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Abstract. Let Dn,k be the family of linear subspaces of R n given by all equations of the form 

• l X t l  ~--- ~ 2 X t 2  ~ -  . . . ~ E k X t k  , 

for 1 _< il < �9 .. < ik <_ n and (~1 . . . . .  Ek) E {+ 1, -- l} k. Also let 13n,k.h be Dn,k enlarged by the subspaces 

X j I  ~ X j 2  ~ " " �9 ~ X j h  ~ O ,  

for 1 < jl  < " ' "  < J h  <-- n. The special c a s e s  Bn,2,1 and ~)n,2 a r e  well known as the reflection hyperplane 
arrangements corresponding to the Coxeter groups of type Bn and Dn, respectwely. 

In this paper we study combinatorial and topological properties of the intersection lattices of these subspace 
arrangements. Expressions for their M6bius functions and characteristic polynomials are derived. Lexicographic 
shellability is established in the case of 13n,k,h, 1 < h < k, which allows computation of the homology of its 
intersection lattice and the cohomology groups oftbe manifold Mn.k.h = R n \U 13n.k.h. For instance, it is shown that 
Hd(Mn,k,k_l) is torsion-free and is nonzero if and only i f d  = t(k - 2) for some t, 0 < t < In/kJ. Torsion-free 

c cohomology follows also for the complement in C n of the complexification ]3n.k.h, 1 < h < k. 

Keywords: cohomology, characteristic polynomial, Coxeter subspace arrangement, homotopy, homology, 
lexicographic sbellability, signed graph 

1. Introduction 

A subspace arrangement is a finite set 

.A = {Kl . . . . .  Kh}  

of linear subspaces K i in real Euclidean space R". We assume that there are no containments 
K i C K j ,  i ~ j.  An extensive theory exists for the case of real and complex hyperplane 
arrangements (i.e., codim K i  = 1), see Orlik and Terao [10]. Work on subspace arrange- 
ments of more general type has begun only in the last few years. See Bj6rner [1] for an 
overview of this development. 

*AMS subject classification (1991): Primary 52B30; Secondary 05A15, 05E25, 06A07, 20F55 
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The k-equal arrangement, .An,k, consists of  all subspaces of  the form 

{ XE]~n : X i l  ~ X i  2 -~" " ' "  ~ X i k } ,  

for k-subsets 1 < il < . . .  < ik < n. Here the xi are the coordinate functions in R n. 
This arrangement has been thoroughly investigated in several recent papers. It first appears 
in the work of Bj~Srner and Lovdsz [2] and Bjtirner et al. [3], motivated by its relevance 
for a certain problem in computational complexity. Obtaining good expressions for the 
MObius function of the intersection lattice L (.An,k) was of crucial importance in that work. 
Later, Bj6rner and Welker [5] computed the homotopy type of L(.A,,k) and then, via the 
Goresky-MacPherson theorem [7], the cohomology of the complement Mn,k = R n \U A~.k. 
Then Bj/Srner and Wachs [4] found a new approach to these computations via lexicographic 
shellability. Finally S undaram and Wachs [ 12] and Sundaram and Welker [13] determined 
the representations arising from the Sn action on L(.An,k) and on H*(Mn,k). 

One way to think of An.k is as the orbit WA~_~ (Kk) of the single subspace 

Kk = {x~]R n :xl = x2 . . . . .  xk}, 

under the standard action of the reflection group Wa,_, --- Sn on R n (permuting coordi- 
nates). Now consider the k-equal subspace arrangement of type Dn, 79n.k, consisting of all 
subspaces of  the form 

{ X E ~  n : E i X i l  = E2Xi2 = . . .  = E k X i k } ,  

for 1 < i l  < . - .  < ik <n and (El . . . . .  ~k) ~ {+1, --1} k. Adding to 79n,k the subspaces 

{x ~ R n : xjj = x h . . . . .  xjh = 0}, 

for 1 < jl  < �9 "" < Jh <-- n results in the k, h-equal subspace arrangement of type Bn. Denote 
by Ws~ and Wo~ the reflection groups of types Bn and Dn with their standard action on R n, 
see Humphreys [8]. Then 13n,k,h is the orbit union W~, (Kk) t_J WB~ (K~) where 

K~, = {x  E R n : x l  = x2 . . . . .  xh = 0 } ,  

1 < h < k _< n, while ~D~.k is the orbit WD~(Kk) = WB~ (Kk), 1 < k < n. Thus it is geometri- 
cally motivated to view B,,,k,h and ~9~,k as the type Bn and D~ analogs of  An,~, respectively, 
especially since for k = 2 and h = 1 all these subspace arrangements specialize to the 
hyperplane arrangements of  the respective reflection groups. 

After a review of definitions and some preliminary material in Section 2, we begin in 
Section 3 with the combinatorial study of the intersection lattices L(13n.k,h) and L(79n,k). 
These are both isomorphic to lattices of  signed graphs, as can be seen from work of 
Zaslavsky [15, 16]. Generating functions for the MObius functions and characteristic poly- 
nomials of  such lattices are determined in a setting which is more general than what the 
motivating geometric examples would demand. In particular, we derive an explicit ex- 
pression for the characteristic polynomials of L(]3n,k,h) and LCDn,k) using a lattice point 
counting method due to Blass and Sagan [6]. This is the only purely combinatorial tech- 
nique we know of to get such a result. It follows that these polynomials factor partially 



SUBSPACE ARRANGEMENTS OF TYPE Bn AND D, 293 

over the nonnegative integers, Z +. It is interesting to compare this with the hyperplane case 
where the corresponding polynomials factor completely over Z +. 

In Section 4 we prove lexicographic shellability of the intersection lattices L(13n,k,h). 
This makes possible the computation of the homotopy type (which turns out to be a wedge 
of spheres) and the homology groups of these lattices. The homology of L(.4n,,) was 
computed via a certain recursive procedure in [5] and later using lexicographic shellability 
in [4]. We remark that we were able to adapt the recursive procedure t o  L(Bn,k,h) only in 
the case h = 1, whereas lexicographic shelling works in general. However, we have so far 
been unable to apply either approach to L(79n.k), so the homology computations for that 
lattice remain to be done. 

The results from Section 4 are used in Section 5 together with the Goresky-MacPherson 
formula to compute the cohomology of the complement R n \ u  Bn,~,h. These cohomology 
groups are torsion-free, and for the pure arrangement Bn,k.k-I there is nonzero cohomology 
only in dimensions that are multiples of k - 2. The paper ends with some comments on 
related results and open questions. 

2. Preliminaries 

We will review some notions related to subspace arrangeme,',ts and also establish notation. 
Associated with any subspace arrangement .4 ---- {K1 . . . . .  gh} is its intersection lattice, 
L = L(-4), which consists of all intersections of subspaces in .4 ordered by reverse in- 
clusion. This lattice has unique minimal element I) = R n and unique maximal element 

-- (qh=l Ki. Any partially ordered set with 0 and 1 is called bounded.  (Any terminology 
from the theory of lattices and posets that we do not define can be found explained in 
Stanley's book [11].) 

Let .4 be a hyperplane arrangement and let .4' be a subspace arrangement. Then we 
will say that .4' is em be dde d  in .4 if each Ki ~ -4~ is an element of L (.4). The subspace 
arrangements with which we will be concerned are embedded in the reflection hyperplane 
arrangements .4n, B, and 79n defined as follows: 

An ={x~ = x j : l < i  < j < n } ,  

~3 n = {X  i = q'-Xj : 1 < i < j < n } U {xi = 0 : 1 < i < n }, 

Dn = {xi = q-xj  : l < i  < j < n } .  

