

qn2Pi=1(q2i-1)
q n 2 P i = 1 ( q 2 i - 1 )
q2(q2 + 1)(q-1)
qn(n-1)(qn-e)Pn-1(q2i-1)

q12(q8+q4+1)(q6-1)(q2-1)
q6(q6 - 1)(q2 - 1)

q3(q3 +1)(q - 1)

q2(q12 -1)(q8 - 1)(q6 - 1)(q2 -1)
q12(q6 + 1)(q4-1)(q3 + 1)(q-1)

936(912 - 1)(99 - D(98 - 1)
(q6 - 1)(q5 - 1)(q2 - 1)

q36(q12-1)(q9 + 1)(q8-1)
(q6 - 1)(q5 + 1)(92 - 1)

q63 (q18- 1)(q14 - 1)(q12 - 1)
(q10-1 (q8 -1)(q6 - 1)(q2 - 1)

q12(q30-1)(q24-1)(q20-1)(q18-1)
(q14-1)(q12-1)(q8-1)(92-1)

d

(n+1, q-e)

(2, q-1)

(2, q-1)
1

(4, qn - e)

1

1

1

1

1

(3, q-1)

(3,9 + 1)

(2, q-1)

1
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If p = r, the r-part of |S| is just r, which is realized only when Xn = A1 and q =r, that
is, S = L 2 ( p ) . This is contained in the Case (1) of the claim. Thus we may assume that
P = r .

We will now show that r is odd, except possibly for the Case (1). Assume that r = 2.
First, consider the case y is even. In this case, 5 is a simple group of Lie type in characteristic
2, and so the normalizer of a Sylow 2-subgroup U of S is a Borel subgroup, which is a
semidirect product of H by a Cartan subgroup T. If S is of untwisted type, each non-trivial
element of H corresponds to a non-trivial character x of the integral lattice generated by
roots into the defining field, which sends under conjugation an element xr(t) of a root
subgroup of U to xr(x(r)t) (see e.g. [3] p. 100). In particular, each non-trivial element of
T acts non-trivially on U. For S twisted, H and U are subgroups of an untwisted group
of Lie type defined on a larger field, and we can obtain the similar formula (see e.g. [3]
p. 194), and hence the similar observation holds. Thus in any case there is no non-trivial
element of odd order of S centralizing a Sylow 2-subgroup of 5.

Then it follows from the Condition (iv) that x = 8 and so p = 73, if y is even. Moreover,
we may assume that a Sylow p-subgroup P of S does not centralize a Sylow 2-subgroup
T of A contained in Ku (u € G2). As we saw in the proof of Lemma 4.7, then it follows
from Lemma 2.4.2 that T is of order at least 2X+1 = 29. As |T| < |A|2 < p2 = 732,
we have 29 < \T\ < 213. Observing the list of orders \Xn(2

f)\ above, we can determine
the groups Xn(2 f) with 29 < |Xn(2f)|2 < 213 and p = 73 | |Xn(2f)|. In fact, the group
1A1 (2

9) = L2(2
9) is the unique such group, and this belongs to the Case (1).

Hence we may assume that y is odd. Now notice that p is an odd prime dividing the
square free part of |S| by the Condition (i). If S = e A n (q) for e = ±1, then p divides
qi+1 _ ei+1 for some i (1 < i < n), but not q - e, as (q - e)2 divides \S\. Thus the
prime p divides (qi+1 - e i + 1)/(q - e). Then p < (qn+1 - sn + 1) /(q - e) < qn+1, and
so p < qn(n+1)/2 = |S|2. This contradicts the Condition (iv). Hence r is an odd prime if
S = eAn(q).

If S = Bn(q) or Cn(q), p divides qi — 1 or qi + 1 for some i < n, and so p < qn + 1.
As y is odd, we have |S|2 = qn2 < p < qn + 1 by the Condition (iv). However, as qn > 2,
this is impossible. Similarly, we can eliminate all the cases, except when Xn(q) = 2B2(q)
and p = q2 + 1, and Xn(q) = 2G2(q) and p = q3 + 1. As p - 1 = x(x + 1) (x > 1) is
not a power of a prime, these cases do not occur.