Note that An c Dn _ Bn. 
It will be useful to have a combinatorial description of the intersection lattices L ( A n ) ,  

L(Bn) and L(Dn) .  This is provided by Zaslavsky's theory of signed graphs [15, 16]. A 
s igned  graph, G, has vertex set V ( G )  = In] where [n] = {I, 2 . . . . .  n}. The edges E ( G )  
of G can be of three types: 

�9 a positive edge between vertices i and j ,  denoted i j  +, 
�9 a negative edge between vertices i and j ,  denoted i j - ,  
�9 a half edge with only one endpoint i, denoted i h. 
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Note that both edges i j  + and i j -  can be present. The idea is that the edges i j  +, i j -  and 
i h correspond to the hyperplanes xi = xj, xi = - x j  and xi = 0, respectively, in B.. So 
associated with any arrangement ,4 __. 13n we have the associated signed graph GA where 
an edge is in G.a if and only if the corresponding hyperplane is in .4. 

We can now characterize L(.4) where .4 = .4n, B. or Dn using these graphs. (With 
a little more work, one can characterize L(.4) for any .4 ___/3..) Given V, W _ [n] with 
V N W 0 (and we permit one of V or W to be empty) we let K b denote the complete V,W 
balanced graph consisting of all positive edges between vertices of V, all positive edges 
between vertices of W, and all negative edges from a vertex of V to a vertex of W. It 
is called balanced because multiplying the signs around any cycle gives a positive sign. 
Also let K~ be the complete unbalanced graph, i.e., the one that has all edges of both 
signs between vertices in V. We also include all half edges on V in K~ in the case where 
.4 =/3n.  It is unbalanced because there exist cycles with negative edge product. (A half 
edge is considered a negative cycle.) By component we mean a connected component in 
the usual sense of graph theory. 

Theorem 2.1 (Zaslavsky [16]) Let .4 = .4~, 13. or D.. The lattice L(.4) is isomorphic 
to the lattice of subgraphs G c_ G A such that 
1. every component of G is complete balanced or complete unbalanced, and 
2. there is at most one unbalanced component. 
The graphs are partially ordered by inclusion of their edge sets. 

The isomorphism is obtained by sending each graph G to the subspace f"l e ~ G He  where He 
is the hyperplane corresponding to the edge e. Because of this isomorphism, we will often 
talk about these intersection lattices as if they were lattices of graphs. 

We can now combinatorially describe the subspace arrangements defined in Section 1. 
Call a component of a graph trivial or a singleton if it consists of a single vertex. Note 
that according to this definition, a single vertex i together with the half edge i h is non- 
trivial. Now the k-equal subspace arrangement of type An, ,4n,k, consists of all graphs 
in L( '4 . )  having exactly one nontrivial component K and satisfying IV(K)I = k, where 
I �9 I denotes cardinality. Note that we must have k > 2 and that this component must 
be a complete positively signed (hence balanced) graph. Also, "4.,2 = , 4 . .  The k, h- 
equal subspace arrangement of type Bn, 13.,k,h, consists of all graphs in L(]3.) hav- 
ing a unique nontrivial component K and satisfying IV(K)I = k if K is balanced or 
IV(K)I = h  if it is unbalanced. Note that we can assume h < k, since if h > k then 
there are containments among the subspaces. We also have the specialization/3.,2,1 = B.. 
In fact a natural one-parameter geometric analog of the type A. k-equal arrangement is 
the pure arrangement 13.,k,k-l. Finally the k-equal subspace arrangement of type Dn, 
73.,k, consists of all graphs in L( / ) . )  having a unique nontrivial component K which is 
balanced and satisfies IV(K)I =k .  Note that nothing is to be gained by having a sec- 
ond parameter h in the D .  c a s e  since, with the obvious definition, ~Dn,k, h = ]~n,k,h for 
2 < h  <k .  

Let l-I.,k and l-In,k,h be the induced posets of all graphs from L(,4n) and L(13~), respec- 
tively, whose nontrivial components have at least k vertices if balanced and at least h vertices 
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if  unbalanced. In this definition we make no assumption on k and h other than k > 2 and 
h > 1. From Theorem 2.1 we immediately obtain the following. 

C o r o l l a r y  2.2 For 1 < h < k we have the following lattice isomorphisms. 
I .  L ( . 4 n , k )  ~ l - In ,k ,  

2. L(t3n,k,h) ~- I'In,k,h i fh < k, 

3. L(Dn,k) ~- FIn.k.k. 

Note that the posets Fln,k,h also exist for h > k, but they are not even lattices in that case 
and so are not of  interest to us. 

Let .4 be any subspace arrangement and consider the M6bius funct ion/~(X) = #((), X) 
where X E L = L(.4).  We also l e t / z (L )  = /z(0, 1). The characteristic polynomial of  L 
(or of  .4) is 

x ( L ,  t) = Z Iz(x)td~mX (1) 
X ~ L  

In order to give a combinatorial  proof  of  one of  the results in Section 3, we will use the 
following theorem. In it, Z represents the integers. 

T h e o r e m  2.3 (Blass and Sagan [6]) Let -4 be a subspace arrangement embedded in 13n 
and let t = 2s + 1 be a positive odd integer. Consider the cube 

Q , = { ( x l  . . . . .  x . ) 6 z " :  - s < x ~ _ < s } .  

Then 

X(A,  t) = I Q t \ A I  

i.e., the characteristic polynomial of-4 evaluated at an odd integer t is the number of  lattice 
points left in the cube of  side t once the subspaces of .4  are removed. 

If  L is any partially ordered set then the pair x, y ~ L determines a closed interval [x, y] = 
{z E L : x < z < y}. The corresponding order complex, A(x,  y), is the abstract simplicial  
complex of  all sets {xl . . . . .  x t - l}  coming from chains x = xo < xx < -- -  < xt = y 
in [x, y]. We also write A(L)  for A(0,  1). We will say that L has a certain topological 
property if  A(L)  does. 

A property that we will be very concerned with is shellability. A cover in a poset P is an 
edge x --+ y of  P ' s  Hasse diagram, i.e., a pair x, y ~ P such that x < y and there is no z ~ P 
satisfying x < z < y. Let C(P) denote the set of covers of  P.  I f / :  is a totally ordered set 
then a function ~. : C(P) ~ ~ is called a labeling with label set L. This induces a labeling 
of  every maximal  chain 

C : x  : x  0 ~ x 1 ~ . . .  -'-"~ x I : y 
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in [x, y] where 

~.(C) = Z(x0 ~ xl) . . . . .  Z(xl-1 ~ xl). 

The parameter I is called the length of C and denoted l(C). Define the lexicographic order 
on maximal chains by saying that C < C' if~.(C) < Z(C') in lexicographic order. Note that 
C and C', and thus ~.(C) and k(C'),  can have different lengths. We say that C is increasing 
(respectively, decreasing) if L(C) is a strictly increasing (respectively, weakly decreasing) 
sequence. Note the difference between the strict and weak cases. A lexicographic shelling 
or EL-labeling of a poset P is a labeling such that 

S 1. every interval [x, y] has a unique increasing maximal chain C, and 
$2. C < C' for any other maximal chain C' in [x, y]. 

This notion of EL-shellability, introduced in [4], extends the standard one for graded 
posets. The fundamental result about shellings that we will need is as follows. 

Theorem 2.4 (Bj/Srner and Wachs [4]) Suppose the bounded poset P admits a lexico- 
graphic shelling. Then P has the homotopy type of a wedge of spheres and thus its integral 
homology groups are free. For each d > -1  the number of d-spheres, and hence also the 
dth reduced Betti number, equals the number of decreasing maximal chains of P having 
length d + 2. 

A lexicographic shelling in fact produces additional topological information that we will 
not need. Namely, the decreasing maximal chains determine a basis for the homology and 
cohomology of P [4]. 

3. Miibius functions and characteristic polynomials 

We will now investigate the combinatorics of the posets I-ln,k,h. More generally, suppose 
T, V _ Z + with 1 e T and let Fln,r.v denote the subposet of all graphs in L(Bn) with 
components K such that IV(K)I e T if K is balanced and IV(K)I e V if K is unbalanced. 
Note that Fl~,k,h = Fln,r,v if T = { 1, k, k + 1 . . . .  } and V = {h, h + 1 . . . .  }. Similarly define 
H~,T as a subposet of L(.An). Although these posets need not be lattices, they still contain 

the minimal element 0 (the empty graph), so we can still talk about their M6bius functions. 
By convention, we le t /z(P)  = 0 if P is a poset without a unique maximal element. 

If  we have a subspace X e L(B~) then dim X = b(G), where b(G) is the number of 
balanced blocks in the corresponding graph G. Thus it is consistent with definition (1) to let 

x(P,  t) = ~_~ p,(G)t b(G). 
G ~ P  

for any subposet P c L(Bn) with 0 e P. Since determining/z, X and the corresponding 
generating functions is no more complicated for arbitrary Tand V, we will do everything 
in this generality. 
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It will be convenient to introduce another subposet of L(Bn). Let II b contain the n,T 

graphs all of whose components K are balanced and satisfy IV(K)I ~ T. Also let I'Ibk be 
the special case where T = { 1, k, k + 1 . . . .  }. Our first proposition gives a recursion for the 
characteristic polynomial of this poset. 

Proposition 3.1 We have the recurrence relation 

(::) X (l-Inb,T , t) t E 2m-I 1 = (l-ln_m,r,t). m = l  I #( l " Im 'T)X  b 

b Proof: If G 6 l-In, r ,  then let K be the component of G containing the vertex n and let 
m = I KI. There a r e  2m-l( n - I  ) choices for K since it is a balanced complete bipartite m--1 

graph. This explains the first factor in the sum. 
Now fix K and consider the subposet 

P {G6 b . = Fin, r.  K is a component of G}. 

The lower ideal generated by P is isomorphic to the product Hb_m,r x Fire,T, with P being 
b b b X (rI._m,r, t) the cross-section l-In_m, r x K. Thus the contribution of P to X (l-In,r, t) is 

Iz(Flm,r)t. This completes the proof. [] 

Let P = (Pn)n>0 be a family of subposets Pn c L(Bn) with 6 6  Pn. Note that when 

n = 0 we have L(Bo) = {()} and x(L(Bo) ,  t) = 1. We consider the following generating 
functions 

n>_l 

X n 
F(P,x,t) = ~x(Pn, t )~  

n_O 

p (P ,  x)  = F ( P ,  x, 1) 

Note that if Pn has a unique maximal element not equal to () for all sufficiently large 
n, then p (P ,  x)  is a polynomial in x. This will be the case for the lattices of our type 
Bn and Dn subspace arrangements. In particular, we will need the truncated exponential 
function 

X 2 xk -1  

pk(x) = 1 + x + ~ + . . .  + (k - 1 ) - ~ . "  

Also note that if ] 6 *On for all n then F(P ,  x,  O) = M ( P ,  x). Finally we will need the 
following result about the k-equal arrangement .A.,k. 
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T h e o r e m  3.2 (Bj/Srner and Lov~isz [2]) We have the functional equations 

exp M(FIr ,  x) = p ( r l r ,  x), 

F( l - l r ,  x, t) = p ( H r ,  x) t 

and also 

p(I-Ik, x) = pk(X). 

Combining the two previous results, we obtain the following formulae. It is interesting 
to compare the expression for X (lib,E , t) with the well known 

X(1-I . ,2 ,1 )  = ( t  - -  1 ) ( t  - -  3 ) . . .  ( t  - -  2 n  + 1) .  

T h e o r e m  3.3 We have the functional equation 

F ( l i  b, x, t) = p(rIr ,  2x) t/2. 

In particular 

(2x)k_ l ] , /2 
F(1-Ib, x , t )  = pk(2x) ' /2= 1 + 2x + . . . +  7,.~7-4,,, , 

and 

b X (I-I,. 2, t) = t(t - 2)(t - 4 ) . - .  (t - 2n + 2). 

BJORNER AND SAGAN 

Fx(rlbr, x, t) = tMx(Flr, 2x)F(rI b, x, t) 

where the subscript x denotes the derivative with respect to that variable. This differential 
equation is easily solved by separating variables and then simplified by using Theorem 3.2: 

F(Hbr, x, t) = e x P ( 2 M ( H r ,  2x) ) = p(Hr ,  2x) t/2. 

The first special case follows from Theorem 3.2 again. The second is obtained from the 
first by extracting the coefficient of xn/n! using the binomial theorem. [] 

b Although X (I-In,k, t) factors over the integers for k = 2, it does not do so in general. 
However, it does factor partially. To see this, it is convenient to expand this polynomial in 
the basis of double failing factorials 

b {tin = X (rI,.2, t) = t(t - 2)(t - 4 ) . - .  (t - 2n + 2). 

Proof:  Multiplying the equation in Proposition 3.1 by xn- l / (n  - 1)! and summing, we 
obtain 
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We will also need a certain refinement of the Stifling numbers of the second kind, namely 
let 

Sk(n, j )  = the number of partitions of [n] into j subsets, each subset of size < k. 

Corollary 3.4 We have the expansion 

b x(l-I., k, t) = ~ 2"-J Sk_,(n, j ) { t } j ,  
j = l  

and the divisibility relation 

{t}r./(k-,)l I X(I-[b.,k. t) 

where r.7 is the round-up function. 

Proof: The second expression follows from the first because Sk-l(n, j )  = 0 for n > 
( k -  1)j. 

To obtain the expression for ) ,  write pk(x) = 1 + ~k(X) and use Theorem 3.3: 

F(n~, x) = (1 + pk(Zx)) '/2 

1>0 

= ~{ t } j2 -Jpk (2X)J / j t  
j>0 

Now take the coefficient of x"/n! on both sides, using the fact that this coefficient in 
pk(2X)J/j ! is just 2" Sk-l (n, j ) .  [] 

b We can now follow the same path for [-I,,r,v that we did for I-I,, r .  

Proposition 3.5 We have the recurrence relation 

X(]- ImT,  V, t )  = t ~-'-~2 m-1 tL(l-[m,T )X( l - [n -m,T ,V  , t )  
tn=l 

+ /z(I-l,.,r,v)X b 
m=l 1 

Proof: The first and second sums correspond to graphs G ~ Fl.,r,v where the component 
K containing the vertex n is balanced and unbalanced, respectively. Since the details are 
very much like those in the proof of Proposition 3.1, we omit them. [] 
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Theorem 3.6 We have the functional equations 

M(FIr, v, x)  = p(l-lr, 2X)-1/2p(FIT, V, X), 

F(Hr ,v ,  x, t) = p(I-Ir, 2x)(t-l)/2p(Hr, v, x).  