Thus we conclude that r is an odd prime, except possibly for the Case (1). In particular
Xn = 2B2,

2F4.
We can also eliminate the cases Xn = F4, E6,

 2E6, E7 and Eg, as follows. For example,
consider the case S = F4(q). Then |S| = q24A2B with A = (q6 - 1)(q2 - 1)(q2 + 1) and
B = (q4+ 1)(q 2 - q + 1)(q 2 + q + 1). As |S|p = p, p divides B, and hence p <q4+ 1.
As q4 + 1 is an even integer, p = q4 + 1 and p < q4, as p = q4. In particular, q24 > p6

and B > p. Thus |S| > p7, which contradicts the Condition (ii). By the same argument,
we can immediately eliminate the above cases.

It remains to restrict n in the cases Xn = An,
 2An, Bn, Cn, Dn and 2Dn. Consider the

case S = £An(q) for some n > 2 and q = rf with a prime r. Since |S|r = qn(n+1)/2 > q2

for n > 2, the condition |S|p = p implies that p is a prime distinct from r dividing
exactly one of qi+1 — si+1 (i = 1 , . . . , n). In particular, p is prime to q — e. If i + 1
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is even or e = 1, qi+1 — ei+1 = qi+1 — 1 and hence p divides (qi+1 — 1 ) / ( q — 1) =
qi + • • • + q + 1 < 2qi. If i + 1 is odd and e = -1, qi+1 - ei+1 = qi+1 + 1 and
p divides (qi+1 + 1 ) / ( q + 1) = qi - qi-1 • • • - q + 1 < 2qi. In both cases, we have
p < 2qi < 2qn. Thus 27q7n > p7 > \S\ = \ e A n (q) \ by the Condition (ii). On the other
hand, as qi+1 - si+1 > 2qi for i = 1 n, we have Pi=1(qi+1 - si+1) > 2nq(n+1)/2.
Hence

Then we obtain 27/n > qn - 6 . If n > 7, 2 > 27/n > q, while q is an odd prime power.
Hence n < 6 and we obtain the Case (2) in the claim.

Next consider the case S = Bn(q) or Cn(q) with n > 2 for a power g = rf of a prime
r. In this case, we have \S\ = |Bn(q)| = \Cn(q)\ = qn2Pn

=1(q
2i - 1)/(2, q - 1). As

|S|r = qn2 is divided by r2, p = r and hence p divides exactly one of qi — 1 or qi + 1
(i = 1 , . . . , n ) . In particular, p < qn + 1. As gi ± 1 is even, while p is odd, we have
p < qi < qn. On the other hand, we note that q2i — 1 > 2q2i-1 for i = 1 , . . . , n, as
q 2 i - 1 ( q - 2) > 1. Then |S| > qn22nq1+3+...+(2n-1)/2 = 2n-1 qn2+n2. Thus it follows from
the Condition (ii) that

or 1 > 2n-1 q2n2-7n. Then (2n - 7)n < 0, and so n < 3.
If n = 3, the square free part of |S| divides (q2 - q + 1)(q2 +q+ 1)(q2 + 1). As p

divides the square free part of |S|, p divides q2 + 1 or q2± q + 1. Then we can obtain a
better bound p < q2 + q + 1 < 2q2 in this case. By the Condition (ii), we have

Then we have 25 > q4, which implies q = 2. However, then we have p < 2q2 = 8, which
contradicts the Condition (iii). Thus n = 2 and we obtain the Case (3) in the claim.

Finally consider the case S = eDn(q) for some n > 4 and a power q = rf of a prime r.
As \S\P = p, p is a prime distinct from r dividing exactly one of qn — e, qi + 1 and
qi — 1 (i = 1 , . . . , n — 1). In particular, p is prime to q — e, and p < qn + 1. Then
p = qn + 1 as gn + 1 is even, and hence p < qn. Note that q2i - 1 > 2q2i-1 and
Pn-1(q2i - 1) > 2n-1q1+3+...+(2n-3) = 2n-1q(n-1)2, as we saw in the above paragraph. It
now follows from the Condition (ii) that

and hence 1 > q2n2-10n+1(qn -e). This implies that 2n2 - 10n + 1 < 0 or equivalently
n < 4. Thus n = 4.