In particular for h < k 

F(1-Ik,h, X, t) -~ pk(2X)(t-1)/2ph(X). 

Proof: As in the proof of Theorem 3.3, we multiply the equation in Proposition 3.5 by 
x n - 1 / ( n  --  1)! and sum: 

Fx(FIr, v, x, t) = tMx(I-Ir, 2x)F(Flr,  v, x, t) + Mx(FIr, v, x)F(FI b, x, t). 

Moving the first term from the right to the left side of this equation, we see that it is linear 
in F(I-Ir, v, x, t) with integrating factor 

exp( f -t Mx(rlr , 2x) dx) = e x p ( - 2 M ( H T , 2 x )  ) = p(Flr , 2x) -'/2 

by Theorem 3.2. Applying the integrating factor, we get 

0 
7 x [ F ( r l r . v ,  x, t)p(I-lr, 2x) -t/2] = Mx(rIr, v, x)F(rlbr, x,  t )p ( l ] r ,  2x) -'/2 

= Mx(Flr.v, x) 

by Theorem 3.3. Integration gives 

F(l-lr, v, x,  t) = p(YIr,  2x)t/ZM(FIr.v, x). 

If t = 1 this specializes to 

M(HT, v, x) = p(FIr, 2x)-l /2p(Flr,  v, x) 

which, when plugged back into the previous equation, also gives the formula for F(HT, v, 
x, t) in the statement of the theorem. 

For the "in particular", the factor of ,ok (2x) (t-1)/2 is obtained from Theorem 3.2. Also 
note that for h _< k the poset l-In,k, h has 0 = 1 if and only if n < h. Thus 

1 i fn < h  
X(rln,k.h, 1) = 0 i fn > h '  

which gives the second factor. [3 

We can specialize this theorem to get the well known generating functions for the char- 
acteristic polynomial in the case of the Bn and Dn hyperplane arrangements 



SUBSPACE ARRANGEMENTS OF TYPE B, AND D, 301 

Corollary 3.7 We have the generating functions 

F(L(13), x, t) = (1 + 2x) ~t-l)/2 for L(/3n) = FI.,2,1 
F ( L ( D ) ,  x, t) = (1 + 2x)~t-l)/2(1 + x) for  L ( D . )  = l'-In,2, 2. 

We can also get a nice formula involving X (I-ln,k,h) itself. 

Coro l la ry  3.8 For 1 < h < k we have the expansion 

X(Iqn,~,h,t) = ~ Z 2 n - ' - J S ~ _ l ( n - i , j ) { t  - 1},, 
t=0  j = l  

and the divisibility relation 

{t - 1}Ffn-h+l)/(k-l)] I x(Fln,k,h, t). 

Proof:  Again, the second relation follows easily from the first. We could derive the 
expression for X from Theorem 3.6 with a demonstration similar to that of  Corollary 3.4. 
Instead, we will give a combinatorial proof based on Theorem 2.3. 

It suffices to show that a polynomial equation holds for positive odd t = 2s + l, so 
consider the cube Or. The arrangement .,4 consists of  all subspaces containing points with 
at least k coordinates equal in absolute value or at least h coordinates equal to zero. Thus 
Qt\ .A contains those points x = (xi . . . . .  xn) in Qt with at most k -  1 of  the numbers 
Ix11 . . . . .  Ixn I equal to any given value and at most h - 1 zero coordinates. 

Let Ai,j ~ Qt \.,4 consist of  all those points with exactly i zero coordinates and exactly j 
different nonzero coordinate absolute values. So it suffices to show that 

(7) [Ai,jl = 2n- ' -JSk_l (n  -- i, j ) { t  -- 1}j. 

First, there are (7 ways to choose the zero coordinates in x. Next, we can choose the ab- 
solute values of  nonzero coordinates in s (s - 1 ) . - .  (s - j + 1) = 2- /{ t  - 1 }j ways. Once 
these j values have been chosen, we can distribute them among the n - i nonzero coor- 
dinates in Sk-1 (n -- i, j )  ways, since a value can be repeated at most k - 1 times. Finally, 
there are 2 n - '  ways to sign the nonzero coordinates after choosing their absolute values. [] 

4. Shellability, homotopy type and homology 

In this section we will determine the homotopy type of Fln,k,h for h < k. Since these lattices 
turn out to be homotopic to wedges of  spheres, their homology groups are free and we 
will derive a formula for the corresponding Betti numbers. We will do this by applying 
Theorem 2.4. First, however, we will need to cite some general results about shellings. 

Consider posets P and P '  with covers labeled by totally ordered sets L and L',  respec- 
tively. A cover isomorphism is a function f :  P --+ P '  such that 
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1. f is an isomorphism of  posets and thus induces a bijection f :  C(P)  ~ C(P ' ) ,  further- 
more 

2. f induces a well-defined order-preserving bijection f :  L --~ L'  given as follows: If  
l ~ L labels a cover, c, and f ( c )  = c' with label l '  then f ( l )  = l'. 

The next result can be obtained immediately from the definitions. 

L e m m a  4.1 Let f : P --~ P' be a cover isomorphism. Then the labeling L of P is a 
lexicographic shelling if and only if the labeling L ' of P' is a lexicographic shelling. 

Now let P1, P2 be cover-labeled posets with labelings )~l: C(P1) ~ L1 and ~-2: C(P2) 
L2. The product labeling of the poset product P = PI x P2 by Ll tO L2 is 

L((a, b) --~ (c, b)) = ~-I (a ~ c) 

~.((a, b) --* (a, d)) = ~.2(b ~ d). 

A useful lemma concerning products is as follows. 

L e m m a  4.2 (Bj6rner and Wachs [4]) Let P = P1 x P2 have the product labeling ~ and 
fix a linear extension of L1 tO L2. If 
1. L 1 N L 2 = O a n d  
2. ~-1, ~-2 are lexicographic shellings of P1, P2, respectively, 
then )~ is a lexicographic shelling of PI x P2. 

Finally, we will need to recall the shelling of  Fln,k given in [4]. Any graph G has an 
associated set partition 

zr(G) = B l / B 2 / . . .  /Bn 

where each Bi is the vertex set of  a component of  G. We call Bi an l-block if I Bi I = l. We 
also use the notation [n] = {1, 2 . . . . .  n}. Now define a labeling ~. : C(Fln,k) --+ [2] • [n], 
where the label set is given the lexicographic ordering, as given in the following table. 

Symbol Operation to obtain the cover G --~ H ~.(G --+ H) 

M Merge two nontrivial blocks Bi, Bj (1, max Bi U Bj ) 
C Create a new k-block B (2, max B) 
S Merge singleton {a} into a nontrivial block (2, a) 

Here M, C and S stand for "merge", "create" and "singleton", respectively. 