If e = 1 and n = 4, |S| = q12(q2 - 1) V + 1) V + q + 1)(q 2 - q + 1). Then
p <q2 + q + 1 < 2q2 and we have



or 26 > 77(q4 — 1), which is a contradiction. Hence we obtain the Case (4) in the claim,
and we exhausted all the remaining cases.

In order to eliminate the remaining cases in Lemma 5.1, we will estimate NA(P)/CA(A)
for a Sylow p-subgroup P of L (and so A) contained in the stabilizer Au for a plane u,
and then to obtain the lower bound of |5| in terms of x and so p. Then we obtain the
contradiction by the Condition (ii).

For that purpose, we consider the covering (general) linear group G of S acting on its
natural module V over an extension field of GF(q). In the Case (2) in Lemma 5.1, we have
G = GLn+1(q) acting on the (n + 1)-space over GF(q), or G = GUn+1(q) acting on the
(n+ 1)-unitary space over GF(q2). Let P (= P) be the commutator subgroup of the inverse
image of PZ(L)/Z(L) in G. In the Case (2), we can show that the commutator space [V, P]
is an irreducible modules for P (see the proof of Lemma 5.2). Applying Lemma 2.4.1, then
we conclude that N G ( P ) / C G ( P ) is a subgroup of the cyclic group of order dim([V, P]).
Since A/LCA(L) is a subgroup of the outer automorphism group Out(S), we can conclude
that NA(P)/CA(P) is a subgroup of the cyclic group of order dim[ V, P] (which corresponds
to N G ( P ) / C G ( P ) ) extended by the field automorphism group and the graph automorphism
group. On the other hand, as AU/KU is a Frobenius group Fx+1, AU/PKU is isomorphic
to a subgroup of NA(P)/CA(P). Thus x + 1 divides the odd part of \NA(P)/CA(P)\,
and therefore, we obtain a bound r(x+1)/dim V < q, where r is the prime divisor of q. This
gives a lower bound of |5| in terms of x and so p = x2 + x + 1, which together with the
Condition (ii) will be enough to eliminate the Cases (2). Similarly we can eliminate the
Cases (3)-(7) in Lemma 5.1. The Case (1) will be treated separately in Lemma 5.3.

Lemma 5.2 The cases (2)-(7) in Lemma 5.1 do not occur.

Proof: We also use the convention used in the proof of Lemma 5.1. As we descibed
above, we first take the covering general linear group G for S and the action on its natural
module V. We also use S and P to denote the inverse image in G of S and the commutator
subgroup of the inverse image of PZ(L)/Z(L), respectively. Explicitly, G and V are given
as follows, where the orthogonal space for GO 8 (q) is of minus type, but of plus type (over
GF(q3)) for3 D 4 (q ) , and through the representation on the 7-dimensional orthogonal space
for G2(q) and 2G2(q), we have 2G2(q) < G2(q) < GO7(q).

Case in 5.1

(2)

(2)

(3)

(4)

(5)

(6)

(7)

S

A n ( q ) (n = 2, , 6)
2 An(q) (n = 2, , 6)

C2(q)
2D4(q)

3D4(q)

G2(q)
2G2(q)

G

GL n + 1 (q )

GUn + 1(q2)

Sp 4 (q)

G O 8 ( q )
3D4(q)
G 2 ( q )

2G2(q)

V

(n +1)-dim. space over GF(q)

(n + 1)-dim. unitary space over GF(q2)

4-dim. symplectic space over GF(q)

8-dim. orthogonal space over GF(q)

8-dim. orthogonal space over GF(q3)

7-dim. orthogonal space over GF(q)

7-dim. orthogonal space over GF(q)
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If the Case (2) holds, G = GLn+1(q) and S = SLn + 1(q), or G = GUn+1(q2) and
S = SUn+1(q2). Let W := [V, P] be the commutator subspace of V under the action of
P. As P acts coprimely on V, V = W ® Cv(P) and W is the direct sum of irreducible P-
modules on which P acts fixed-point freely. In particular, for any non-trivial P-submodule
of dimension i + 1 of W (1 < i < dim W < n + 1), p divides qi+1 - 1 if £ = 1 and
p divides g2(i+1) — 1 if e = —1. Now the prime p divides exactly one of qJ+1 — e j+1

(j = 1 , . . . , n), as we saw in the proof of Lemma 5.1. Hence P acts irreducibly on the
commutator space W if e = 1.

We will show that P also acts irreducibly on W for the case E = — 1. First note that p is
prime to q2 — l. For, otherwise, p divides q — 1 or q + 1, and so p < (q + 1 ) / 2 < q as q ±1 is
even by Lemma 5.1. Since n > 2, \S\ = |Un+1(q)| is a multiple of q3(q2-1)(q3+1)/(q+1).
However, as q3(q — 1)(q3 + 1) > p3 • p • p3 = p7, this contradicts the Condition (ii). Thus
p is prime to q2 — 1. In particular, there is no P-submodule of W of dimension 1.

Next, suppose that W has P-subspaces of dimension i and i + 1 for some 2 < i <
dim W — 1. Then p divides both q2i — 1 and q2(i+1) — 1. However, this implies that p
divides g.c.d.(q2i — 1, q2(i+1) — 1) = q2 — 1, which contradicts the above remark.

Now, suppose that W contains the direct sum of P-subspaces of dimension 2 and i for
some i > 4, or the direct sum of two P-subspaces of dimension 3. In the former case, p
divides q4 — 1, and hence p divides q2 + 1 by the above remark. Then p < (q2 + 1)/2 < q2

as q is odd by Lemma 5.1. In the latter case, p divides q6 — 1, and hence divides q2—q +1 or
q2+q + 1. Then in any case p < 2q2. However, since we have dim(W) > 2+i > 6 in both
cases, \S\ = \Un+1(q)\ is a multiple of q21 = q7 ·q14 > (q/2) 7 p7 > p7, which contradicts
the Condition (ii). Thus W does not contain the direct sum of such P-submodules.

Since dim W < n + 1 < 1 by Lemma 5.1, it follows from the remarks in the above
paragraphs that W is an irreducible P-module, as we claimed.

Thus the normalizer N := NG(P) preserves the decomposition V = W ® CV(P) and
the group N / C N ( W ) is a linear group on W with a cyclic normal group PCN(W)/CN(W)
acting irreducibly on W. Hence N G ( P ) / C G ( P ) is isomorphic to a subgroup of the cyclic
group of order dim (W) by Lemma 2.4.1.

Now, note that A/CA(L) is a subgroup of Aut(S), which is an extension of G/Z(G) by
the field automorphism corresponding to Aut(GF(q)) = Zf and possibly the graph auto-
morphism group of order 2. Thus N A ( P ) / C A ( P ) is at most the extension of N G ( P ) / C G ( P )
by the above automorphism group of S. In particular, | N A ( P ) / C A ( P ) | divides dimW • f · 2.
On the other hand, as AU/KU is the Frobenius group Fx+1 with the kernel PKU/KU,
NA(P)/CA(P) contains a cyclic group of odd order x + 1. Thus x + 1 divides dim W • 2f
and so dim W • f.

Now consider the case x = 8. Since 2 < dim W < n + 1 < 7 by Lemma 5.1, either
x + 1 = 9 divides f or dim W = 3 and f is a multiple of 3. We first consider the latter case.
We write q = s3. Since p = 73 divides q3 — 1 = s9 — 1, s = 3, 5 nor 7. Since s is odd by
Lemma 5.1, s > 8 = x and so q = s3 > x3. In the former case, q = rf > 39 > 83 = x3.
Thus we have q > x3 if x = 8.

Now consider the case x = 8. Since x + 1 divides dim W • f, as we saw above, we have
x + 1 < (n+ 1)f. Since n < 6 by Lemma 5.1, this implies that (x + 1)/7 < f. Then
q = rf > r(x+1)/7 > 3(x+1)/7 > X3 by the condition (iii).
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Hence in any case we have q > x3. As p = x2 + x + 1 < 2x2 = 2(x3) ( 2 / 3 ) , this implies
that p < 2q2/3. It follows from the Condition (ii) and the lower bound for \S\ in the proof
of Lemma 5.1 that 27q(14/3) > p7 > qn(n+1). As n > 2, we have 27 > q6-(14/3) = q4/3,
and so 26 > q. However, as q > x3, we have 22 > x, which contradicts the Condition (iii),
and hence the Case (2) is eliminated.