Theo rem 4.3 (Bj6rner and Wachs [4]) The labeling rules M, C and S give a lexicographic 
shelling of rln,k. 
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For I-In,k,h there are additional covers involving unbalanced blocks. Let h < k and define 
a labeling ~. : C(Fln,~,h) ~ [4] • [n] by 

Symbol Operation to obtain the cover G -+ H Z(G --> H) 

UM Convert a nontrivial balanced block B to 

unbalanced, or merge it with the unbalanced block (1, max B) 

UC Create a new unbalanced h-block B (2, max B) 

US Merge {a} into the unbalanced block (2. a) 

BM Merge two nontfivial balanced blocks B~, B~ (3, max B~ U BI) 

BC Create a new balanced k-block B (4, max B) 

BS Merge {a} into a nontrivial balanced block (4, a) 

In this table U and B stand for "unbalanced" and "balanced", respectively. 
The main theorem of this section is the following 

Theorem4.4 The labeling rules UM-BS give a lexicographic shelling o f  Hn,k,h for  h < k. 

Proof: Let [G, H] be an interval in Fln,k,h and consider a nontrivial component K of H. 
We also let K stand for the graph in Hn,k,h obtained from H by breaking every component 
with vertices in [ n ] \ V ( K )  into singletons. Let G r  denote the graph obtained from G by 
the same operation. Then we have the poset isomorphism 

[G, H] =- F I [ G K ,  K]. (2) 
K 

Furthermore, if V ( K )  = {vl < . . .  < Vm} then the map f : V ( K )  --+ [m] given by v, ~+ i 
induces a map f :  [Gr ,  K] ~ [G~, i] for some G%. Here [G~c, i] is in FIm,k or l'Im,k.h if 
K is balanced or unbalanced, respectively. If l'Im,~ is labeled by M-S and l'Im,g,h is labeled 
by UM-BS, then f is a cover isomorphism and (2) gives rise to the product labeling. When 
H #: ], each factor of (2) is lexicographically shellable according to the cover isomorphism 
lemma combined with either Theorem 4.3 for the factors Flm,k or with induction on n for the 
factors Fl,,,~.h. The lemma on poset products now applies to show that the given labeling 
satisfies conditions S1 and $2 on intervals [G, HI for H # 1. 

When H = ], we must first identify an increasing chain C in [G, 1]. There will be three 
cases depending on the form of G. 

Case L G has an unbalanced component. Say 

zr(G) = B o / B 1 / . . .  /Bm 

where Bo corresponds to the unbalanced component, Bi, 1 < i < l, correspond to non- 
trivial balanced components, and Bi, l < i < m, correspond to trivial components. 
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Let 

bi = max B, for 1 < i < m. (3) 

Without  loss of  generality we can list the Bi so that 

bl < . . .  < bl and b~+l < " "  < b m .  (4)  

Define a chain C by 

C : G = Go -+ G1 -+ "'" --> G m =  ] 

where G j ,  0 < j < m, has an unbalanced component  on the vertex set Ui <_ j Bi and bal- 
anced components  on By+I . . . . .  Bin. Thus 

~.(C) : (1, b l )  < " '" < (1, bl) < (2, bl+l) < "'" < (2, bin) (5) 

which is increasing. 
Case 1I. G has nontrivial component(s)  all o f  which are balanced. Say 

7r(G) = 811... IBtl... IBm 

with the same conventions as in Case I. Note that B0 does not exist and I > 1. Define 
C : G = Go ~ G1 ---> . . .  --+ Gm = 1 where Gj  is as before but only for j > 1. So the 
first cover in C is the conversion of  B1 from balanced to unbalanced. Thus ~.(C) is still 
given by (5) and is increasing. 

Case III. G has only trivial components,  i.e., G = 0. Let 

C : 0 = Go --+ GI --+ . . .  -'-> Gn-h+l  = i 

where G j ,  1 < j < n - h + 1 has an unbalanced component on [h + j - 1] and {h + j},  
. . . .  {n} are singletons. Thus 

~.(C): (2, h) < (2, h + 1) < . . -  < (2, n) 

which is increasing. 

We must verify condition S 1 in the definition of  a shelling. Let C'  be any chain different 
from C in [G, 1]. To show that C '  is not increasing, it suffices to find an inversion, i.e., a 
pair of  labels L1, L2 such that ~.1 > ~-2 but ~1 comes before ~-2 in )~(C'). The last cover of C '  
must come from an application of rule UM or rule US and so must have a label (i, b) where 
i = 1, 2. If  C '  contains a cover coming from one of  the balanced labeling rules, then it has 
a previous label ( j ,  c) where j = 3, 4 and thus an inversion. So we can restrict ourselves 
to chains C'  using only UM-US. We now consider each of  the three cases separately. 
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Case I. Since G already has an unbalanced component, we can' t  use rule UC, leaving only 
UM and US possible. If  any application of  US comes before a UM, then some (2, b) 
forms an inversion with some (1, c). Otherwise ~.(C') is a non-identity permutation of 
~(C) as given in (5) and hence contains an inversion. 

Case II. Since G contains only balanced components, the first cover Go ~ G~I of  C'  must 

come from rules UC or UM. Let C" be the portion of  C '  in the interval [G'  l , i]. If  C" 
has an inversion, then we are done. Otherwise, from Case I, C" must be the unique 
increasing chain in [G'  1 , i]. There are now two possibilities. 

If  Go --+ G'  l is a UC cover then it has label (2, b) for some b. This implies that the first 
cover of  C" must be UM, since G' l has nontrivial balanced component B1, and so has label 
(1, bl ). Thus these two labels form an inversion. 

If  Go --+ G'~ is a UM cover then it has label (1, bi )  for some i, where the b~ are given 
by (3). Furthermore we must have 2 < i < l since i = 1 leads to C '  = C. As before, this 
implies that the first cover of  C" is UM with label (1, b l). Thus this pair of labels forms an 
inversion by (4). 

Case III. Since G = 0, the first cover of  C'  must be of  type UC. Let G '  1 , C" be as before and 
reason as in Case II to reduce to the situation where C" is the unique increasing chain in 
[G'j, 1]. Now G~l has a unique nontrivial component which is unbalanced on some vertex 
set B with IB[ = h but B :~ [h]. (The case B = [h] leads to C '  = C.) Thus there is a 
singleton component b in G' 1 with b < max B. Hence the label )~ (t3 --+ G~l) = (2, max B) 
forms an inversion with the label (2, b) in L(C"). This completes the verification that C'  
contains an inversion. 

Finally we must verify condition $2 in the definition of a shelling, showing that )~(C) is 
lexicographically least. It suffices to show the following: If  G, --+ G;+l is any cover in C 
and H is any element of  l-ln.k.h covering Gi then 

X(G~ -+ Gi+I) :> ~.(Gi ~ H)  implies H = Gi+l. 

Case L Consider Go ~ G1 with label (1, bl). So Z(G0 ~ H) < (1, bl) implies ~.(G0 ~ H) 
= (1, b) for some b < bl. Thus Go ~ H is a UM cover and this in turn implies that 
b = bi for some i, 1 < i  < l .  Now (4) forces b = bl and H = G1 as desired. Similar 
considerations apply for the covers a i  -"+ Gt+l ,  1 < i < I. 

Now consider Gt--+ Gz+l with label (2, bt+l). So ,k(Gt --+ H) < (2, bt+l) implies 
Gt --+ H is a cover coming from some unbalanced rule. But Gt has only one nontrivial 
component, K, which is unbalanced. Thus only rule US can apply and ~(Gt --+ H) = (2, b) 
for some vertex label b <_ bt+t. But bt+l is the smallest vertex label outside K, so b ----- bt+l 
and H = Gt+l. Similar considerations apply for the covers Gi --~ Gf+l,  l < i < m. 