The other cases can also be eliminated by repeating the similar arguments to those in the
paragraph above. Note that the Schur multiplier of S is of even order or 1, in the remaining
cases, and so S = L by Lemma 4.8.

If the Case (3) holds, then p divides the square free part of \S\, which is q2 + 1. As
(q2 + 1,qi - 1) = 2 for i = 1, 2, 3, P acts irreducibly on the 4-dimensional space
V over GF(q). Thus NG(P)/CG(P) is a subgroup of the cyclic group of order 4 by
Lemma 2.4.1. Since Aut(S) is the extension of G/Z(G) by the field automorphism cor-
responding to Aut(GF(q)) = Zf (as q is odd), NA(P)/CA(P) is at most the extension
of NG(P)/CG(P) by Zf.. Since N A ( P ) / C A ( P ) contains a cyclic group of odd order
x + 1 induced from AU/PKU, x + 1 divides /. Then q = rx+1 > 3x+1 > x3 as x > 2, and
27q14/3 > p7 as 2x2 > p = x2 + x + 1. Since p7 > \S\ > 2q8 as we saw in the proof of
Lemma 5.1, we have 26 > q10/3 and so 218 > q10 > x30. However, x is an integer.

If the Case (4) holds, p divides q4 +1 or q2 ± q +1, the divisors of the square free part of
\S\. In the latter case, we obtain a contradiction by the argument in the proof of Lemma 5.1.
If the former case holds, as (q4 + 1, qi - 1) = 2 for i = 1 7, P is irreducible on the
8-dimensional space V over GF(q). Then by the same argument as above, we can conclude
that x + 1 divides \N G (P) /C G (P) \ , which is a divisor of 8f. In particuler, x + 1 divides
f, and so q > 3x+1 > x3. Then we have a contradiction 27q14/3 > P7 > q12(q4 + 1)2q9.

If the Case (5) holds, p divides q4 - q2 + 1. As (q4 - q2 + 1, q3i - 1) = 2 for
i = 1 7 except i = 4, either P is irreducible on V or V is the direct sum of the
two P-modules of dimension 4, at least one of which is an irreducible P-module. In each
possible case, we can conclude that N G ( P ) / C G ( P ) is a 2-group by Lemma 2.4.1. (The
information on the normalizers of cyclic subgroups of S is available in [8]). As Out(S)
is the field automorphism, the same argument as above shows that x + 1 divides 3f. If
x = 8, we have q > 3f > 3(x+1)/3 > x3 as x > 16 by the Condition (iii). Then we have a
contradiction 27q14/3 > p7 > \S\ > q12. If x = 8, / is a multiple of 3, and hence q > 33.
328 > 737 = p7 > |S| > q12 > 336, which is a contradiction.

If the Case (6) holds, p divides q2 ± q + 1. When p divides q2 - q + 1, P acts
irreducibly on a 6-subspace W of V and stabilizing the complementary 1-subspace U,
since (q2 — q + 1, qi — 1) = 2 for i = 1 , . . . . 5. When p divides q2 + q + 1, obsere that
G is a subgroup of GO7(q) and that there is a subgroup of GO7(q) isomorphic to S L 3 ( q )
stabilizing mutually disjoint maximal isotropic subspaces W1, W2 and the complementary 1 -
subspace R. Then by Sylow's theorem, we may assume that P is contained in this subgroup
isomorphic to SL 3 (q) . As p is prime to qj — 1 for j = 1, 2, P acts irreducibly on W1, W2

and acts trivially on R. Thus in both cases, N G ( P ) / C G ( P ) is a subgroup of the cyclic group
of order 6 by Lemma 2.4.1. As Out(S) is the field automorphism group extended possibly
by the graph automorphism of order 2, x + 1 divides 3f. If x = 8, q > 3f > 3(x+1)/3 > x3

by the Condition (iii). For the case x = 8, we may write q = s3, as 9 = x + 1 divides
3f. Now note that p = 73 divides q2 - q + 1 or q2 + q + 1, as we saw above. We may
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verify that s = 3, 5 nor 7. Thus s > 8 = x and so q = s3 > x3, as q is odd by Lemma 5.1.
Thus in any case, we have q > x3. Then we have 27q14/3 > p7 > \S\ > q3(q3 + 1) by the
Condition (ii), which is a contradiction.

If the Case (7) holds, p divides q ± 1 or q ± 3k+1 + 1. As G has a maximal subgroup
isomorphic to Z2 x L2(q), we can verify that the normalizer N G ( P ) is contained in this
group if p divides q ± 1, and hence |NG(P) : CG(P)| = 2. If the latter case holds,
N G ( P ) / C G ( P ) is a cyclic group of order 6. (The information on the normalizers of cyclic
subgroups of S is available in [19].) As Out(S) = Z2k+1, the odd number x + 1 divides
3(2k + 1) by the same argument as above. Thus if x = 8, q = 32k+1 > 3(x+1)/3 > x3

by the Condition (iii). If x = 8, we may write q = 32k+1 = 33·(2l+1) for some l > 0, as
x + 1 = 9 divides 3(2k + 1). Since p = 73 divides q ± 1 or q ± 3k + 1, we have l > 1,
and so q > 33·3 > x3 = 83. Hence we always have q > x3. Then it follows from the
Condition (ii) that (2x2)7 > p7 > \S\ = q3(q3 + 1)(q - 1) > x9x9x3, or equivalently
2 > x, which is a contradiction. D

Lemma 5.3 The Case (1) in Lemma 5.1 does not occur.

Proof: Assume that r = p. Then p = q as \S\P = p, and S = L2(p). As Z(L) is of
odd order by Lemma 4.8, 5 = L and LCA(L) = L x CA(L). The group A/(L x C A ( L ) )
is a subgroup of Out(L) = Out(L2(p)) of order 2. Since a Sylow p-subgrop of L2(p) is
self-centralizing in Aut(L2(p)), CA(P) is contained in L x CA(L), and therefore CA(P) =
CL(P) x CA(L) = P x CA(L). Since a Sylow p-subgroup of L2(p) does not normalize
any non-trivial subgroup of L2(p), the subgroup L n K u of L normalized by P (< L n Au)
is the trivial subgroup. Then [ K u , P] < Ku n [ K u , L] < Ku n L = 1 as L = A. Thus Ku

is a p'-subgroup of CA(P) = P x CA(L), and hence Ku < CA(L).
If y is odd, Au is of odd order by Lemma 4.5.1. Then we have Au < L x CA(L) as

[A : L x CA(L)] < 2 . I f y is even, Ku contains a Sylow 2-subgroup of A by Lemma 3.6.2.
Then A = (L x CA(L))KU, as [A : L x CA(L)] < 2, and hence A = L x CA(L), as
Ku < CA(L) by the above paragraph. In any case, we have Au < L x CA(L). Since
Ku < CA(L) and AU/KU = Fx+1 by Lemma 4.2.1(1), we have Ku = Au n CA(L). Thus
Au = (L n Au) x Ku and L n Au = NL(P) n Au = Fx+1. In particular, L n Aa,u is a
cyclic subgroup of L2(p) of order x + 1. Since L is transitive on G0 by Lemma 4.8, L n Aa

is a subgroup of L = L2(p) of index p(x2y + 1)/(a + 1) = \G0\ by Lemma 3.6.2, which
is a multiple of p by Lemma 4.3. Observing a list of maximal subgroups of L2(p), p a
prime, [16] Chap. 3, Section 6, the subgroup L n Aa of L containing L n Aa,u = Zx+1 is
contained in a dihedral group of order p — 1 = x(x + 1) (note that x + 1 is enough large
by Condition (iii), and hence L n Aa = A4, S4, A5).

Thus |L n Aa| = (x +1)(x/t) for some integer t dividing x. Then \G0\ = p(x2y +
1)/(a+ 1) = |L : L n Aa| = pt(p+ 1)/2 by the transitivity of L on G0 (see Lemma 4.8).
As t divides x, (t, x2y + 1) = 1. Thus t = 1 and
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The dihedral group L n Aa of order x (x + 1) acts on Res(a) with (xy + 1 )(y +1) planes.
As L n Aa = Aa, all (L n Aa)-orbits on G 2 (a) have the same length |L n Aa : L n Aa,u| = x.