Case 1I. The exact same reasoning as in Case I applies. One need only be careful about 
which of  the two possibilities in the UM rule is being used. 
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Case IlL Consider  Go -+ GI with label (2, h). Since Go = 6, the cover Go ~ H must come 
from UC or BC. But ~.(Go --+ H)  < (2, h) rules out BC, so X(Go ~ H)  = (2, b) with 
b < h. Also b = max B where B is the vertex set of  the unique nontrivial component  of  
H and IBI = h. Hence b = h and H = G. The covers Gi --+ Gi+l,  i > 1, are handled 
as in the second paragraph of  Case I. 

This completes the verification of condition $2 and the proof  of  the theorem. [] 

We now use Theorem 2.4 to calculate the Betti numbers of  l-'[n,k, h by counting decreasing 
chains in our shelling. First, however, we need a lemma about Stirling numbers. Let c(t ,  t ') 
denote a signless Stirling number of  the first kind, i.e., the number of  permutations of  [t] 

that decompose  into t '  disjoint cycles. 

Lemma 4.5 We have 

t 

E 2 f c ( t ,  t -- t ' )  = (2t - 1)!! 
t'-------O 

Proof: This result follows easily by induction on t. However, we prefer to give a com- 
binatorial proof. The sum counts all permutations of  [t] where the elements of each cycle 
have been colored red or blue and the smallest element in each cycle is always red. The 
double factorial counts all complete matchings of  the set { 1, 2 . . . . .  t, - 1 ,  - 2  . . . . .  - t  }. 

Given a cycle (Cl, c2 . . . . .  Cm) with minimum cl in a bicolored permutation we construct 
a matching on {Cl . . . . .  Cm, - C l  . . . . .  --Cm} as follows. I f m  = 1 then match cl to - c l .  If  
m > 1 then match Cl to one of  +c2 where the sign is chosen to be the same as c l ' s  (in this 
case positive) if  cl ,  c2 are colored differently, or the opposite sign (in this case negative) if 
cl ,  c2 are colored the same. Now match whichever of-4-c2 is unmatched to one of  +c3 using 
the same rule, and iterate this process (subscripts being taken modulo m). It is easy to see 
that this results in a matching and so applying the process to every cycle in a permutation 
gives a complete  matching. It is also easy to construct an inverse for this procedure, proving 

that we have a bijection. [] 

Note that any maximal  chain in Fln,k,h has at most one cover that comes from applying 
t rule UC. Let Dn,k, h denote the number of  decreasing maximal  chains in I-In,k,h of length 

l that have no UC cover. Thus we have l = n - t ( k  - 2) where t is the number of 
covers of  type BC. Note that 1 < t < I n / k J .  Similarly, l e t  [)In,k, h denote the number of 
decreasing maximal  chains in Fin,k, h of length l that have exactly one UC cover. In this 
case I = n - t (k  - 2) - (h - 1), where t again counts the BC covers and 0 < t < [(n - 

h ) / k J .  

T h e o r e m 4 . 6  Suppose tha t  l < h  < k a n d k  > 2. I f  l = n - t ( k - 2 ) w h e r e  I < t  < In~k J, 

then 

Dtn,k,h = 2n- ' (2 t  -- 1)!! E 
0=io < ' ' '  < il = n - - t k  

"( ) n -  j k - i j  - 1  
k - 1 (J + 1)iJ+'-~J" (6) 
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I f  l = n - t ( k - 2 ) - ( h - 1 ) w h e r e O < t  < [ ( n - h ) / k ] , t h e n  

Din,k, h 
(:-I) 

n-h ( n ) ( n - m - 1 ) r ~ m _ t , k _ 2 )  
~-~m=kt h - -  1 ~ m , k , h  

i f t = O ,  

i f t > l .  

Al l  other  values t ^ t o f  Dn,~. h and  Dn,k, h are zero. 

Proof: Let us consider a chain C counted by Dtn,k,h. Then ~.(C) can be broken into three 
consecutive parts. 

First comes a sequence of all labels with first coordinate 4. This corresponds to a sequence 
of BC and BS covers which create k-blocks and merge singletons until t nontrivial blocks 
have been formed. Note that no singletons are left after this stage because if there were, 
then rule US would have to be used after conversion of a block to unbalanced by UM, and 
C would not be decreasing. Let 

i j  = the number of singleton merges while there are < j nontrivial blocks. 

So 0 = io < �9 �9 < it = n - tk .  When creating the j + 1st nontrivial block we must always 
use the largest remaining singleton (to maintain a decreasing chain) together with k - 1 
of the other n - j k  --  i j  - l available singletons. The number of balanced blocks on k 
elements is 2 g-1. Thus 

numberofchoicesfor  the j + l s tBCcover  = 2 k - J (  n - j k - i l -  1) 
k - 1  

Each singleton merge while there are j + 1 nontrivial blocks present can be done in 2j  + 2 
ways for a total of (2j + 2) ij+~-'~ ways, until the creation of block j + 2. Thus the total 
number of choices for this portion of the chain is 

Z l-I 2k-~ (n -- jk -- iJ - 1 )  ~, j k -  1 (2j + 2 )  ij+' 

= 2"-'Y~H(n-jk-ij-1). k - 1  ( J+ l ) ' J+ ' - ' J  
o 

tj j 

(7) 

Next comes a sequence of labels with first coordinate 3, i.e., applications of rule BM 
for merging nontrivial blocks. Suppose there are t' merges starting from some graph H 
with blocks A 1 / . . . / A t  and az = m a x  Ai ,  1 < i < t. Consider the ordinary partition poset 
Fit, z on the set {al . . . . .  at} , labeling each cover by max Be t3 Bj where Bi,  Bj are the two 
blocks merged. It is known from [14] that this is a shelling of 1-It,2. Let Fin be the subposet 
obtained as the union of all chains in Fi,,k,h starting at H and only using BM covers. Then 
there is a function f : Fin ~ Fit,2 given by taking each H '  ~ Fin and mapping it to the graph 
obtained by removing all vertices except the a, and making all remaining edges positive. 
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This function is onto and label-preserving. The decreasing chains with t '  merges starting 
at H are mapped onto the decreasing chains with t '  merges starting at 0 6 Fit,2. Since Flr,2 
is shelled by the labeling, it contains c ( t ,  t - t ' )  such chains, Furthermore, each such chain 
has 2 t' preimages. Thus by Lemma 4.5 the total contribution from this portion of the chain 
C is 

y ~  2 r c ( t ,  t - t ')  = (2t -- 1)!! (8) 
t' 

Finally, we have covers coming from the unbalanced rules. But to use any such rule, 
we must first create an unbalanced block which gives a label of the form (1, b). Thus to 
maintain a decreasing chain, we can only use rule UM, first to create the block and then to 
merge the rest of  the blocks with it. This can only be done in one way, namely in decreasing 

l order of  maxima. Hence On,k, h is given by the product of  (7) and (8) which agrees with 
formula (6). 