Thus x divides (xy + 1 ) ( y + 1), and so x divides y + 1. We may write y = xk — 1
for some natural number k. Then x + y = (1 + k)x — 1 is prime to x and so to y. By
Lemma 2.3.1(2), x + y divides (x + 1)(y + 1), and so xy + 1 = kx2 - x + 1. Then
x + y = (1+ k)x - 1 divides -(1 + k)(xy + 1) + (kx)(x + y) = x - (1 + k). As
x-(1+k) < x < x + y, x - (1 +k) < 0. If x< 1 +k, x +y divides the natural number
(1 + k) - x, and hence x + y = (1+ k)x - 1 < (1 + k) - x. Then (2 + k)x < (2 + k),
which contradicts the assumption x > 2. Thus x = 1 + k and y = x2 - x - 1. However, it
then follows from the equality above that (x2(x2 - x - 1) + 1) / (a + 1) = (x2 + x + 2)/2,
and so

As a and x are integers, this implies that x = 8 and 2(5x + 3) > x2 + x + 2, which
contradicts the Condition (iii).

Hence p = r. Next we show that r is an odd prime. If r = 2, then the odd prime
p = x2 +x + 1 divides q + 1 or q - 1. If p = q + 1, x(x + 1) = q = 2f, which is not
the case, as x > 1. As p is odd, p = q. Thus p < q - 1 < |S|2 = q, contradicting the
Condition (iv), if y is odd. If y is even and x = 8, P centralizes a Sylow 2-subgroup of
L = L2(2

f) by the Condition (iv), which is a contradiction.
In the remaining case, y is even and x = 8. As we saw in the proof of Lemma 5.1,

in this case S = L is isomorphic to L2(2
9) of order 29 • 33 • 7 • 19-73. Since the odd

part of \KU\ is at most p2/29, it is at most 10. In particular, the prime divisor 19 of |5|
divides [A : Ku] = p(x2y + 1 ) ( x y + 1)(y + 1)(x + 1 ) / ( a + 1) (see Lemma 3.6.2).
As we remarked in the proof of Lemma 4.6, the possible values of y can be obtained
by Lemma 2.3.1(2), among which y = 8, 56 or 64 are the only values satisfying the
condition 19 | [A : Ku]. As 29 < \KU\ < y2 by the Condition (iv), y = 8. If
y = 56, the odd part of \KU\ is at most [562/29] = 6. However, the prime divisor
7 (>6) of \S\ does not divide [A : Ku] = 73 • (3 • 5 • 239) • 449 • (3 • 19) • 32/(a +
1), which is a contradiction. Thus y = 64. Then |G0| = 73 • (17 • 241)/(a + 1).
Since G is not a building nor flat, a + 1 = 1 nor 17 • 241. Thus |G0| = 73 • 17 or
73 • 241, both of which do not divide |L| = |L2(2

9)|. This contradicts the transitiv-
ity of L on G0 (see Lemma 4.8). Thus we established that r is an odd prime distinct
from p.

Then p divides (q ± 1)/2, and we use the arguments in Lemma 5.2. The normalizer
NL(P) is a dihedral group of order (q ± 1) with the cyclic normal group of order (q± 1)/2.
Since Out(L) is the extension of the diagonal automorphism group of order 2 by the field
automorphism of order /, the odd part of \NA(P)/CA(P)\ divides f. In particular, x + 1
divides f. If x = 8, we have q = rf > 3x+1 > (x2 + x + 1)3 = p3 by the Condition (iii).
Then it follows from the Condition (ii) that q7/3 > p7 > \S\ = q(q2 - 1)/2, which is a
contradiction.

Assume that x = 8 and p = 73. If q =s9 for s >5, then |S| = q(q2 - 1)/2 > 59517 >
12521 > p7, which contradicts the Condition (ii). Thus q = 39. However, L = L2(3

9) is
of order prime to 73, a contradiction.
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Now we eliminated all the possibilities for the non-abelian simple group S appeared as
the factor of the unique component L of A (see Lemma 4.8). Thus there is no flag-transitive
C3-geometry of finite order (x, y) with x > 2, and therefore Theorem is established.
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