^1 To obtain the formula for Dn,k, h when t > 1, we follow the same argument as before 
with two changes. At the end of the first sequence of BC and BS covers it is no longer true 
that only nontrivial blocks are left. Suppose that the set of  vertices in nontrivial blocks is 

__ D m - - t  (k -2)  S C [n] where ISI = m ,  k t  < m < n - h. Then there are (,~) choices for S and ~m,k,h 

ways to pick the deceasing chains once S is chosen. We must also modify the final sequence 
of covers to begin with an application of  UC to create an unbalanced component, followed 
by some applications of US, and ending with some of UM. The UC cover can be chosen in 

(~-~m_]-I) ways since the largest remaining singleton must be put in the unbalanced h-block. 
But the US sequence and the UM sequence can each be done only in decreasing order of  
maxima. Putting together the various counts finishes the t >_ 1 case. 

Finally we must consider what happens when t = 0. Since no balanced k-blocks are 
created we must start with a UC cover, which can be done in n-1 ( h - l )  ways, and follow 
by merging in all the singletons in decreasing order. This completes the counting of the 
decreasing chains. [] 

If  P is a poset, then let ~ d ( p )  be the reduced Betti number of  the order complex A ( P )  
in dimension d (the rank of reduced homology with integer coefficients). We will use the 
abbreviations ~ d ( x ,  y )  when P is an interval [x, y] and ~d -d ~8n. k, ~Sn,k, h when P = Hn,k, lq~,k,h, 

respectively. In order to give the formulae for /~d it will be convenient to have the n,k,h 

Kronecker delta, 8.~,t, which equals 1 if s = t and 0 otherwise. Combining Theorems 2.4 
and 4.6 we immediately get the following result. 

T h e o r e m  4.7 I f  1 < h < k a n d  k > 2 then I-ln,k,h has  the h o m o t o p y  type o f  a w e d g e  o f  

spheres ,  so  its in tegral  h o m o l o g y  g roups  are f ree .  In  the case  h ~ 1, k - 1 w e  have  

-d  /~d+2 
d = n - 2 - t ( k  - 2) wi th  1 < t < Ln / kJ  ~ ~n,k,h = ~n.k,h 

~d /~d+2 
d = n - 2 - t ( k  - 2) - (h - 1) wi th  0 < t < L(n - h ) / k ]  ~ jSn,g, h = Un,k, h 
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In the case h = 1, k - 1 we have 

d = n - 2 - t ( k - 2 )  with 1 -  ~h,1 _< t < I_(n + 1 _  _ ~h ,1 ) / k j  =:~dn,k,h ---- FId +2~n,k,h -[- ~n,k,h'/~d+2 

Furthermore, these are exactly the cases when ~an,g, h ~ O. 

Note that when h ---- k - 1 then the parameter t counts the total number of  times a nontrivial 
block is formed, rather than just the number of formations of  balanced k-blocks. It is 
interesting to compare this result to the one in [5] on the reduced Betti numbers in the type 
An case. We will also need this result in the next section when we compute the ranks of  
cohomology groups. 

Theorem 4.8 (Bj6rner and Welker [5]) I f 2  < k < n then Fln,k has the homotopy type o f  
a wedge o f  spheres, so its integral homology groups are free. Furthermore, -d •n,k ~ 0 i f  and 
only i f  d = n - 3 - t (k  - 2) f o r  some t, 1 <_t <_ [n /kJ  and in that case 

/~d = ( t - -  1)! E I"I  n,k k - 1 (J + 1)tJ+t-'J" 
0=i0< - <_tt=n--tk j = 0  

Although there does not seem to be a nice closed form expression for #na, k,h, things 
simplify in high and low dimensions. The following corollary is an easy computation using 
Theorems 4.6 and 4.7 so its proof is omitted. 

Coro l la ry  4.9 We have the fol lowing particular values f o r  ~an,k, h in high dimensions. 

1 / 
h ~ l , k - 1  ~ n,k,h 1 ' 

h ~ k - 1 ~ ~'n,k,h = 1 ' 

h = k - 1 =~ /~n,k.h 1 + 

We have the fol lowing particular values f o r  ~an,k, h in low dimensions. 

q'( ) n ~ 2 q - 2 = 2 n - q ( 2 q _ l ) ! [ ~  n - j k -  1 
h r l and --s = q  ~ Z = ~  ~.n,k,h k - -  1 

1=0 

n -- h ~2r-I n 2n-r(2r - 1)!! n - j k  - 1 
h:f i  k -  I and k - - r  :=~ ~"'k'h = n - - h  k -  I 

j=O 
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Furthermore, i f  h ~ 1, k - 1 then for  any d = n - 2 - t ( k - 2), 1 < t < I n / k J , we have 
the divisibility relation 

5. Cohomology of the complement 

If.A is a subspace arrangement in R n then we let M (.A) = R n \U.A be the manifold obtained 
by removing the subspaces from R n . In particular, let Mn,k,h = M (13,,g,h). The fundamental 
result linking the homology of the lattice L(.A) and cohomology of the manifold M ( A )  is 
as follows. Here H(0, x) denotes the reduced homology of the interval [0, x] viewed as an 
order complex. 

Theorem 5.1 (Goresky-MacPherson [7]) Let .4 be a subspace arrangement with inter- 
section lattice L and manifold M. Then for  all dimensions d 

ff'Id(M) = �9 ncodimx-2-d(0, X). 
xEL~ 

Since the Goresky-MacPherson formula involves the homology of intervals in L we will 
have to investigate their structure in Fln,k,h. They turn out to be poset products so the next 
result, whose proof can be found in Bj6rner and Welker [5], will be useful. 

Proposition 5.2 Suppose that x < x '  in poset P, y < y' in poset Q and consider the 
interval [(x, y), (x', y')] E P • Q. 
1. I f  A ( x ,  x ' )  and A(y, y') are both homotopy equivalent to wedges o f  spheres, then so is 

A((x, y), (x', y')). 
2. I f  ffla(x, x ' )  and [la(y, y') are f r ee for  a l l d  then so is ffla((x, y),  (x', y '))  and 

I?la((x, y), (x', y')) =-- (~ t-lp(x, x') | I7tq(y, y'). 
p+q=d-2 

Finally, we need some notation. Suppose G 6 Fln,k,h has zr(G) = B o / B 1 / . . .  where B0 is 
the block of the unbalanced component. We permit B0 = 0. Recall from the isomorphism 
of Corollary 2.2 that G corresponds to a certain subspace, that we will also denote by G. 
To make our formulas more compact, it will be convenient to assume that if n = 0 then 
Fl0,k,h consists of a single element and 

~'-goa,h= / 1  if d = - 2 ,  
/ 0 else. 

Theorem 5.3 Suppose 1 < h < k and k > 2. Consider G c Fln.k,h having an unbalanced 
component o f  size ao > 0 and nontrivial balanced components of  size al . . . . .  am > k. 
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~t 
771 

1. codim G = ~ i = o  aj - m. 

2. [0, G] ~ Flao.~h • l-]al,k X " ' "  X 1-Iam,k.  

3. [6, G] has the homotopy  type o f  a wedge  o f  spheres  and so its homology  groups are free.  

: Z . - , p a + . . + p , n = d - 2 m  ao,k,h al ,k  " " " [~a,,,k" 

5. ~d(O, G)  is nonzero i f  and only i f  

tn 

d = S a '  - m - 2 -  t ( k -  2) 
i = 0  

where 

m + (1 - 3h,l)(1 -- 6ao O) < t < " ' , 
' - -  - -  k ,=1 

or when  ao r O, h :fi 1 , k - l a n d  

m 

d = ) - ~ a , - m - 2 - t ( k - 2 ) - ( h -  1) 
t = 0  

where  

m < t <  + . 
/ = 1  

Proof :  The first two items follow from Zaslavsky 's  Theorem 2.1 characterizing rln,k,h. 

N u m b e r  3 comes  from combin ing  Theorems 4.7, 4.8, Proposi t ion 5.2 and i tem 2. Similar ly 
n u m b e r  4 is an applicat ion of  Proposit ion 5.2 to item 2. Note that when  ao = 0 then 

/~aP0~ only  permits  a term to be nonzero when P0 = - 2 ,  In this case Pl + " '" + P,~ = 
d - 2(m - I)  which is what  is needed to correctly apply Proposit ion 5.2. Final ly,  the d 
values g iv ing  nonzero  Betti  numbers  can be extracted by us ing i tem 4 and the bounds  in 
Theorems  4.7 and 4.8. In particular, one must  have p, = a i - -  3 - t, (k - 2) for i > 0 and 

Po = ao - 2 - to(k - 2) or Po = ao - 2 - to(k - 2) - (h - 1) as appropriate and then the 
m t restrictions on the t, will  give the bounds  on t ~ i = 0  i. [] 

d ~d Now let Pn,k,h, Pn.k.h denote  the ranks of  Ha(M, ,k ,h ) ,  f td(Mn,k,h) ,  respectively. 

T h e o r e m  5.4 Suppose  1 < h < k and k > 2. For each G ~ Fln,k, h let ao > 0 be the size 
o f  its unbalanced  componen t  and let a l . . . . .  am > k be the sizes o f  its nontrivial  balanced 

components .  
1. The groups Hd(Mn.k,h) are free.  
2. #~ ~.o-~-qo~-3-q~ . ~o,~-3-q,o 

n,k ,h  = Z G  ~ n , l . n  ~) ~-~qo+. .+qm =d Oo,k.h a, ,k  "" ~am,k  " 
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3. pd n.k,h ~ 0 i f  and  only i f  

or  when  ao ~ 0, h ~ 1, k - 1 and  

P r o o f :  

d = t ( k - 2 ) + ( h - 1 )  where 0 < t < L ~ - - ~ J .  

The first two items follow from Theorem 5.1 together with numbers 3 and 4 of  
Theorem 5.3, respectively. To get the sum, we make the substitutions P0 = a0 - 2 - q0 and 
Pi = ai - 3 - qi for i > 1. The restrictions for the nonzero ranks are gotten by applying 
the bounds in Theorems 4.7 and 4.8 to the summation formula just proved. [] 

-d is messy, but there is a nice low-dimensional case. Again, the general form of Pn,k,h 

Coro l l a ry  5.5 Suppose 1 < h < k and  k > 2. 

(:)(: 11) h ~ l ,  k - l =~ n,k,h = ~"~ 2 i 
i=k 1,) ~k-2 = 2 n 

h = l = ~  n,k,l ' 

h = k - l = ,  ~ 2 k _ 1 =  ~ ( 7 ) [ 2 ' ( ~ - - 1 1 ) +  ( ~ - - 1 2 )  ] .  
i=k 

P r o o f :  We will only do the case h 7~ 1, k - 1 as the others are similar. By Theorem 4.8, 
a factor in the sum for tSd k,h which corresponds to the ith balanced block will be nonzero 
only when a i  - -  3 - qi = a i  - -  3 - ti(k - 2). So we must have q~ = ti(k - 2) for some 
ti >_ 1, 1 < i < m. Now qo - t - . . .  qm = d = k - 2 forces q0 = to(k - 2) where to > 0. Thus 
by Theorem 4.7 we see that G has exactly one nontrivial component which is unbalanced 
when to ----- 1 and balanced when tl = 1. In the unbalanced case, if ao = i then there are 
(7)  ways to choose the component  and ~k!h 2/-1 ,-1 , , = ( k - I )  by Corollary 4.9. Thus the total 

contribution of these G is 

~ 2 i - l ( n ~ ( i  -- l l ) .  
,=k \ i : \ k  

(9) 

In the balanced case there a r e  2 i -1  ( n ) ways to choose the component. Furthermore ~,k k-1 = 
t--I k-1 ) by a specialization of Theorem 4.8. Thus the balanced graphs give the same total 

contribution as the unbalanced ones, and doubling (9) gives our formula. [] 
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There is another way to derive the formula for/5~21 in this corollary. Since the arrange- 
ment/$n,k,1 contains the coordinate hyperplanes its complement naturally decomposes into 
2" parts, one for each orthant. This way one easily sees that M~.~.1 has the homotopy type 
of the disjoint union of  2 ~ copies of  the complement of  ~A~,k. Thus we derive that for all d 

d n d 
Pn,k,1 = 2 Pn,k 

where p d k  is the rank of H d ( M n , k ) .  These ranks were computed in [5]. In particular, for 

k > 2 we get the previous corollary's formula for Pn,k,j"k-2 

6. Remarks 

We end with some comments  and questions raised by this work. 

(1) In Section 3 we always assumed that 1 ~ T when exploring the combinatorics of  Fln.r 
and F l n . r , v  since this was the case of  interest to us. However, this restriction is not 
necessary. One can assume that T is arbitrary and add a 0 to the poset if 1 r T. 
Linusson [9] has derived expressions for the generating functions that we considered 
in this generality for l-l.,r and I - l . , r , v .  

(2) We should explain the reasons for the restrictions that appear on k and h in our results 
from Sections 4 and 5. The inequality k > 2 is not really necessary. But when k = 2 
the Betti number is nonzero only in dimension n - 2 and is given by a sum of many 
descending chain counts since the equations n = d + 2 = n - t ( k  - 2) = n - t ( k  - 

2) - (h - 1) put no restriction on t. The sum is, of  course, much messier than the 
well-known value/~. -2  = (2n - 1)!v The reason for this is that shelling rules UM- 

n , 2 , 1  " '  

BS are complicated precisely because they must take care of arrangements where the 
subspaces are not hyperplanes. If  the subspaces do have codimension one then easier 
techniques are available. 
On the other hand, the restriction h < k is forced on us by the fact that UM-BS do not 
give a shelling when h = k, i.e., for L ( D n , k ) .  T h e  problem is that the longest chains in 

^ ^ 

[0, 1] no longer start with the creation of an unbalanced block, but instead must start by 
forming a balanced one. And one of these chains must be the unique increasing chain in 
order to obtain a lexicographic shelling. It seems that completely different techniques 
will have to be developed to handle this case. It would be interesting to either prove or 
disprove that the lattice is shellable when h = k. 

(3) The topological results for/$.,~,h in Section 5 can be extended in the following ways. 
Using item 3 in Theorem 5.3 and the Ziegler-Zivaljevi6 Theorem [17] one can conclude 
that the singularity link S n-~ N ([,..Jl3n,k,h) has the homotopy type of a wedge of spheres. 
Using Theorem 5.3 and the Goresky-MacPherson Theorem (Theorem 5.1) one can 
compute the cohomology groups, which are torsion-free, of  the complement  in C n of 
the complexification /3~k,h, for 1 < h < k. The arguments are completely parallel to 
those carried out for ~4n,~ in [5] so they will be omitted here. 
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Note added in proof: The subspace arrangements 79n.k have been further investigated by 
E.M. Feichtner and D.N. Kozlov in their 1995 preprint "On subspace arrangements of type 
D." This paper contains various results on the homology of such arrangements, including 
a full characterization in the case n < 2k, as well as certain vanishing results in general. 
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